Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-endval Structured version   Visualization version   GIF version

Theorem bj-endval 37303
Description: Value of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-endval.c (𝜑𝐶 ∈ Cat)
bj-endval.x (𝜑𝑋 ∈ (Base‘𝐶))
Assertion
Ref Expression
bj-endval (𝜑 → ((End ‘𝐶)‘𝑋) = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})

Proof of Theorem bj-endval
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bj-end 37302 . . 3 End = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩}))
2 fveq2 6858 . . . 4 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 fveq2 6858 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
43oveqd 7404 . . . . . 6 (𝑐 = 𝐶 → (𝑥(Hom ‘𝑐)𝑥) = (𝑥(Hom ‘𝐶)𝑥))
54opeq2d 4844 . . . . 5 (𝑐 = 𝐶 → ⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩ = ⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩)
6 fveq2 6858 . . . . . . 7 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
76oveqd 7404 . . . . . 6 (𝑐 = 𝐶 → (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥) = (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥))
87opeq2d 4844 . . . . 5 (𝑐 = 𝐶 → ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩ = ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩)
95, 8preq12d 4705 . . . 4 (𝑐 = 𝐶 → {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩} = {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩})
102, 9mpteq12dv 5194 . . 3 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩}) = (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}))
11 bj-endval.c . . 3 (𝜑𝐶 ∈ Cat)
12 fvex 6871 . . . . 5 (Base‘𝐶) ∈ V
1312mptex 7197 . . . 4 (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}) ∈ V
1413a1i 11 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}) ∈ V)
151, 10, 11, 14fvmptd3 6991 . 2 (𝜑 → (End ‘𝐶) = (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}))
16 id 22 . . . . . 6 (𝑥 = 𝑋𝑥 = 𝑋)
1716, 16oveq12d 7405 . . . . 5 (𝑥 = 𝑋 → (𝑥(Hom ‘𝐶)𝑥) = (𝑋(Hom ‘𝐶)𝑋))
1817opeq2d 4844 . . . 4 (𝑥 = 𝑋 → ⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩ = ⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩)
1916, 16opeq12d 4845 . . . . . 6 (𝑥 = 𝑋 → ⟨𝑥, 𝑥⟩ = ⟨𝑋, 𝑋⟩)
2019, 16oveq12d 7405 . . . . 5 (𝑥 = 𝑋 → (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥) = (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋))
2120opeq2d 4844 . . . 4 (𝑥 = 𝑋 → ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩ = ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩)
2218, 21preq12d 4705 . . 3 (𝑥 = 𝑋 → {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩} = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})
2322adantl 481 . 2 ((𝜑𝑥 = 𝑋) → {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩} = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})
24 bj-endval.x . 2 (𝜑𝑋 ∈ (Base‘𝐶))
25 prex 5392 . . 3 {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩} ∈ V
2625a1i 11 . 2 (𝜑 → {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩} ∈ V)
2715, 23, 24, 26fvmptd 6975 1 (𝜑 → ((End ‘𝐶)‘𝑋) = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  {cpr 4591  cop 4595  cmpt 5188  cfv 6511  (class class class)co 7387  ndxcnx 17163  Basecbs 17179  +gcplusg 17220  Hom chom 17231  compcco 17232  Catccat 17625  End cend 37301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-bj-end 37302
This theorem is referenced by:  bj-endbase  37304  bj-endcomp  37305
  Copyright terms: Public domain W3C validator