Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-end Structured version   Visualization version   GIF version

Definition df-bj-end 35105
Description: The monoid of endomorphisms on an object of a category. (Contributed by BJ, 4-Apr-2024.)
Assertion
Ref Expression
df-bj-end End = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩}))
Distinct variable group:   𝑥,𝑐

Detailed syntax breakdown of Definition df-bj-end
StepHypRef Expression
1 cend 35104 . 2 class End
2 vc . . 3 setvar 𝑐
3 ccat 17038 . . 3 class Cat
4 vx . . . 4 setvar 𝑥
52cv 1541 . . . . 5 class 𝑐
6 cbs 16586 . . . . 5 class Base
75, 6cfv 6339 . . . 4 class (Base‘𝑐)
8 cnx 16583 . . . . . . 7 class ndx
98, 6cfv 6339 . . . . . 6 class (Base‘ndx)
104cv 1541 . . . . . . 7 class 𝑥
11 chom 16679 . . . . . . . 8 class Hom
125, 11cfv 6339 . . . . . . 7 class (Hom ‘𝑐)
1310, 10, 12co 7170 . . . . . 6 class (𝑥(Hom ‘𝑐)𝑥)
149, 13cop 4522 . . . . 5 class ⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩
15 cplusg 16668 . . . . . . 7 class +g
168, 15cfv 6339 . . . . . 6 class (+g‘ndx)
1710, 10cop 4522 . . . . . . 7 class 𝑥, 𝑥
18 cco 16680 . . . . . . . 8 class comp
195, 18cfv 6339 . . . . . . 7 class (comp‘𝑐)
2017, 10, 19co 7170 . . . . . 6 class (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)
2116, 20cop 4522 . . . . 5 class ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩
2214, 21cpr 4518 . . . 4 class {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩}
234, 7, 22cmpt 5110 . . 3 class (𝑥 ∈ (Base‘𝑐) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩})
242, 3, 23cmpt 5110 . 2 class (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩}))
251, 24wceq 1542 1 wff End = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  bj-endval  35106
  Copyright terms: Public domain W3C validator