Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-mgmhom Structured version   Visualization version   GIF version

Definition df-bj-mgmhom 37140
Description: Define the set of magma morphisms between two magmas. If domain and codomain are semigroups, monoids, or groups, then one obtains the set of morphisms of these structures. (Contributed by BJ, 10-Feb-2022.)
Assertion
Ref Expression
df-bj-mgmhom Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
Distinct variable group:   𝑥,𝑓,𝑦,𝑢,𝑣

Detailed syntax breakdown of Definition df-bj-mgmhom
StepHypRef Expression
1 cmgmhom 37139 . 2 class Mgm
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cmgm 18538 . . 3 class Mgm
5 vu . . . . . . . . . 10 setvar 𝑢
65cv 1540 . . . . . . . . 9 class 𝑢
7 vv . . . . . . . . . 10 setvar 𝑣
87cv 1540 . . . . . . . . 9 class 𝑣
92cv 1540 . . . . . . . . . 10 class 𝑥
10 cplusg 17153 . . . . . . . . . 10 class +g
119, 10cfv 6477 . . . . . . . . 9 class (+g𝑥)
126, 8, 11co 7341 . . . . . . . 8 class (𝑢(+g𝑥)𝑣)
13 vf . . . . . . . . 9 setvar 𝑓
1413cv 1540 . . . . . . . 8 class 𝑓
1512, 14cfv 6477 . . . . . . 7 class (𝑓‘(𝑢(+g𝑥)𝑣))
166, 14cfv 6477 . . . . . . . 8 class (𝑓𝑢)
178, 14cfv 6477 . . . . . . . 8 class (𝑓𝑣)
183cv 1540 . . . . . . . . 9 class 𝑦
1918, 10cfv 6477 . . . . . . . 8 class (+g𝑦)
2016, 17, 19co 7341 . . . . . . 7 class ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
2115, 20wceq 1541 . . . . . 6 wff (𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
22 cbs 17112 . . . . . . 7 class Base
239, 22cfv 6477 . . . . . 6 class (Base‘𝑥)
2421, 7, 23wral 3045 . . . . 5 wff 𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
2524, 5, 23wral 3045 . . . 4 wff 𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
2618, 22cfv 6477 . . . . 5 class (Base‘𝑦)
27 csethom 37135 . . . . 5 class Set
2823, 26, 27co 7341 . . . 4 class ((Base‘𝑥) Set⟶ (Base‘𝑦))
2925, 13, 28crab 3393 . . 3 class {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))}
302, 3, 4, 4, 29cmpo 7343 . 2 class (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
311, 30wceq 1541 1 wff Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator