Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-endval Structured version   Visualization version   GIF version

Theorem bj-endval 37298
Description: Value of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-endval.c (𝜑𝐶 ∈ Cat)
bj-endval.x (𝜑𝑋 ∈ (Base‘𝐶))
Assertion
Ref Expression
bj-endval (𝜑 → ((End ‘𝐶)‘𝑋) = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})

Proof of Theorem bj-endval
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bj-end 37297 . . 3 End = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩}))
2 fveq2 6907 . . . 4 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 fveq2 6907 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
43oveqd 7448 . . . . . 6 (𝑐 = 𝐶 → (𝑥(Hom ‘𝑐)𝑥) = (𝑥(Hom ‘𝐶)𝑥))
54opeq2d 4885 . . . . 5 (𝑐 = 𝐶 → ⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩ = ⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩)
6 fveq2 6907 . . . . . . 7 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
76oveqd 7448 . . . . . 6 (𝑐 = 𝐶 → (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥) = (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥))
87opeq2d 4885 . . . . 5 (𝑐 = 𝐶 → ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩ = ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩)
95, 8preq12d 4746 . . . 4 (𝑐 = 𝐶 → {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩} = {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩})
102, 9mpteq12dv 5239 . . 3 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩}) = (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}))
11 bj-endval.c . . 3 (𝜑𝐶 ∈ Cat)
12 fvex 6920 . . . . 5 (Base‘𝐶) ∈ V
1312mptex 7243 . . . 4 (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}) ∈ V
1413a1i 11 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}) ∈ V)
151, 10, 11, 14fvmptd3 7039 . 2 (𝜑 → (End ‘𝐶) = (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}))
16 id 22 . . . . . 6 (𝑥 = 𝑋𝑥 = 𝑋)
1716, 16oveq12d 7449 . . . . 5 (𝑥 = 𝑋 → (𝑥(Hom ‘𝐶)𝑥) = (𝑋(Hom ‘𝐶)𝑋))
1817opeq2d 4885 . . . 4 (𝑥 = 𝑋 → ⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩ = ⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩)
1916, 16opeq12d 4886 . . . . . 6 (𝑥 = 𝑋 → ⟨𝑥, 𝑥⟩ = ⟨𝑋, 𝑋⟩)
2019, 16oveq12d 7449 . . . . 5 (𝑥 = 𝑋 → (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥) = (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋))
2120opeq2d 4885 . . . 4 (𝑥 = 𝑋 → ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩ = ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩)
2218, 21preq12d 4746 . . 3 (𝑥 = 𝑋 → {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩} = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})
2322adantl 481 . 2 ((𝜑𝑥 = 𝑋) → {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩} = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})
24 bj-endval.x . 2 (𝜑𝑋 ∈ (Base‘𝐶))
25 prex 5443 . . 3 {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩} ∈ V
2625a1i 11 . 2 (𝜑 → {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩} ∈ V)
2715, 23, 24, 26fvmptd 7023 1 (𝜑 → ((End ‘𝐶)‘𝑋) = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  {cpr 4633  cop 4637  cmpt 5231  cfv 6563  (class class class)co 7431  ndxcnx 17227  Basecbs 17245  +gcplusg 17298  Hom chom 17309  compcco 17310  Catccat 17709  End cend 37296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-bj-end 37297
This theorem is referenced by:  bj-endbase  37299  bj-endcomp  37300
  Copyright terms: Public domain W3C validator