HomeHome Metamath Proof Explorer
Theorem List (p. 365 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 36401-36500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoreminxpex 36401 Sufficient condition for an intersection with a Cartesian product to be a set. (Contributed by Peter Mazsa, 10-May-2019.)
((𝑅𝑊 ∨ (𝐴𝑈𝐵𝑉)) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)
 
Theoremeqres 36402 Converting a class constant definition by restriction (like df-ers 36702 or ~? df-parts ) into a binary relation. (Contributed by Peter Mazsa, 1-Oct-2018.)
𝑅 = (𝑆𝐶)       (𝐵𝑉 → (𝐴𝑅𝐵 ↔ (𝐴𝐶𝐴𝑆𝐵)))
 
Theorembrrabga 36403* The law of concretion for operation class abstraction. (Contributed by Peter Mazsa, 24-Oct-2022.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))    &   𝑅 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵𝑅𝐶𝜓))
 
Theorembrcnvrabga 36404* The law of concretion for the converse of operation class abstraction. (Contributed by Peter Mazsa, 25-Oct-2022.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))    &   𝑅 = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑅𝐵, 𝐶⟩ ↔ 𝜓))
 
Theoremopideq 36405 Equality conditions for ordered pairs 𝐴, 𝐴 and 𝐵, 𝐵. (Contributed by Peter Mazsa, 22-Jul-2019.) (Revised by Thierry Arnoux, 16-Feb-2022.)
(𝐴𝑉 → (⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐵⟩ ↔ 𝐴 = 𝐵))
 
Theoremiss2 36406 A subclass of the identity relation is the intersection of identity relation with Cartesian product of the domain and range of the class. (Contributed by Peter Mazsa, 22-Jul-2019.)
(𝐴 ⊆ I ↔ 𝐴 = ( I ∩ (dom 𝐴 × ran 𝐴)))
 
Theoremeldmcnv 36407* Elementhood in a domain of a converse. (Contributed by Peter Mazsa, 25-May-2018.)
(𝐴𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴))
 
Theoremdfrel5 36408 Alternate definition of the relation predicate. (Contributed by Peter Mazsa, 6-Nov-2018.)
(Rel 𝑅 ↔ (𝑅 ↾ dom 𝑅) = 𝑅)
 
Theoremdfrel6 36409 Alternate definition of the relation predicate. (Contributed by Peter Mazsa, 14-Mar-2019.)
(Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
 
Theoremcnvresrn 36410 Converse restricted to range is converse. (Contributed by Peter Mazsa, 3-Sep-2021.)
(𝑅 ↾ ran 𝑅) = 𝑅
 
Theoremecin0 36411* Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have no elements in common. (Contributed by Peter Mazsa, 1-Dec-2018.)
((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
 
Theoremecinn0 36412* Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have some elements in common. (Contributed by Peter Mazsa, 23-Jan-2019.)
((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
 
Theoremineleq 36413* Equivalence of restricted universal quantifications. (Contributed by Peter Mazsa, 29-May-2018.)
(∀𝑥𝐴𝑦𝐵 (𝑥 = 𝑦 ∨ (𝐶𝐷) = ∅) ↔ ∀𝑥𝐴𝑧𝑦𝐵 ((𝑧𝐶𝑧𝐷) → 𝑥 = 𝑦))
 
Theoreminecmo 36414* Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.)
(𝑥 = 𝑦𝐵 = 𝐶)       (Rel 𝑅 → (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥𝐴 𝐵𝑅𝑧))
 
Theoreminecmo2 36415* Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.) (Revised by Peter Mazsa, 2-Sep-2021.)
((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢𝐴 𝑢𝑅𝑥 ∧ Rel 𝑅))
 
Theoremineccnvmo 36416* Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 2-Sep-2021.)
(∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑥𝐹𝑦)
 
Theoremalrmomorn 36417 Equivalence of an "at most one" and an "at most one" restricted to the range inside a universal quantification. (Contributed by Peter Mazsa, 3-Sep-2021.)
(∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦)
 
Theoremalrmomodm 36418* Equivalence of an "at most one" and an "at most one" restricted to the domain inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021.)
(Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥))
 
Theoremineccnvmo2 36419* Equivalence of a double universal quantification restricted to the range and an "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 4-Sep-2021.)
(∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥)
 
Theoreminecmo3 36420* Equivalence of a double universal quantification restricted to the domain and an "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021.)
((∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅))
 
Theoremmoantr 36421 Sufficient condition for transitivity of conjunctions inside existential quantifiers. (Contributed by Peter Mazsa, 2-Oct-2018.)
(∃*𝑥𝜓 → ((∃𝑥(𝜑𝜓) ∧ ∃𝑥(𝜓𝜒)) → ∃𝑥(𝜑𝜒)))
 
Theorembrabidgaw 36422* The law of concretion for a binary relation. Special case of brabga 5440. Version of brabidga 36423 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Peter Mazsa, 24-Nov-2018.) (Revised by Gino Giotto, 2-Apr-2024.)
𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}       (𝑥𝑅𝑦𝜑)
 
Theorembrabidga 36423 The law of concretion for a binary relation. Special case of brabga 5440. Usage of this theorem is discouraged because it depends on ax-13 2372, see brabidgaw 36422 for a weaker version that does not require it. (Contributed by Peter Mazsa, 24-Nov-2018.) (New usage is discouraged.)
𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}       (𝑥𝑅𝑦𝜑)
 
Theoreminxp2 36424* Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019.)
(𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦)}
 
Theoremopabf 36425 A class abstraction of a collection of ordered pairs with a negated wff is the empty set. (Contributed by Peter Mazsa, 21-Oct-2019.) (Proof shortened by Thierry Arnoux, 18-Feb-2022.)
¬ 𝜑       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅
 
Theoremec0 36426 The empty-coset of a class is the empty set. (Contributed by Peter Mazsa, 19-May-2019.)
[𝐴]∅ = ∅
 
Theorem0qs 36427 Quotient set with the empty set. (Contributed by Peter Mazsa, 14-Sep-2019.)
(∅ / 𝑅) = ∅
 
20.22.3  Range Cartesian product
 
Definitiondf-xrn 36428 Define the range Cartesian product of two classes. Definition from [Holmes] p. 40. Membership in this class is characterized by xrnss3v 36429 and brxrn 36431. This is Scott Fenton's df-txp 34083 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 34083. (Contributed by Scott Fenton, 31-Mar-2012.)
(𝐴𝐵) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
 
Theoremxrnss3v 36429 A range Cartesian product is a subset of the class of ordered triples. This is Scott Fenton's txpss3v 34107 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 34107. (Contributed by Scott Fenton, 31-Mar-2012.)
(𝐴𝐵) ⊆ (V × (V × V))
 
Theoremxrnrel 36430 A range Cartesian product is a relation. This is Scott Fenton's txprel 34108 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 34108. (Contributed by Scott Fenton, 31-Mar-2012.)
Rel (𝐴𝐵)
 
Theorembrxrn 36431 Characterize a ternary relation over a range Cartesian product. Together with xrnss3v 36429, this characterizes elementhood in a range cross. (Contributed by Peter Mazsa, 27-Jun-2021.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ (𝐴𝑅𝐵𝐴𝑆𝐶)))
 
Theorembrxrn2 36432* A characterization of the range Cartesian product. (Contributed by Peter Mazsa, 14-Oct-2020.)
(𝐴𝑉 → (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
 
Theoremdfxrn2 36433* Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022.)
(𝑅𝑆) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥𝑢𝑆𝑦)}
 
Theoremxrneq1 36434 Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.)
(𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremxrneq1i 36435 Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.)
𝐴 = 𝐵       (𝐴𝐶) = (𝐵𝐶)
 
Theoremxrneq1d 36436 Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 7-Sep-2021.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremxrneq2 36437 Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.)
(𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremxrneq2i 36438 Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.)
𝐴 = 𝐵       (𝐶𝐴) = (𝐶𝐵)
 
Theoremxrneq2d 36439 Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 7-Sep-2021.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremxrneq12 36440 Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
 
Theoremxrneq12i 36441 Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶) = (𝐵𝐷)
 
Theoremxrneq12d 36442 Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 18-Dec-2021.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶) = (𝐵𝐷))
 
Theoremelecxrn 36443* Elementhood in the (𝑅𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
(𝐴𝑉 → (𝐵 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
 
Theoremecxrn 36444* The (𝑅𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
(𝐴𝑉 → [𝐴](𝑅𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)})
 
Theoremxrninxp 36445* Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020.)
((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
 
Theoremxrninxp2 36446* Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 8-Apr-2020.)
((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
 
Theoremxrninxpex 36447 Sufficient condition for the intersection of a range Cartesian product with a Cartesian product to be a set. (Contributed by Peter Mazsa, 12-Apr-2020.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V)
 
Theoreminxpxrn 36448 Two ways to express the intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 10-Apr-2020.)
((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶))) = ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))
 
Theorembr1cnvxrn2 36449* The converse of a binary relation over a range Cartesian product. (Contributed by Peter Mazsa, 11-Jul-2021.)
(𝐵𝑉 → (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝐵𝑅𝑦𝐵𝑆𝑧)))
 
Theoremelec1cnvxrn2 36450* Elementhood in the converse range Cartesian product coset of 𝐴. (Contributed by Peter Mazsa, 11-Jul-2021.)
(𝐵𝑉 → (𝐵 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝐵𝑅𝑦𝐵𝑆𝑧)))
 
Theoremrnxrn 36451* Range of the range Cartesian product of classes. (Contributed by Peter Mazsa, 1-Jun-2020.)
ran (𝑅𝑆) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)}
 
Theoremrnxrnres 36452* Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021.)
ran (𝑅 ⋉ (𝑆𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦)}
 
Theoremrnxrncnvepres 36453* Range of a range Cartesian product with a restriction of the converse epsilon relation. (Contributed by Peter Mazsa, 6-Dec-2021.)
ran (𝑅 ⋉ ( E ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑦𝑢𝑢𝑅𝑥)}
 
Theoremrnxrnidres 36454* Range of a range Cartesian product with a restriction of the identity relation. (Contributed by Peter Mazsa, 6-Dec-2021.)
ran (𝑅 ⋉ ( I ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢 = 𝑦𝑢𝑅𝑥)}
 
Theoremxrnres 36455 Two ways to express restriction of range Cartesian product, see also xrnres2 36456, xrnres3 36457. (Contributed by Peter Mazsa, 5-Jun-2021.)
((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ 𝑆)
 
Theoremxrnres2 36456 Two ways to express restriction of range Cartesian product, see also xrnres 36455, xrnres3 36457. (Contributed by Peter Mazsa, 6-Sep-2021.)
((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
 
Theoremxrnres3 36457 Two ways to express restriction of range Cartesian product, see also xrnres 36455, xrnres2 36456. (Contributed by Peter Mazsa, 28-Mar-2020.)
((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ (𝑆𝐴))
 
Theoremxrnres4 36458 Two ways to express restriction of range Cartesian product. (Contributed by Peter Mazsa, 29-Dec-2020.)
((𝑅𝑆) ↾ 𝐴) = ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴))))
 
Theoremxrnresex 36459 Sufficient condition for a restricted range Cartesian product to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 7-Sep-2021.)
((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆𝐴)) ∈ V)
 
Theoremxrnidresex 36460 Sufficient condition for a range Cartesian product with restricted identity to be a set. (Contributed by Peter Mazsa, 31-Dec-2021.)
((𝐴𝑉𝑅𝑊) → (𝑅 ⋉ ( I ↾ 𝐴)) ∈ V)
 
Theoremxrncnvepresex 36461 Sufficient condition for a range Cartesian product with restricted converse epsilon to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 23-Sep-2021.)
((𝐴𝑉𝑅𝑊) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
 
Theorembrin2 36462 Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.)
((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆)⟨𝐵, 𝐵⟩))
 
Theorembrin3 36463 Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) (Avoid depending on this detail.)
((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆){{𝐵}}))
 
20.22.4  Cosets by ` R `
 
Definitiondf-coss 36464* Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑢𝑅𝑥 and 𝑢𝑅𝑦 hold, i.e., both 𝑥 and 𝑦 are are elements of the 𝑅 -coset of 𝑢 (see dfcoss2 36466 and the comment of dfec2 8459). 𝑅 is usually a relation.

This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to 𝑅 (see e.g. ~? pet ). Without the definition of 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 36467) or to the range of a range Cartesian product of classes (cf. dfcoss4 36468), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 36466. Technically, we can define it via composition (dfcoss3 36467) or as the range of a range Cartesian product (dfcoss4 36468), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 36719, df-funALTV 36720) and disjoints (dfdisjs 36746, dfdisjs2 36747, df-disjALTV 36743, dfdisjALTV2 36752) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.)

𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
 
Definitiondf-coels 36465 Define the class of coelements on the class 𝐴, see also the alternate definition dfcoels 36480. Possible definitions are the special cases of dfcoss3 36467 and dfcoss4 36468. (Contributed by Peter Mazsa, 20-Nov-2019.)
𝐴 = ≀ ( E ↾ 𝐴)
 
Theoremdfcoss2 36466* Alternate definition of the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑥 and 𝑦 are are elements of the 𝑅-coset of 𝑢 (see also the comment of dfec2 8459). 𝑅 is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018.)
𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅)}
 
Theoremdfcoss3 36467 Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 36464). (Contributed by Peter Mazsa, 27-Dec-2018.)
𝑅 = (𝑅𝑅)
 
Theoremdfcoss4 36468 Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 36464). (Contributed by Peter Mazsa, 12-Jul-2021.)
𝑅 = ran (𝑅𝑅)
 
Theoremcossex 36469 If 𝐴 is a set then the class of cosets by 𝐴 is a set. (Contributed by Peter Mazsa, 4-Jan-2019.)
(𝐴𝑉 → ≀ 𝐴 ∈ V)
 
Theoremcosscnvex 36470 If 𝐴 is a set then the class of cosets by the converse of 𝐴 is a set. (Contributed by Peter Mazsa, 18-Oct-2019.)
(𝐴𝑉 → ≀ 𝐴 ∈ V)
 
Theorem1cosscnvepresex 36471 Sufficient condition for a restricted converse epsilon coset to be a set. (Contributed by Peter Mazsa, 24-Sep-2021.)
(𝐴𝑉 → ≀ ( E ↾ 𝐴) ∈ V)
 
Theorem1cossxrncnvepresex 36472 Sufficient condition for a restricted converse epsilon range Cartesian product to be a set. (Contributed by Peter Mazsa, 23-Sep-2021.)
((𝐴𝑉𝑅𝑊) → ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
 
Theoremrelcoss 36473 Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.)
Rel ≀ 𝑅
 
Theoremrelcoels 36474 Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.)
Rel ∼ 𝐴
 
Theoremcossss 36475 Subclass theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 11-Nov-2019.)
(𝐴𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵)
 
Theoremcosseq 36476 Equality theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 9-Jan-2018.)
(𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵)
 
Theoremcosseqi 36477 Equality theorem for the classes of cosets by 𝐴 and 𝐵, inference form. (Contributed by Peter Mazsa, 9-Jan-2018.)
𝐴 = 𝐵       𝐴 = ≀ 𝐵
 
Theoremcosseqd 36478 Equality theorem for the classes of cosets by 𝐴 and 𝐵, deduction form. (Contributed by Peter Mazsa, 4-Nov-2019.)
(𝜑𝐴 = 𝐵)       (𝜑 → ≀ 𝐴 = ≀ 𝐵)
 
Theorem1cossres 36479* The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019.)
≀ (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑅𝑦)}
 
Theoremdfcoels 36480* Alternate definition of the class of coelements on the class 𝐴. (Contributed by Peter Mazsa, 20-Apr-2019.)
𝐴 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
 
Theorembrcoss 36481* 𝐴 and 𝐵 are cosets by 𝑅: a binary relation. (Contributed by Peter Mazsa, 27-Dec-2018.)
((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
 
Theorembrcoss2 36482* Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.)
((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝐴 ∈ [𝑢]𝑅𝐵 ∈ [𝑢]𝑅)))
 
Theorembrcoss3 36483 Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.)
((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅))
 
Theorembrcosscnvcoss 36484 For sets, the 𝐴 and 𝐵 cosets by 𝑅 binary relation and the 𝐵 and 𝐴 cosets by 𝑅 binary relation are the same. (Contributed by Peter Mazsa, 27-Dec-2018.)
((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝐵𝑅𝐴))
 
Theorembrcoels 36485* 𝐵 and 𝐶 are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020.) (Revised by Peter Mazsa, 5-Oct-2021.)
((𝐵𝑉𝐶𝑊) → (𝐵𝐴𝐶 ↔ ∃𝑢𝐴 (𝐵𝑢𝐶𝑢)))
 
Theoremcocossss 36486* Two ways of saying that cosets by cosets by 𝑅 is a subclass. (Contributed by Peter Mazsa, 17-Sep-2021.)
( ≀ ≀ 𝑅𝑆 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
 
Theoremcnvcosseq 36487 The converse of cosets by 𝑅 are cosets by 𝑅. (Contributed by Peter Mazsa, 3-May-2019.)
𝑅 = ≀ 𝑅
 
Theorembr2coss 36488 Cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 25-Aug-2019.)
((𝐴𝑉𝐵𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅))
 
Theorembr1cossres 36489* 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 30-Dec-2018.)
((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑅𝐶)))
 
Theorembr1cossres2 36490* 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018.)
((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑥𝐴 (𝐵 ∈ [𝑥]𝑅𝐶 ∈ [𝑥]𝑅)))
 
Theoremrelbrcoss 36491* 𝐴 and 𝐵 are cosets by relation 𝑅: a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021.)
((𝐴𝑉𝐵𝑊) → (Rel 𝑅 → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅))))
 
Theorembr1cossinres 36492* 𝐵 and 𝐶 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶))))
 
Theorembr1cossxrnres 36493* 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.)
(((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
 
Theorembr1cossinidres 36494* 𝐵 and 𝐶 are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢 = 𝐵𝑢𝑅𝐵) ∧ (𝑢 = 𝐶𝑢𝑅𝐶))))
 
Theorembr1cossincnvepres 36495* 𝐵 and 𝐶 are cosets by an intersection with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( E ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝐵𝑢𝑢𝑅𝐵) ∧ (𝐶𝑢𝑢𝑅𝐶))))
 
Theorembr1cossxrnidres 36496* 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.)
(((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( I ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷))))
 
Theorembr1cossxrncnvepres 36497* 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by a range Cartesian product with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 12-May-2021.)
(((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( E ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝐶𝑢𝑢𝑅𝐵) ∧ (𝐸𝑢𝑢𝑅𝐷))))
 
Theoremdmcoss3 36498 The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.)
dom ≀ 𝑅 = dom 𝑅
 
Theoremdmcoss2 36499 The domain of cosets is the range. (Contributed by Peter Mazsa, 27-Dec-2018.)
dom ≀ 𝑅 = ran 𝑅
 
Theoremrncossdmcoss 36500 The range of cosets is the domain of them (this should be rncoss 5870 but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019.)
ran ≀ 𝑅 = dom ≀ 𝑅
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >