Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-endval Structured version   Visualization version   GIF version

Theorem bj-endval 35534
Description: Value of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-endval.c (𝜑𝐶 ∈ Cat)
bj-endval.x (𝜑𝑋 ∈ (Base‘𝐶))
Assertion
Ref Expression
bj-endval (𝜑 → ((End ‘𝐶)‘𝑋) = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})

Proof of Theorem bj-endval
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bj-end 35533 . . 3 End = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩}))
2 fveq2 6804 . . . 4 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 fveq2 6804 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
43oveqd 7324 . . . . . 6 (𝑐 = 𝐶 → (𝑥(Hom ‘𝑐)𝑥) = (𝑥(Hom ‘𝐶)𝑥))
54opeq2d 4816 . . . . 5 (𝑐 = 𝐶 → ⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩ = ⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩)
6 fveq2 6804 . . . . . . 7 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
76oveqd 7324 . . . . . 6 (𝑐 = 𝐶 → (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥) = (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥))
87opeq2d 4816 . . . . 5 (𝑐 = 𝐶 → ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩ = ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩)
95, 8preq12d 4681 . . . 4 (𝑐 = 𝐶 → {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩} = {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩})
102, 9mpteq12dv 5172 . . 3 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩}) = (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}))
11 bj-endval.c . . 3 (𝜑𝐶 ∈ Cat)
12 fvex 6817 . . . . 5 (Base‘𝐶) ∈ V
1312mptex 7131 . . . 4 (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}) ∈ V
1413a1i 11 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}) ∈ V)
151, 10, 11, 14fvmptd3 6930 . 2 (𝜑 → (End ‘𝐶) = (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}))
16 id 22 . . . . . 6 (𝑥 = 𝑋𝑥 = 𝑋)
1716, 16oveq12d 7325 . . . . 5 (𝑥 = 𝑋 → (𝑥(Hom ‘𝐶)𝑥) = (𝑋(Hom ‘𝐶)𝑋))
1817opeq2d 4816 . . . 4 (𝑥 = 𝑋 → ⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩ = ⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩)
1916, 16opeq12d 4817 . . . . . 6 (𝑥 = 𝑋 → ⟨𝑥, 𝑥⟩ = ⟨𝑋, 𝑋⟩)
2019, 16oveq12d 7325 . . . . 5 (𝑥 = 𝑋 → (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥) = (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋))
2120opeq2d 4816 . . . 4 (𝑥 = 𝑋 → ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩ = ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩)
2218, 21preq12d 4681 . . 3 (𝑥 = 𝑋 → {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩} = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})
2322adantl 483 . 2 ((𝜑𝑥 = 𝑋) → {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩} = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})
24 bj-endval.x . 2 (𝜑𝑋 ∈ (Base‘𝐶))
25 prex 5364 . . 3 {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩} ∈ V
2625a1i 11 . 2 (𝜑 → {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩} ∈ V)
2715, 23, 24, 26fvmptd 6914 1 (𝜑 → ((End ‘𝐶)‘𝑋) = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  Vcvv 3437  {cpr 4567  cop 4571  cmpt 5164  cfv 6458  (class class class)co 7307  ndxcnx 16943  Basecbs 16961  +gcplusg 17011  Hom chom 17022  compcco 17023  Catccat 17422  End cend 35532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-bj-end 35533
This theorem is referenced by:  bj-endbase  35535  bj-endcomp  35536
  Copyright terms: Public domain W3C validator