Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-mgmhom Structured version   Visualization version   GIF version

Definition df-bj-mgmhom 37112
Description: Define the set of magma morphisms between two magmas. If domain and codomain are semigroups, monoids, or groups, then one obtains the set of morphisms of these structures. (Contributed by BJ, 10-Feb-2022.)
Assertion
Ref Expression
df-bj-mgmhom Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
Distinct variable group:   𝑥,𝑓,𝑦,𝑢,𝑣

Detailed syntax breakdown of Definition df-bj-mgmhom
StepHypRef Expression
1 cmgmhom 37111 . 2 class Mgm
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cmgm 18571 . . 3 class Mgm
5 vu . . . . . . . . . 10 setvar 𝑢
65cv 1539 . . . . . . . . 9 class 𝑢
7 vv . . . . . . . . . 10 setvar 𝑣
87cv 1539 . . . . . . . . 9 class 𝑣
92cv 1539 . . . . . . . . . 10 class 𝑥
10 cplusg 17226 . . . . . . . . . 10 class +g
119, 10cfv 6519 . . . . . . . . 9 class (+g𝑥)
126, 8, 11co 7394 . . . . . . . 8 class (𝑢(+g𝑥)𝑣)
13 vf . . . . . . . . 9 setvar 𝑓
1413cv 1539 . . . . . . . 8 class 𝑓
1512, 14cfv 6519 . . . . . . 7 class (𝑓‘(𝑢(+g𝑥)𝑣))
166, 14cfv 6519 . . . . . . . 8 class (𝑓𝑢)
178, 14cfv 6519 . . . . . . . 8 class (𝑓𝑣)
183cv 1539 . . . . . . . . 9 class 𝑦
1918, 10cfv 6519 . . . . . . . 8 class (+g𝑦)
2016, 17, 19co 7394 . . . . . . 7 class ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
2115, 20wceq 1540 . . . . . 6 wff (𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
22 cbs 17185 . . . . . . 7 class Base
239, 22cfv 6519 . . . . . 6 class (Base‘𝑥)
2421, 7, 23wral 3046 . . . . 5 wff 𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
2524, 5, 23wral 3046 . . . 4 wff 𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
2618, 22cfv 6519 . . . . 5 class (Base‘𝑦)
27 csethom 37107 . . . . 5 class Set
2823, 26, 27co 7394 . . . 4 class ((Base‘𝑥) Set⟶ (Base‘𝑦))
2925, 13, 28crab 3411 . . 3 class {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))}
302, 3, 4, 4, 29cmpo 7396 . 2 class (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
311, 30wceq 1540 1 wff Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator