![]() |
Metamath
Proof Explorer Theorem List (p. 365 of 481) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30595) |
![]() (30596-32118) |
![]() (32119-48006) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | bj-bm1.3ii 36401* |
The extension of a predicate (𝜑(𝑧)) is included in a set
(𝑥) if and only if it is a set (𝑦).
Sufficiency is obvious,
and necessity is the content of the axiom of separation ax-sep 5289.
Similar to Theorem 1.3(ii) of [BellMachover] p. 463. (Contributed by
NM, 21-Jun-1993.) Generalized to a closed form biconditional with
existential quantifications using two different setvars 𝑥, 𝑦 (which
need not be disjoint). (Revised by BJ, 8-Aug-2022.)
TODO: move in place of bm1.3ii 5292. Relabel ("sepbi"?). |
⊢ (∃𝑥∀𝑧(𝜑 → 𝑧 ∈ 𝑥) ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝜑)) | ||
Theorem | bj-dfid2ALT 36402 | Alternate version of dfid2 5566. (Contributed by BJ, 9-Nov-2024.) (Proof modification is discouraged.) Use df-id 5564 instead to make the semantics of the construction df-opab 5201 clearer. (New usage is discouraged.) |
⊢ I = {〈𝑥, 𝑥〉 ∣ ⊤} | ||
Theorem | bj-0nelopab 36403 |
The empty set is never an element in an ordered-pair class abstraction.
(Contributed by Alexander van der Vekens, 5-Nov-2017.) (Proof shortened
by BJ, 22-Jul-2023.)
TODO: move to the main section when one can reorder sections so that we can use relopab 5814 (this is a very limited reordering). |
⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} | ||
Theorem | bj-brrelex12ALT 36404 | Two classes related by a binary relation are both sets. Alternate proof of brrelex12 5718. (Contributed by BJ, 14-Jul-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | bj-epelg 36405 | The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel 5573 and closed form of epeli 5572. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) TODO: move it to the main section after reordering to have brrelex1i 5722 available. (Proof shortened by BJ, 14-Jul-2023.) (Proof modification is discouraged.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | ||
Theorem | bj-epelb 36406 | Two classes are related by the membership relation if and only if they are related by the membership relation (i.e., the first is an element of the second) and the second is a set (hence so is the first). TODO: move to Main after reordering to have brrelex2i 5723 available. Check if it is shorter to prove bj-epelg 36405 first or bj-epelb 36406 first. (Contributed by BJ, 14-Jul-2023.) |
⊢ (𝐴 E 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V)) | ||
Theorem | bj-nsnid 36407 | A set does not contain the singleton formed on it. More precisely, one can prove that a class contains the singleton formed on it if and only if it is proper and contains the empty set (since it is "the singleton formed on" any proper class, see snprc 4713): ⊢ ¬ ({𝐴} ∈ 𝐴 ↔ (∅ ∈ 𝐴 → 𝐴 ∈ V)). (Contributed by BJ, 4-Feb-2023.) |
⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ∈ 𝐴) | ||
Theorem | bj-rdg0gALT 36408 | Alternate proof of rdg0g 8422. More direct since it bypasses tz7.44-1 8401 and rdg0 8416 (and vtoclg 3535, vtoclga 3558). (Contributed by NM, 25-Apr-1995.) More direct proof. (Revised by BJ, 17-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴) | ||
This section treats the existing predicate Slot (df-slot 17111) as "evaluation at a class" and for the moment does not introduce new syntax for it. | ||
Theorem | bj-evaleq 36409 | Equality theorem for the Slot construction. This is currently a duplicate of sloteq 17112 but may diverge from it if/when a token Eval is introduced for evaluation in order to separate it from Slot and any of its possible modifications. (Contributed by BJ, 27-Dec-2021.) (Proof modification is discouraged.) |
⊢ (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵) | ||
Theorem | bj-evalfun 36410 | The evaluation at a class is a function. (Contributed by BJ, 27-Dec-2021.) |
⊢ Fun Slot 𝐴 | ||
Theorem | bj-evalfn 36411 | The evaluation at a class is a function on the universal class. (General form of slotfn 17113). (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by BJ, 27-Dec-2021.) |
⊢ Slot 𝐴 Fn V | ||
Theorem | bj-evalval 36412 | Value of the evaluation at a class. (Closed form of strfvnd 17114 and strfvn 17115). (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 15-Nov-2014.) (Revised by BJ, 27-Dec-2021.) |
⊢ (𝐹 ∈ 𝑉 → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) | ||
Theorem | bj-evalid 36413 | The evaluation at a set of the identity function is that set. (General form of ndxarg 17125.) The restriction to a set 𝑉 is necessary since the argument of the function Slot 𝐴 (like that of any function) has to be a set for the evaluation to be meaningful. (Contributed by BJ, 27-Dec-2021.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴) | ||
Theorem | bj-ndxarg 36414 | Proof of ndxarg 17125 from bj-evalid 36413. (Contributed by BJ, 27-Dec-2021.) (Proof modification is discouraged.) |
⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝐸‘ndx) = 𝑁 | ||
Theorem | bj-evalidval 36415 | Closed general form of strndxid 17127. Both sides are equal to (𝐹‘𝐴) by bj-evalid 36413 and bj-evalval 36412 respectively, but bj-evalidval 36415 adds something to bj-evalid 36413 and bj-evalval 36412 in that Slot 𝐴 appears on both sides. (Contributed by BJ, 27-Dec-2021.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴‘𝐹)) | ||
Syntax | celwise 36416 | Syntax for elementwise operations. |
class elwise | ||
Definition | df-elwise 36417* | Define the elementwise operation associated with a given operation. For instance, + is the addition of complex numbers (axaddf 11135), so if 𝐴 and 𝐵 are sets of complex numbers, then (𝐴(elwise‘ + )𝐵) is the set of numbers of the form (𝑥 + 𝑦) with 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. The set of odd natural numbers is (({2}(elwise‘ · )ℕ0)(elwise‘ + ){1}), or less formally 2ℕ0 + 1. (Contributed by BJ, 22-Dec-2021.) |
⊢ elwise = (𝑜 ∈ V ↦ (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢𝑜𝑣)})) | ||
Many kinds of structures are given by families of subsets of a given set: Moore collections (df-mre 17526), topologies (df-top 22706), pi-systems, rings of sets, delta-rings, lambda-systems/Dynkin systems, algebras/fields of sets, sigma-algebras/sigma-fields/tribes (df-siga 33562), sigma rings, monotone classes, matroids/independent sets, bornologies, filters. There is a natural notion of structure induced on a subset. It is often given by an elementwise intersection, namely, the family of intersections of sets in the original family with the given subset. In this subsection, we define this notion and prove its main properties. Classical conditions on families of subsets include being nonempty, containing the whole set, containing the empty set, being stable under unions, intersections, subsets, supersets, (relative) complements. Therefore, we prove related properties for the elementwise intersection. We will call (𝑋 ↾t 𝐴) the elementwise intersection on the family 𝑋 by the class 𝐴. REMARK: many theorems are already in set.mm: "MM> SEARCH *rest* / JOIN". | ||
Theorem | bj-rest00 36418 | An elementwise intersection on the empty family is the empty set. TODO: this is 0rest 17371. (Contributed by BJ, 27-Apr-2021.) |
⊢ (∅ ↾t 𝐴) = ∅ | ||
Theorem | bj-restsn 36419 | An elementwise intersection on the singleton on a set is the singleton on the intersection by that set. Generalization of bj-restsn0 36422 and bj-restsnid 36424. (Contributed by BJ, 27-Apr-2021.) |
⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) | ||
Theorem | bj-restsnss 36420 | Special case of bj-restsn 36419. (Contributed by BJ, 27-Apr-2021.) |
⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → ({𝑌} ↾t 𝐴) = {𝐴}) | ||
Theorem | bj-restsnss2 36421 | Special case of bj-restsn 36419. (Contributed by BJ, 27-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {𝑌}) | ||
Theorem | bj-restsn0 36422 | An elementwise intersection on the singleton on the empty set is the singleton on the empty set. Special case of bj-restsn 36419 and bj-restsnss2 36421. TODO: this is restsn 22984. (Contributed by BJ, 27-Apr-2021.) |
⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) | ||
Theorem | bj-restsn10 36423 | Special case of bj-restsn 36419, bj-restsnss 36420, and bj-rest10 36425. (Contributed by BJ, 27-Apr-2021.) |
⊢ (𝑋 ∈ 𝑉 → ({𝑋} ↾t ∅) = {∅}) | ||
Theorem | bj-restsnid 36424 | The elementwise intersection on the singleton on a class by that class is the singleton on that class. Special case of bj-restsn 36419 and bj-restsnss 36420. (Contributed by BJ, 27-Apr-2021.) |
⊢ ({𝐴} ↾t 𝐴) = {𝐴} | ||
Theorem | bj-rest10 36425 | An elementwise intersection on a nonempty family by the empty set is the singleton on the empty set. TODO: this generalizes rest0 22983 and could replace it. (Contributed by BJ, 27-Apr-2021.) |
⊢ (𝑋 ∈ 𝑉 → (𝑋 ≠ ∅ → (𝑋 ↾t ∅) = {∅})) | ||
Theorem | bj-rest10b 36426 | Alternate version of bj-rest10 36425. (Contributed by BJ, 27-Apr-2021.) |
⊢ (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋 ↾t ∅) = {∅}) | ||
Theorem | bj-restn0 36427 | An elementwise intersection on a nonempty family is nonempty. (Contributed by BJ, 27-Apr-2021.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → (𝑋 ↾t 𝐴) ≠ ∅)) | ||
Theorem | bj-restn0b 36428 | Alternate version of bj-restn0 36427. (Contributed by BJ, 27-Apr-2021.) |
⊢ ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴 ∈ 𝑊) → (𝑋 ↾t 𝐴) ≠ ∅) | ||
Theorem | bj-restpw 36429 | The elementwise intersection on a powerset is the powerset of the intersection. This allows to prove for instance that the topology induced on a subset by the discrete topology is the discrete topology on that subset. See also restdis 22992 (which uses distop 22808 and restopn2 22991). (Contributed by BJ, 27-Apr-2021.) |
⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝒫 𝑌 ↾t 𝐴) = 𝒫 (𝑌 ∩ 𝐴)) | ||
Theorem | bj-rest0 36430 | An elementwise intersection on a family containing the empty set contains the empty set. (Contributed by BJ, 27-Apr-2021.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∅ ∈ 𝑋 → ∅ ∈ (𝑋 ↾t 𝐴))) | ||
Theorem | bj-restb 36431 | An elementwise intersection by a set on a family containing a superset of that set contains that set. (Contributed by BJ, 27-Apr-2021.) |
⊢ (𝑋 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ (𝑋 ↾t 𝐴))) | ||
Theorem | bj-restv 36432 | An elementwise intersection by a subset on a family containing the whole set contains the whole subset. (Contributed by BJ, 27-Apr-2021.) |
⊢ ((𝐴 ⊆ ∪ 𝑋 ∧ ∪ 𝑋 ∈ 𝑋) → 𝐴 ∈ (𝑋 ↾t 𝐴)) | ||
Theorem | bj-resta 36433 | An elementwise intersection by a set on a family containing that set contains that set. (Contributed by BJ, 27-Apr-2021.) |
⊢ (𝑋 ∈ 𝑉 → (𝐴 ∈ 𝑋 → 𝐴 ∈ (𝑋 ↾t 𝐴))) | ||
Theorem | bj-restuni 36434 | The union of an elementwise intersection by a set is equal to the intersection with that set of the union of the family. See also restuni 22976 and restuni2 22981. (Contributed by BJ, 27-Apr-2021.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ∪ (𝑋 ↾t 𝐴) = (∪ 𝑋 ∩ 𝐴)) | ||
Theorem | bj-restuni2 36435 | The union of an elementwise intersection on a family of sets by a subset is equal to that subset. See also restuni 22976 and restuni2 22981. (Contributed by BJ, 27-Apr-2021.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → ∪ (𝑋 ↾t 𝐴) = 𝐴) | ||
Theorem | bj-restreg 36436 | A reformulation of the axiom of regularity using elementwise intersection. (RK: might have to be placed later since theorems in this section are to be moved early (in the section related to the algebra of sets).) (Contributed by BJ, 27-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∅ ∈ (𝐴 ↾t 𝐴)) | ||
Theorem | bj-raldifsn 36437* | All elements in a set satisfy a given property if and only if all but one satisfy that property and that one also does. Typically, this can be used for characterizations that are proved using different methods for a given element and for all others, for instance zero and nonzero numbers, or the empty set and nonempty sets. (Contributed by BJ, 7-Dec-2021.) |
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ 𝜓))) | ||
Theorem | bj-0int 36438* | If 𝐴 is a collection of subsets of 𝑋, like a Moore collection or a topology, two equivalent ways to say that arbitrary intersections of elements of 𝐴 relative to 𝑋 belong to some class 𝐵: the LHS singles out the empty intersection (the empty intersection relative to 𝑋 is 𝑋 and the intersection of a nonempty family of subsets of 𝑋 is included in 𝑋, so there is no need to intersect it with 𝑋). In typical applications, 𝐵 is 𝐴 itself. (Contributed by BJ, 7-Dec-2021.) |
⊢ (𝐴 ⊆ 𝒫 𝑋 → ((𝑋 ∈ 𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∩ 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝒫 𝐴(𝑋 ∩ ∩ 𝑥) ∈ 𝐵)) | ||
Theorem | bj-mooreset 36439* |
A Moore collection is a set. Therefore, the class Moore of all
Moore sets defined in df-bj-moore 36441 is actually the class of all Moore
collections. This is also illustrated by the lack of sethood condition
in bj-ismoore 36442.
Note that the closed sets of a topology form a Moore collection, so a topology is a set, and this remark also applies to many other families of sets (namely, as soon as the whole set is required to be a set of the family, then the associated kind of family has no proper classes: that this condition suffices to impose sethood can be seen in this proof, which relies crucially on uniexr 7743). Note: if, in the above predicate, we substitute 𝒫 𝑋 for 𝐴, then the last ∈ 𝒫 𝑋 could be weakened to ⊆ 𝑋, and then the predicate would be obviously satisfied since ⊢ ∪ 𝒫 𝑋 = 𝑋 (unipw 5440), making 𝒫 𝑋 a Moore collection in this weaker sense, for any class 𝑋, even proper, but the addition of this single case does not add anything interesting. Instead, we have the biconditional bj-discrmoore 36448. (Contributed by BJ, 8-Dec-2021.) |
⊢ (∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 → 𝐴 ∈ V) | ||
Syntax | cmoore 36440 | Syntax for the class of Moore collections. |
class Moore | ||
Definition | df-bj-moore 36441* |
Define the class of Moore collections. This is indeed the class of all
Moore collections since these all are sets, as proved in bj-mooreset 36439,
and as illustrated by the lack of sethood condition in bj-ismoore 36442.
This is to df-mre 17526 (defining Moore) what df-top 22706 (defining Top) is to df-topon 22723 (defining TopOn). For the sake of consistency, the function defined at df-mre 17526 should be denoted by "MooreOn". Note: df-mre 17526 singles out the empty intersection. This is not necessary. It could be written instead ⊢ Moore = (𝑥 ∈ V ↦ {𝑦 ∈ 𝒫 𝒫 𝑥 ∣ ∀𝑧 ∈ 𝒫 𝑦(𝑥 ∩ ∩ 𝑧) ∈ 𝑦}) and the equivalence of both definitions is proved by bj-0int 36438. There is no added generality in defining a "Moore predicate" for arbitrary classes, since a Moore class satisfying such a predicate is automatically a set (see bj-mooreset 36439). TODO: move to the main section. For many families of sets, one can define both the function associating to each set the set of families of that kind on it (like df-mre 17526 and df-topon 22723) or the class of all families of that kind, independent of a base set (like df-bj-moore 36441 or df-top 22706). In general, the former will be more useful and the extra generality of the latter is not necessary. Moore collections, however, are particular in that they are more ubiquitous and are used in a wide variety of applications (for many families of sets, the family of families of a given kind is often a Moore collection, for instance). Therefore, in the case of Moore families, having both definitions is useful. (Contributed by BJ, 27-Apr-2021.) |
⊢ Moore = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 ∩ ∩ 𝑦) ∈ 𝑥} | ||
Theorem | bj-ismoore 36442* | Characterization of Moore collections. Note that there is no sethood hypothesis on 𝐴: it is implied by either side (this is obvious for the LHS, and is the content of bj-mooreset 36439 for the RHS). (Contributed by BJ, 9-Dec-2021.) |
⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) | ||
Theorem | bj-ismoored0 36443 | Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
⊢ (𝐴 ∈ Moore → ∪ 𝐴 ∈ 𝐴) | ||
Theorem | bj-ismoored 36444 | Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ Moore) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) | ||
Theorem | bj-ismoored2 36445 | Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ Moore) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ≠ ∅) ⇒ ⊢ (𝜑 → ∩ 𝐵 ∈ 𝐴) | ||
Theorem | bj-ismooredr 36446* | Sufficient condition to be a Moore collection. Note that there is no sethood hypothesis on 𝐴: it is a consequence of the only hypothesis. (Contributed by BJ, 9-Dec-2021.) |
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ Moore) | ||
Theorem | bj-ismooredr2 36447* | Sufficient condition to be a Moore collection (variant of bj-ismooredr 36446 singling out the empty intersection). Note that there is no sethood hypothesis on 𝐴: it is a consequence of the first hypothesis. (Contributed by BJ, 9-Dec-2021.) |
⊢ (𝜑 → ∪ 𝐴 ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) → ∩ 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ Moore) | ||
Theorem | bj-discrmoore 36448 | The powerclass 𝒫 𝐴 is a Moore collection if and only if 𝐴 is a set. It is then called the discrete Moore collection. (Contributed by BJ, 9-Dec-2021.) |
⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ Moore) | ||
Theorem | bj-0nmoore 36449 | The empty set is not a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
⊢ ¬ ∅ ∈ Moore | ||
Theorem | bj-snmoore 36450 | A singleton is a Moore collection. See bj-snmooreb 36451 for a biconditional version. (Contributed by BJ, 10-Apr-2024.) |
⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Moore) | ||
Theorem | bj-snmooreb 36451 | A singleton is a Moore collection, biconditional version. (Contributed by BJ, 9-Dec-2021.) (Proof shortened by BJ, 10-Apr-2024.) |
⊢ (𝐴 ∈ V ↔ {𝐴} ∈ Moore) | ||
Theorem | bj-prmoore 36452 |
A pair formed of two nested sets is a Moore collection. (Note that in
the statement, if 𝐵 is a proper class, we are in the
case of
bj-snmoore 36450). A direct consequence is ⊢ {∅, 𝐴} ∈ Moore.
More generally, any nonempty well-ordered chain of sets that is a set is a Moore collection. We also have the biconditional ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → ({𝐴, 𝐵} ∈ Moore ↔ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴))). (Contributed by BJ, 11-Apr-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → {𝐴, 𝐵} ∈ Moore) | ||
Theorem | bj-0nelmpt 36453 | The empty set is not an element of a function (given in maps-to notation). (Contributed by BJ, 30-Dec-2020.) |
⊢ ¬ ∅ ∈ (𝑥 ∈ 𝐴 ↦ 𝐵) | ||
Theorem | bj-mptval 36454 | Value of a function given in maps-to notation. (Contributed by BJ, 30-Dec-2020.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑋 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑋) = 𝑌 ↔ 𝑋(𝑥 ∈ 𝐴 ↦ 𝐵)𝑌))) | ||
Theorem | bj-dfmpoa 36455* | An equivalent definition of df-mpo 7406. (Contributed by BJ, 30-Dec-2020.) |
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈𝑠, 𝑡〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑠 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶)} | ||
Theorem | bj-mpomptALT 36456* | Alternate proof of mpompt 7514. (Contributed by BJ, 30-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) ⇒ ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) | ||
Syntax | cmpt3 36457 | Syntax for maps-to notation for functions with three arguments. |
class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶 ↦ 𝐷) | ||
Definition | df-bj-mpt3 36458* | Define maps-to notation for functions with three arguments. See df-mpt 5222 and df-mpo 7406 for functions with one and two arguments respectively. This definition is analogous to bj-dfmpoa 36455. (Contributed by BJ, 11-Apr-2020.) |
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶 ↦ 𝐷) = {〈𝑠, 𝑡〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝑠 = 〈𝑥, 𝑦, 𝑧〉 ∧ 𝑡 = 𝐷)} | ||
Currying and uncurrying. See also df-cur 8247 and df-unc 8248. Contrary to these, the definitions in this section are parameterized. | ||
Syntax | csethom 36459 | Syntax for the set of set morphisms. |
class Set⟶ | ||
Definition | df-bj-sethom 36460* |
Define the set of functions (morphisms of sets) between two sets. Same
as df-map 8817 with arguments swapped. TODO: prove the same
staple lemmas
as for ↑m.
Remark: one may define Set⟶ = (𝑥 ∈ dom Struct , 𝑦 ∈ dom Struct ↦ {𝑓 ∣ 𝑓:(Base‘𝑥)⟶(Base‘𝑦)}) so that for morphisms between other structures, one could write ... = {𝑓 ∈ (𝑥 Set⟶ 𝑦) ∣ ...}. (Contributed by BJ, 11-Apr-2020.) |
⊢ Set⟶ = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑥⟶𝑦}) | ||
Syntax | ctophom 36461 | Syntax for the set of topological morphisms. |
class Top⟶ | ||
Definition | df-bj-tophom 36462* | Define the set of continuous functions (morphisms of topological spaces) between two topological spaces. Similar to df-cn 23041 (which is in terms of topologies instead of topological spaces). (Contributed by BJ, 10-Feb-2022.) |
⊢ Top⟶ = (𝑥 ∈ TopSp, 𝑦 ∈ TopSp ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (TopOpen‘𝑦)(◡𝑓 “ 𝑢) ∈ (TopOpen‘𝑥)}) | ||
Syntax | cmgmhom 36463 | Syntax for the set of magma morphisms. |
class Mgm⟶ | ||
Definition | df-bj-mgmhom 36464* | Define the set of magma morphisms between two magmas. If domain and codomain are semigroups, monoids, or groups, then one obtains the set of morphisms of these structures. (Contributed by BJ, 10-Feb-2022.) |
⊢ Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣))}) | ||
Syntax | ctopmgmhom 36465 | Syntax for the set of topological magma morphisms. |
class TopMgm⟶ | ||
Definition | df-bj-topmgmhom 36466* | Define the set of topological magma morphisms (continuous magma morphisms) between two topological magmas. If domain and codomain are topological semigroups, monoids, or groups, then one obtains the set of morphisms of these structures. This definition is currently stated with topological monoid domain and codomain, since topological magmas are currently not defined in set.mm. (Contributed by BJ, 10-Feb-2022.) |
⊢ TopMgm⟶ = (𝑥 ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦))) | ||
Syntax | ccur- 36467 | Syntax for the parameterized currying function. |
class curry_ | ||
Definition | df-bj-cur 36468* | Define currying. See also df-cur 8247. (Contributed by BJ, 11-Apr-2020.) |
⊢ curry_ = (𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ ((𝑥 × 𝑦) Set⟶ 𝑧) ↦ (𝑎 ∈ 𝑥 ↦ (𝑏 ∈ 𝑦 ↦ (𝑓‘〈𝑎, 𝑏〉))))) | ||
Syntax | cunc- 36469 | Notation for the parameterized uncurrying function. |
class uncurry_ | ||
Definition | df-bj-unc 36470* | Define uncurrying. See also df-unc 8248. (Contributed by BJ, 11-Apr-2020.) |
⊢ uncurry_ = (𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ (𝑥 Set⟶ (𝑦 Set⟶ 𝑧)) ↦ (𝑎 ∈ 𝑥, 𝑏 ∈ 𝑦 ↦ ((𝑓‘𝑎)‘𝑏)))) | ||
Groundwork for changing the definition, syntax and token for component-setting in extensible structures. See https://github.com/metamath/set.mm/issues/2401 | ||
Syntax | cstrset 36471 | Syntax for component-setting in extensible structures. |
class [𝐵 / 𝐴]struct𝑆 | ||
Definition | df-strset 36472 | Component-setting in extensible structures. Define the extensible structure [𝐵 / 𝐴]struct𝑆, which is like the extensible structure 𝑆 except that the value 𝐵 has been put in the slot 𝐴 (replacing the current value if there was already one). In such expressions, 𝐴 is generally substituted for slot mnemonics like Base or +g or dist. The V in this definition was chosen to be closer to df-sets 17093, but since extensible structures are functions on ℕ, it will be more natural to replace it with ℕ when df-strset 36472 becomes the main definition. (Contributed by BJ, 13-Feb-2022.) |
⊢ [𝐵 / 𝐴]struct𝑆 = ((𝑆 ↾ (V ∖ {(𝐴‘ndx)})) ∪ {〈(𝐴‘ndx), 𝐵〉}) | ||
Theorem | setsstrset 36473 | Relation between df-sets 17093 and df-strset 36472. Temporary theorem kept during the transition from the former to the latter. (Contributed by BJ, 13-Feb-2022.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → [𝐵 / 𝐴]struct𝑆 = (𝑆 sSet 〈(𝐴‘ndx), 𝐵〉)) | ||
In this section, we indroduce several supersets of the set ℝ of real numbers and the set ℂ of complex numbers. Once they are given their usual topologies, which are locally compact, both topological spaces have a one-point compactification. They are denoted by ℝ̂ and ℂ̂ respectively, defined in df-bj-cchat 36570 and df-bj-rrhat 36572, and the point at infinity is denoted by ∞, defined in df-bj-infty 36568. Both ℝ and ℂ also have "directional compactifications", denoted respectively by ℝ̅, defined in df-bj-rrbar 36566 (already defined as ℝ*, see df-xr 11248) and ℂ̅, defined in df-bj-ccbar 36553. Since ℂ̅ does not seem to be standard, we describe it in some detail. It is obtained by adding to ℂ a "point at infinity at the end of each ray with origin at 0". Although ℂ̅ is not an important object in itself, the motivation for introducing it is to provide a common superset to both ℝ̅ and ℂ and to define algebraic operations (addition, opposite, multiplication, inverse) as widely as reasonably possible. Mathematically, ℂ̅ is the quotient of ((ℂ × ℝ≥0) ∖ {〈0, 0〉}) by the diagonal multiplicative action of ℝ>0 (think of the closed "northern hemisphere" in ℝ^3 identified with (ℂ × ℝ), that each open ray from 0 included in the closed northern half-space intersects exactly once). Since in set.mm, we want to have a genuine inclusion ℂ ⊆ ℂ̅, we instead define ℂ̅ as the (disjoint) union of ℂ with a circle at infinity denoted by ℂ∞. To have a genuine inclusion ℝ̅ ⊆ ℂ̅, we define +∞ and -∞ as certain points in ℂ∞. Thanks to this framework, one has the genuine inclusions ℝ ⊆ ℝ̅ and ℝ ⊆ ℝ̂ and similarly ℂ ⊆ ℂ̅ and ℂ ⊆ ℂ̂. Furthermore, one has ℝ ⊆ ℂ as well as ℝ̅ ⊆ ℂ̅ and ℝ̂ ⊆ ℂ̂. Furthermore, we define the main algebraic operations on (ℂ̅ ∪ ℂ̂), which is not very mathematical, but "overloads" the operations, so that one can use the same notation in all cases. | ||
Theorem | bj-nfald 36474 | Variant of nfald 2313. (Contributed by BJ, 25-Dec-2023.) |
⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) | ||
Theorem | bj-nfexd 36475 | Variant of nfexd 2314. (Contributed by BJ, 25-Dec-2023.) |
⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) | ||
Theorem | copsex2d 36476* | Implicit substitution deduction for ordered pairs. (Contributed by BJ, 25-Dec-2023.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑦𝜒) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ 𝜒)) | ||
Theorem | copsex2b 36477* | Biconditional form of copsex2d 36476. TODO: prove a relative version, that is, with ∃𝑥 ∈ 𝑉∃𝑦 ∈ 𝑊...(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊). (Contributed by BJ, 27-Dec-2023.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑦𝜒) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) | ||
Theorem | opelopabd 36478* | Membership of an ordere pair in a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑦𝜒) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ 𝜒)) | ||
Theorem | opelopabb 36479* | Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑦𝜒) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) | ||
Theorem | opelopabbv 36480* | Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023.) |
⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) | ||
Theorem | bj-opelrelex 36481 | The coordinates of an ordered pair that belongs to a relation are sets. TODO: Slightly shorter than brrelex12 5718, which could be proved from it. (Contributed by BJ, 27-Dec-2023.) |
⊢ ((Rel 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | bj-opelresdm 36482 | If an ordered pair is in a restricted binary relation, then its first component is an element of the restricting class. See also opelres 5977. (Contributed by BJ, 25-Dec-2023.) |
⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ↾ 𝑋) → 𝐴 ∈ 𝑋) | ||
Theorem | bj-brresdm 36483 |
If two classes are related by a restricted binary relation, then the first
class is an element of the restricting class. See also brres 5978 and
brrelex1 5719.
Remark: there are many pairs like bj-opelresdm 36482 / bj-brresdm 36483, where one uses membership of ordered pairs and the other, related classes (for instance, bj-opelresdm 36482 / brrelex12 5718 or the opelopabg 5528 / brabg 5529 family). They are straightforwardly equivalent by df-br 5139. The latter is indeed a very direct definition, introducing a "shorthand", and barely necessary, were it not for the frequency of the expression 𝐴𝑅𝐵. Therefore, in the spirit of "definitions are here to be used", most theorems, apart from the most elementary ones, should only have the "br" version, not the "opel" one. (Contributed by BJ, 25-Dec-2023.) |
⊢ (𝐴(𝑅 ↾ 𝑋)𝐵 → 𝐴 ∈ 𝑋) | ||
Theorem | brabd0 36484* | Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑦𝜒) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝜒)) | ||
Theorem | brabd 36485* | Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝜒)) | ||
Theorem | bj-brab2a1 36486* | "Unbounded" version of brab2a 5759. (Contributed by BJ, 25-Dec-2023.) |
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜓)) | ||
Complements on the identity relation. | ||
Theorem | bj-opabssvv 36487* | A variant of relopabiv 5810 (which could be proved from it, similarly to relxp 5684 from xpss 5682). (Contributed by BJ, 28-Dec-2023.) |
⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ (V × V) | ||
Theorem | bj-funidres 36488 |
The restricted identity relation is a function. (Contributed by BJ,
27-Dec-2023.)
TODO: relabel funi 6570 to funid. |
⊢ Fun ( I ↾ 𝑉) | ||
Theorem | bj-opelidb 36489 |
Characterization of the ordered pair elements of the identity relation.
Remark: in deduction-style proofs, one could save a few syntactic steps by using another antecedent than ⊤ which already appears in the proof. Here for instance this could be the definition I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} but this would make the proof less easy to read. (Contributed by BJ, 27-Dec-2023.) |
⊢ (〈𝐴, 𝐵〉 ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) | ||
Theorem | bj-opelidb1 36490 | Characterization of the ordered pair elements of the identity relation. Variant of bj-opelidb 36489 where only the sethood of the first component is expressed. (Contributed by BJ, 27-Dec-2023.) |
⊢ (〈𝐴, 𝐵〉 ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) | ||
Theorem | bj-inexeqex 36491 | Lemma for bj-opelid 36493 (but not specific to the identity relation): if the intersection of two classes is a set and the two classes are equal, then both are sets (all three classes are equal, so they all belong to 𝑉, but it is more convenient to have V in the consequent for theorems using it). (Contributed by BJ, 27-Dec-2023.) |
⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | bj-elsn0 36492 | If the intersection of two classes is a set, then these classes are equal if and only if one is an element of the singleton formed on the other. Stronger form of elsng 4634 and elsn2g 4658 (which could be proved from it). (Contributed by BJ, 20-Jan-2024.) |
⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-opelid 36493 | Characterization of the ordered pair elements of the identity relation when the intersection of their components are sets. Note that the antecedent is more general than either component being a set. (Contributed by BJ, 29-Mar-2020.) |
⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-ideqg 36494 |
Characterization of the classes related by the identity relation when
their intersection is a set. Note that the antecedent is more general
than either class being a set. (Contributed by NM, 30-Apr-2004.) Weaken
the antecedent to sethood of the intersection. (Revised by BJ,
24-Dec-2023.)
TODO: replace ideqg 5841, or at least prove ideqg 5841 from it. |
⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-ideqgALT 36495 | Alternate proof of bj-ideqg 36494 from brabga 5524 instead of bj-opelid 36493 itself proved from bj-opelidb 36489. (Contributed by BJ, 27-Dec-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-ideqb 36496 | Characterization of classes related by the identity relation. (Contributed by BJ, 24-Dec-2023.) |
⊢ (𝐴 I 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) | ||
Theorem | bj-idres 36497 |
Alternate expression for the restricted identity relation. The
advantage of that expression is to expose it as a "bounded"
class, being
included in the Cartesian square of the restricting class. (Contributed
by BJ, 27-Dec-2023.)
This is an alternate of idinxpresid 6037 (see idinxpres 6036). See also elrid 6035 and elidinxp 6033. (Proof modification is discouraged.) |
⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × 𝐴)) | ||
Theorem | bj-opelidres 36498 | Characterization of the ordered pairs in the restricted identity relation when the intersection of their component belongs to the restricting class. TODO: prove bj-idreseq 36499 from it. (Contributed by BJ, 29-Mar-2020.) |
⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ ( I ↾ 𝑉) ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-idreseq 36499 | Sufficient condition for the restricted identity relation to agree with equality. Note that the instance of bj-ideqg 36494 with V substituted for 𝑉 is a direct consequence of bj-idreseq 36499. This is a strengthening of resieq 5982 which should be proved from it (note that currently, resieq 5982 relies on ideq 5842). Note that the intersection in the antecedent is not very meaningful, but is a device to prove versions with either class assumed to be a set. It could be enough to prove the version with a disjunctive antecedent: ⊢ ((𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶) → ...). (Contributed by BJ, 25-Dec-2023.) |
⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐴( I ↾ 𝐶)𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-idreseqb 36500 | Characterization for two classes to be related under the restricted identity relation. (Contributed by BJ, 24-Dec-2023.) |
⊢ (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |