Detailed syntax breakdown of Definition df-bj-mgmhom
Step | Hyp | Ref
| Expression |
1 | | cmgmhom 35297 |
. 2
class Mgm⟶ |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | vy |
. . 3
setvar 𝑦 |
4 | | cmgm 18324 |
. . 3
class
Mgm |
5 | | vu |
. . . . . . . . . 10
setvar 𝑢 |
6 | 5 | cv 1538 |
. . . . . . . . 9
class 𝑢 |
7 | | vv |
. . . . . . . . . 10
setvar 𝑣 |
8 | 7 | cv 1538 |
. . . . . . . . 9
class 𝑣 |
9 | 2 | cv 1538 |
. . . . . . . . . 10
class 𝑥 |
10 | | cplusg 16962 |
. . . . . . . . . 10
class
+g |
11 | 9, 10 | cfv 6433 |
. . . . . . . . 9
class
(+g‘𝑥) |
12 | 6, 8, 11 | co 7275 |
. . . . . . . 8
class (𝑢(+g‘𝑥)𝑣) |
13 | | vf |
. . . . . . . . 9
setvar 𝑓 |
14 | 13 | cv 1538 |
. . . . . . . 8
class 𝑓 |
15 | 12, 14 | cfv 6433 |
. . . . . . 7
class (𝑓‘(𝑢(+g‘𝑥)𝑣)) |
16 | 6, 14 | cfv 6433 |
. . . . . . . 8
class (𝑓‘𝑢) |
17 | 8, 14 | cfv 6433 |
. . . . . . . 8
class (𝑓‘𝑣) |
18 | 3 | cv 1538 |
. . . . . . . . 9
class 𝑦 |
19 | 18, 10 | cfv 6433 |
. . . . . . . 8
class
(+g‘𝑦) |
20 | 16, 17, 19 | co 7275 |
. . . . . . 7
class ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣)) |
21 | 15, 20 | wceq 1539 |
. . . . . 6
wff (𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣)) |
22 | | cbs 16912 |
. . . . . . 7
class
Base |
23 | 9, 22 | cfv 6433 |
. . . . . 6
class
(Base‘𝑥) |
24 | 21, 7, 23 | wral 3064 |
. . . . 5
wff
∀𝑣 ∈
(Base‘𝑥)(𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣)) |
25 | 24, 5, 23 | wral 3064 |
. . . 4
wff
∀𝑢 ∈
(Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣)) |
26 | 18, 22 | cfv 6433 |
. . . . 5
class
(Base‘𝑦) |
27 | | csethom 35293 |
. . . . 5
class Set⟶ |
28 | 23, 26, 27 | co 7275 |
. . . 4
class
((Base‘𝑥)
Set⟶ (Base‘𝑦)) |
29 | 25, 13, 28 | crab 3068 |
. . 3
class {𝑓 ∈ ((Base‘𝑥) Set⟶
(Base‘𝑦)) ∣
∀𝑢 ∈
(Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣))} |
30 | 2, 3, 4, 4, 29 | cmpo 7277 |
. 2
class (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣))}) |
31 | 1, 30 | wceq 1539 |
1
wff Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣))}) |