Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-endval Structured version   Visualization version   GIF version

Theorem bj-endval 37033
Description: Value of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-endval.c (𝜑𝐶 ∈ Cat)
bj-endval.x (𝜑𝑋 ∈ (Base‘𝐶))
Assertion
Ref Expression
bj-endval (𝜑 → ((End ‘𝐶)‘𝑋) = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})

Proof of Theorem bj-endval
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bj-end 37032 . . 3 End = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩}))
2 fveq2 6891 . . . 4 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 fveq2 6891 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
43oveqd 7431 . . . . . 6 (𝑐 = 𝐶 → (𝑥(Hom ‘𝑐)𝑥) = (𝑥(Hom ‘𝐶)𝑥))
54opeq2d 4879 . . . . 5 (𝑐 = 𝐶 → ⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩ = ⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩)
6 fveq2 6891 . . . . . . 7 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
76oveqd 7431 . . . . . 6 (𝑐 = 𝐶 → (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥) = (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥))
87opeq2d 4879 . . . . 5 (𝑐 = 𝐶 → ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩ = ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩)
95, 8preq12d 4741 . . . 4 (𝑐 = 𝐶 → {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩} = {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩})
102, 9mpteq12dv 5235 . . 3 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩}) = (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}))
11 bj-endval.c . . 3 (𝜑𝐶 ∈ Cat)
12 fvex 6904 . . . . 5 (Base‘𝐶) ∈ V
1312mptex 7230 . . . 4 (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}) ∈ V
1413a1i 11 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}) ∈ V)
151, 10, 11, 14fvmptd3 7022 . 2 (𝜑 → (End ‘𝐶) = (𝑥 ∈ (Base‘𝐶) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩}))
16 id 22 . . . . . 6 (𝑥 = 𝑋𝑥 = 𝑋)
1716, 16oveq12d 7432 . . . . 5 (𝑥 = 𝑋 → (𝑥(Hom ‘𝐶)𝑥) = (𝑋(Hom ‘𝐶)𝑋))
1817opeq2d 4879 . . . 4 (𝑥 = 𝑋 → ⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩ = ⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩)
1916, 16opeq12d 4880 . . . . . 6 (𝑥 = 𝑋 → ⟨𝑥, 𝑥⟩ = ⟨𝑋, 𝑋⟩)
2019, 16oveq12d 7432 . . . . 5 (𝑥 = 𝑋 → (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥) = (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋))
2120opeq2d 4879 . . . 4 (𝑥 = 𝑋 → ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩ = ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩)
2218, 21preq12d 4741 . . 3 (𝑥 = 𝑋 → {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩} = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})
2322adantl 480 . 2 ((𝜑𝑥 = 𝑋) → {⟨(Base‘ndx), (𝑥(Hom ‘𝐶)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑥)⟩} = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})
24 bj-endval.x . 2 (𝜑𝑋 ∈ (Base‘𝐶))
25 prex 5429 . . 3 {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩} ∈ V
2625a1i 11 . 2 (𝜑 → {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩} ∈ V)
2715, 23, 24, 26fvmptd 7006 1 (𝜑 → ((End ‘𝐶)‘𝑋) = {⟨(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)⟩, ⟨(+g‘ndx), (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3463  {cpr 4626  cop 4630  cmpt 5227  cfv 6544  (class class class)co 7414  ndxcnx 17188  Basecbs 17206  +gcplusg 17259  Hom chom 17270  compcco 17271  Catccat 17670  End cend 37031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7417  df-bj-end 37032
This theorem is referenced by:  bj-endbase  37034  bj-endcomp  37035
  Copyright terms: Public domain W3C validator