Home | Metamath
Proof Explorer Theorem List (p. 365 of 460) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28853) |
Hilbert Space Explorer
(28854-30376) |
Users' Mathboxes
(30377-45962) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-member 36401 |
Define the membership equivalence relation on the class 𝐴 (or, the
restricted elementhood equivalence relation on its domain quotient
𝐴.) Alternate definitions are dfmember2 36408 and dfmember3 36409.
Later on, in an application of set theory I make a distinction between the default elementhood concept and a special membership concept: membership equivalence relation will be an integral part of that membership concept. (Contributed by Peter Mazsa, 26-Jun-2021.) (Revised by Peter Mazsa, 28-Nov-2022.) |
⊢ ( MembEr 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) | ||
Theorem | brers 36402 | Binary equivalence relation with natural domain, see the comment of df-ers 36398. (Contributed by Peter Mazsa, 23-Jul-2021.) |
⊢ (𝐴 ∈ 𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴))) | ||
Theorem | dferALTV2 36403 | Equivalence relation with natural domain predicate, see the comment of df-ers 36398. (Contributed by Peter Mazsa, 26-Jun-2021.) (Revised by Peter Mazsa, 30-Aug-2021.) |
⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | ||
Theorem | erALTVeq1 36404 | Equality theorem for equivalence relation on domain quotient. (Contributed by Peter Mazsa, 25-Sep-2021.) |
⊢ (𝑅 = 𝑆 → (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴)) | ||
Theorem | erALTVeq1i 36405 | Equality theorem for equivalence relation on domain quotient, inference version. (Contributed by Peter Mazsa, 25-Sep-2021.) |
⊢ 𝑅 = 𝑆 ⇒ ⊢ (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴) | ||
Theorem | erALTVeq1d 36406 | Equality theorem for equivalence relation on domain quotient, deduction version. (Contributed by Peter Mazsa, 25-Sep-2021.) |
⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴)) | ||
Theorem | dfmember 36407 | Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ ( MembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴) | ||
Theorem | dfmember2 36408 | Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 25-Sep-2021.) |
⊢ ( MembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
Theorem | dfmember3 36409 | Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.) |
⊢ ( MembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
Theorem | eqvreldmqs 36410 | Two ways to express membership equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.) |
⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
Theorem | brerser 36411 | Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 25-Aug-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Ers 𝐴 ↔ 𝑅 ErALTV 𝐴)) | ||
Theorem | erim2 36412 | Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is prter3 36519 in a more convenient form , see also erim 36413). (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 29-Dec-2021.) |
⊢ (𝑅 ∈ 𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅)) | ||
Theorem | erim 36413 | Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is the most convenient form of prter3 36519 and erim2 36412). (Contributed by Peter Mazsa, 7-Oct-2021.) (Revised by Peter Mazsa, 29-Dec-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ErALTV 𝐴 → ∼ 𝐴 = 𝑅)) | ||
Definition | df-funss 36414 | Define the class of all function sets (but not necessarily function relations, cf. df-funsALTV 36415). It is used only by df-funsALTV 36415. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ Funss = {𝑥 ∣ ≀ 𝑥 ∈ CnvRefRels } | ||
Definition | df-funsALTV 36415 | Define the function relations class, i.e., the class of functions. Alternate definitions are dffunsALTV 36417, ... , dffunsALTV5 36421. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ FunsALTV = ( Funss ∩ Rels ) | ||
Definition | df-funALTV 36416 |
Define the function relation predicate, i.e., the function predicate.
This definition of the function predicate (based on a more general,
converse reflexive, relation) and the original definition of function in
set.mm df-fun 6341, are always the same, that is
( FunALTV 𝐹 ↔ Fun 𝐹), see funALTVfun 36432.
The element of the class of functions and the function predicate are the same, that is (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹) when 𝐹 is a set, see elfunsALTVfunALTV 36431. Alternate definitions are dffunALTV2 36422, ... , dffunALTV5 36425. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)) | ||
Theorem | dffunsALTV 36417 | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } | ||
Theorem | dffunsALTV2 36418 | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 30-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I } | ||
Theorem | dffunsALTV3 36419* | Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀ x1 ∀ y1 ∀ y2 (( x1 𝑓 y1 ∧ x1 𝑓 y2 ) → y1 = y2 )}. (Contributed by Peter Mazsa, 30-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∀𝑥∀𝑦((𝑢𝑓𝑥 ∧ 𝑢𝑓𝑦) → 𝑥 = 𝑦)} | ||
Theorem | dffunsALTV4 36420* | Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀𝑥1∃*𝑦1𝑥1𝑓𝑦1}. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥} | ||
Theorem | dffunsALTV5 36421* | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓∀𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]◡𝑓 ∩ [𝑦]◡𝑓) = ∅)} | ||
Theorem | dffunALTV2 36422 | Alternate definition of the function relation predicate, cf. dfdisjALTV2 36448. (Contributed by Peter Mazsa, 8-Feb-2018.) |
⊢ ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹)) | ||
Theorem | dffunALTV3 36423* | Alternate definition of the function relation predicate, cf. dfdisjALTV3 36449. Reproduction of dffun2 6349. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀ x1 ∀ y1 ∀ y2 (( x1 𝑓 y1 ∧ x1 𝑓 y2 ) → y1 = y2 ) ∧ Rel 𝐹). (Contributed by NM, 29-Dec-1996.) |
⊢ ( FunALTV 𝐹 ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ Rel 𝐹)) | ||
Theorem | dffunALTV4 36424* | Alternate definition of the function relation predicate, cf. dfdisjALTV4 36450. This is dffun6 6354. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀𝑥1∃*𝑦1𝑥1𝐹𝑦1 ∧ Rel 𝐹). (Contributed by NM, 9-Mar-1995.) |
⊢ ( FunALTV 𝐹 ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹)) | ||
Theorem | dffunALTV5 36425* | Alternate definition of the function relation predicate, cf. dfdisjALTV5 36451. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( FunALTV 𝐹 ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ Rel 𝐹)) | ||
Theorem | elfunsALTV 36426 | Elementhood in the class of functions. (Contributed by Peter Mazsa, 24-Jul-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV2 36427 | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV3 36428* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV4 36429* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV5 36430* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTVfunALTV 36431 | The element of the class of functions and the function predicate are the same when 𝐹 is a set. (Contributed by Peter Mazsa, 26-Jul-2021.) |
⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹)) | ||
Theorem | funALTVfun 36432 | Our definition of the function predicate df-funALTV 36416 (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun 6341, are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( FunALTV 𝐹 ↔ Fun 𝐹) | ||
Theorem | funALTVss 36433 | Subclass theorem for function. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝐴 ⊆ 𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴)) | ||
Theorem | funALTVeq 36434 | Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
⊢ (𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵)) | ||
Theorem | funALTVeqi 36435 | Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ( FunALTV 𝐴 ↔ FunALTV 𝐵) | ||
Theorem | funALTVeqd 36436 | Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( FunALTV 𝐴 ↔ FunALTV 𝐵)) | ||
Definition | df-disjss 36437 | Define the class of all disjoint sets (but not necessarily disjoint relations, cf. df-disjs 36438). It is used only by df-disjs 36438. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ Disjss = {𝑥 ∣ ≀ ◡𝑥 ∈ CnvRefRels } | ||
Definition | df-disjs 36438 |
Define the disjoint relations class, i.e., the class of disjoints. We
need Disjs for the definition of Parts and Part
for the
Partition-Equivalence Theorems: this need for Parts as disjoint relations
on their domain quotients is the reason why we must define Disjs
instead of simply using converse functions (cf. dfdisjALTV 36447).
The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 36461. Alternate definitions are dfdisjs 36442, ... , dfdisjs5 36446. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ Disjs = ( Disjss ∩ Rels ) | ||
Definition | df-disjALTV 36439 |
Define the disjoint relation predicate, i.e., the disjoint predicate. A
disjoint relation is a converse function of the relation by dfdisjALTV 36447,
see the comment of df-disjs 36438 why we need disjoint relations instead of
converse functions anyway.
The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 36461. Alternate definitions are dfdisjALTV 36447, ... , dfdisjALTV5 36451. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | ||
Definition | df-eldisjs 36440 | Define the disjoint elementhood relations class, i.e., the disjoint elements class. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set, see eleldisjseldisj 36463. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } | ||
Definition | df-eldisj 36441 |
Define the disjoint elementhood relation predicate, i.e., the disjoint
elementhood predicate. Read: the elements of 𝐴 are disjoint. The
element of the disjoint elements class and the disjoint elementhood
predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when
𝐴 is a set, see eleldisjseldisj 36463.
As of now, disjoint elementhood is defined as "partition" in set.mm : compare df-prt 36509 with dfeldisj5 36455. See also the comments of ~? dfmembpart2 and of ~? df-parts . (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | ||
Theorem | dfdisjs 36442 | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } | ||
Theorem | dfdisjs2 36443 | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ⊆ I } | ||
Theorem | dfdisjs3 36444* | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑢∀𝑣∀𝑥((𝑢𝑟𝑥 ∧ 𝑣𝑟𝑥) → 𝑢 = 𝑣)} | ||
Theorem | dfdisjs4 36445* | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑥∃*𝑢 𝑢𝑟𝑥} | ||
Theorem | dfdisjs5 36446* | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)} | ||
Theorem | dfdisjALTV 36447 | Alternate definition of the disjoint relation predicate. A disjoint relation is a converse function of the relation, see the comment of df-disjs 36438 why we need disjoint relations instead of converse functions anyway. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ ( FunALTV ◡𝑅 ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV2 36448 | Alternate definition of the disjoint relation predicate, cf. dffunALTV2 36422. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV3 36449* | Alternate definition of the disjoint relation predicate, cf. dffunALTV3 36423. (Contributed by Peter Mazsa, 28-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ (∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV4 36450* | Alternate definition of the disjoint relation predicate, cf. dffunALTV4 36424. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( Disj 𝑅 ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV5 36451* | Alternate definition of the disjoint relation predicate, cf. dffunALTV5 36425. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( Disj 𝑅 ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)) | ||
Theorem | dfeldisj2 36452 | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ≀ ◡(◡ E ↾ 𝐴) ⊆ I ) | ||
Theorem | dfeldisj3 36453* | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 ∀𝑥 ∈ (𝑢 ∩ 𝑣)𝑢 = 𝑣) | ||
Theorem | dfeldisj4 36454* | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) | ||
Theorem | dfeldisj5 36455* | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) | ||
Theorem | eldisjs 36456 | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.) |
⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs2 36457 | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs3 36458* | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ Disjs ↔ (∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs4 36459* | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ Disjs ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs5 36460* | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels ))) | ||
Theorem | eldisjsdisj 36461 | The element of the class of disjoint relations and the disjoint relation predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set. (Contributed by Peter Mazsa, 25-Jul-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅)) | ||
Theorem | eleldisjs 36462 | Elementhood in the disjoint elements class. (Contributed by Peter Mazsa, 23-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) | ||
Theorem | eleldisjseldisj 36463 | The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set. (Contributed by Peter Mazsa, 23-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴)) | ||
Theorem | disjrel 36464 | Disjoint relation is a relation. (Contributed by Peter Mazsa, 15-Sep-2021.) |
⊢ ( Disj 𝑅 → Rel 𝑅) | ||
Theorem | disjss 36465 | Subclass theorem for disjoints. (Contributed by Peter Mazsa, 28-Oct-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝐴 ⊆ 𝐵 → ( Disj 𝐵 → Disj 𝐴)) | ||
Theorem | disjssi 36466 | Subclass theorem for disjoints, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ( Disj 𝐵 → Disj 𝐴) | ||
Theorem | disjssd 36467 | Subclass theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ( Disj 𝐵 → Disj 𝐴)) | ||
Theorem | disjeq 36468 | Equality theorem for disjoints. (Contributed by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵)) | ||
Theorem | disjeqi 36469 | Equality theorem for disjoints, inference version. (Contributed by Peter Mazsa, 22-Sep-2021.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ( Disj 𝐴 ↔ Disj 𝐵) | ||
Theorem | disjeqd 36470 | Equality theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( Disj 𝐴 ↔ Disj 𝐵)) | ||
Theorem | disjdmqseqeq1 36471 | Lemma for the equality theorem for partition ~? parteq1 . (Contributed by Peter Mazsa, 5-Oct-2021.) |
⊢ (𝑅 = 𝑆 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴))) | ||
Theorem | eldisjss 36472 | Subclass theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝐴 ⊆ 𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴)) | ||
Theorem | eldisjssi 36473 | Subclass theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ( ElDisj 𝐵 → ElDisj 𝐴) | ||
Theorem | eldisjssd 36474 | Subclass theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ( ElDisj 𝐵 → ElDisj 𝐴)) | ||
Theorem | eldisjeq 36475 | Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | ||
Theorem | eldisjeqi 36476 | Equality theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ( ElDisj 𝐴 ↔ ElDisj 𝐵) | ||
Theorem | eldisjeqd 36477 | Equality theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | ||
Theorem | disjxrn 36478 | Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) | ||
Theorem | disjorimxrn 36479 | Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅 ⋉ 𝑆)) | ||
Theorem | disjimxrn 36480 | Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 15-Dec-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ⋉ 𝑆)) | ||
Theorem | disjimres 36481 | Disjointness condition for restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ ( Disj 𝑅 → Disj (𝑅 ↾ 𝐴)) | ||
Theorem | disjimin 36482 | Disjointness condition for intersection. (Contributed by Peter Mazsa, 11-Jun-2021.) (Revised by Peter Mazsa, 28-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ∩ 𝑆)) | ||
Theorem | disjiminres 36483 | Disjointness condition for intersection with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ∩ (𝑆 ↾ 𝐴))) | ||
Theorem | disjimxrnres 36484 | Disjointness condition for range Cartesian product with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ⋉ (𝑆 ↾ 𝐴))) | ||
Theorem | disjALTV0 36485 | The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ Disj ∅ | ||
Theorem | disjALTVid 36486 | The class of identity relations is disjoint. (Contributed by Peter Mazsa, 20-Jun-2021.) |
⊢ Disj I | ||
Theorem | disjALTVidres 36487 | The class of identity relations restricted is disjoint. (Contributed by Peter Mazsa, 28-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
⊢ Disj ( I ↾ 𝐴) | ||
Theorem | disjALTVinidres 36488 | The intersection with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
⊢ Disj (𝑅 ∩ ( I ↾ 𝐴)) | ||
Theorem | disjALTVxrnidres 36489 | The class of range Cartesian product with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 25-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) | ||
Theorem | prtlem60 36490 | Lemma for prter3 36519. (Contributed by Rodolfo Medina, 9-Oct-2010.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜓 → (𝜃 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) | ||
Theorem | bicomdd 36491 | Commute two sides of a biconditional in a deduction. (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 ↔ 𝜒))) | ||
Theorem | jca2r 36492 | Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 17-Oct-2010.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜓 → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) | ||
Theorem | jca3 36493 | Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 14-Oct-2010.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 ∧ 𝜏)))) | ||
Theorem | prtlem70 36494 | Lemma for prter3 36519: a rearrangement of conjuncts. (Contributed by Rodolfo Medina, 20-Oct-2010.) |
⊢ ((((𝜓 ∧ 𝜂) ∧ ((𝜑 ∧ 𝜃) ∧ (𝜒 ∧ 𝜏))) ∧ 𝜑) ↔ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ (𝜃 ∧ 𝜏)))) ∧ 𝜂)) | ||
Theorem | ibdr 36495 | Reverse of ibd 272. (Contributed by Rodolfo Medina, 30-Sep-2010.) |
⊢ (𝜑 → (𝜒 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (𝜒 → 𝜓)) | ||
Theorem | prtlem100 36496 | Lemma for prter3 36519. (Contributed by Rodolfo Medina, 19-Oct-2010.) |
⊢ (∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥 ∈ (𝐴 ∖ {∅})(𝐵 ∈ 𝑥 ∧ 𝜑)) | ||
Theorem | prtlem5 36497* | Lemma for prter1 36516, prter2 36518, prter3 36519 and prtex 36517. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
⊢ ([𝑠 / 𝑣][𝑟 / 𝑢]∃𝑥 ∈ 𝐴 (𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥)) | ||
Theorem | prtlem80 36498 | Lemma for prter2 36518. (Contributed by Rodolfo Medina, 17-Oct-2010.) |
⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ {𝐴})) | ||
Theorem | brabsb2 36499* | A closed form of brabsb 5386. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑧𝑅𝑤 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) | ||
Theorem | eqbrrdv2 36500* | Other version of eqbrrdiv 5638. (Contributed by Rodolfo Medina, 30-Sep-2010.) |
⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) ⇒ ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |