Detailed syntax breakdown of Definition df-bj-mgmhom
| Step | Hyp | Ref
| Expression |
| 1 | | cmgmhom 37068 |
. 2
class Mgm⟶ |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | cmgm 18625 |
. . 3
class
Mgm |
| 5 | | vu |
. . . . . . . . . 10
setvar 𝑢 |
| 6 | 5 | cv 1538 |
. . . . . . . . 9
class 𝑢 |
| 7 | | vv |
. . . . . . . . . 10
setvar 𝑣 |
| 8 | 7 | cv 1538 |
. . . . . . . . 9
class 𝑣 |
| 9 | 2 | cv 1538 |
. . . . . . . . . 10
class 𝑥 |
| 10 | | cplusg 17277 |
. . . . . . . . . 10
class
+g |
| 11 | 9, 10 | cfv 6542 |
. . . . . . . . 9
class
(+g‘𝑥) |
| 12 | 6, 8, 11 | co 7414 |
. . . . . . . 8
class (𝑢(+g‘𝑥)𝑣) |
| 13 | | vf |
. . . . . . . . 9
setvar 𝑓 |
| 14 | 13 | cv 1538 |
. . . . . . . 8
class 𝑓 |
| 15 | 12, 14 | cfv 6542 |
. . . . . . 7
class (𝑓‘(𝑢(+g‘𝑥)𝑣)) |
| 16 | 6, 14 | cfv 6542 |
. . . . . . . 8
class (𝑓‘𝑢) |
| 17 | 8, 14 | cfv 6542 |
. . . . . . . 8
class (𝑓‘𝑣) |
| 18 | 3 | cv 1538 |
. . . . . . . . 9
class 𝑦 |
| 19 | 18, 10 | cfv 6542 |
. . . . . . . 8
class
(+g‘𝑦) |
| 20 | 16, 17, 19 | co 7414 |
. . . . . . 7
class ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣)) |
| 21 | 15, 20 | wceq 1539 |
. . . . . 6
wff (𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣)) |
| 22 | | cbs 17230 |
. . . . . . 7
class
Base |
| 23 | 9, 22 | cfv 6542 |
. . . . . 6
class
(Base‘𝑥) |
| 24 | 21, 7, 23 | wral 3050 |
. . . . 5
wff
∀𝑣 ∈
(Base‘𝑥)(𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣)) |
| 25 | 24, 5, 23 | wral 3050 |
. . . 4
wff
∀𝑢 ∈
(Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣)) |
| 26 | 18, 22 | cfv 6542 |
. . . . 5
class
(Base‘𝑦) |
| 27 | | csethom 37064 |
. . . . 5
class Set⟶ |
| 28 | 23, 26, 27 | co 7414 |
. . . 4
class
((Base‘𝑥)
Set⟶ (Base‘𝑦)) |
| 29 | 25, 13, 28 | crab 3420 |
. . 3
class {𝑓 ∈ ((Base‘𝑥) Set⟶
(Base‘𝑦)) ∣
∀𝑢 ∈
(Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣))} |
| 30 | 2, 3, 4, 4, 29 | cmpo 7416 |
. 2
class (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣))}) |
| 31 | 1, 30 | wceq 1539 |
1
wff Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣))}) |