Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-mgmhom Structured version   Visualization version   GIF version

Definition df-bj-mgmhom 37182
Description: Define the set of magma morphisms between two magmas. If domain and codomain are semigroups, monoids, or groups, then one obtains the set of morphisms of these structures. (Contributed by BJ, 10-Feb-2022.)
Assertion
Ref Expression
df-bj-mgmhom Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
Distinct variable group:   𝑥,𝑓,𝑦,𝑢,𝑣

Detailed syntax breakdown of Definition df-bj-mgmhom
StepHypRef Expression
1 cmgmhom 37181 . 2 class Mgm
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cmgm 18556 . . 3 class Mgm
5 vu . . . . . . . . . 10 setvar 𝑢
65cv 1540 . . . . . . . . 9 class 𝑢
7 vv . . . . . . . . . 10 setvar 𝑣
87cv 1540 . . . . . . . . 9 class 𝑣
92cv 1540 . . . . . . . . . 10 class 𝑥
10 cplusg 17171 . . . . . . . . . 10 class +g
119, 10cfv 6489 . . . . . . . . 9 class (+g𝑥)
126, 8, 11co 7355 . . . . . . . 8 class (𝑢(+g𝑥)𝑣)
13 vf . . . . . . . . 9 setvar 𝑓
1413cv 1540 . . . . . . . 8 class 𝑓
1512, 14cfv 6489 . . . . . . 7 class (𝑓‘(𝑢(+g𝑥)𝑣))
166, 14cfv 6489 . . . . . . . 8 class (𝑓𝑢)
178, 14cfv 6489 . . . . . . . 8 class (𝑓𝑣)
183cv 1540 . . . . . . . . 9 class 𝑦
1918, 10cfv 6489 . . . . . . . 8 class (+g𝑦)
2016, 17, 19co 7355 . . . . . . 7 class ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
2115, 20wceq 1541 . . . . . 6 wff (𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
22 cbs 17130 . . . . . . 7 class Base
239, 22cfv 6489 . . . . . 6 class (Base‘𝑥)
2421, 7, 23wral 3049 . . . . 5 wff 𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
2524, 5, 23wral 3049 . . . 4 wff 𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
2618, 22cfv 6489 . . . . 5 class (Base‘𝑦)
27 csethom 37177 . . . . 5 class Set
2823, 26, 27co 7355 . . . 4 class ((Base‘𝑥) Set⟶ (Base‘𝑦))
2925, 13, 28crab 3397 . . 3 class {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))}
302, 3, 4, 4, 29cmpo 7357 . 2 class (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
311, 30wceq 1541 1 wff Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator