Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-mgmhom Structured version   Visualization version   GIF version

Definition df-bj-mgmhom 35298
Description: Define the set of magma morphisms between two magmas. If domain and codomain are semigroups, monoids, or groups, then one obtains the set of morphisms of these structures. (Contributed by BJ, 10-Feb-2022.)
Assertion
Ref Expression
df-bj-mgmhom Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
Distinct variable group:   𝑥,𝑓,𝑦,𝑢,𝑣

Detailed syntax breakdown of Definition df-bj-mgmhom
StepHypRef Expression
1 cmgmhom 35297 . 2 class Mgm
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cmgm 18324 . . 3 class Mgm
5 vu . . . . . . . . . 10 setvar 𝑢
65cv 1538 . . . . . . . . 9 class 𝑢
7 vv . . . . . . . . . 10 setvar 𝑣
87cv 1538 . . . . . . . . 9 class 𝑣
92cv 1538 . . . . . . . . . 10 class 𝑥
10 cplusg 16962 . . . . . . . . . 10 class +g
119, 10cfv 6433 . . . . . . . . 9 class (+g𝑥)
126, 8, 11co 7275 . . . . . . . 8 class (𝑢(+g𝑥)𝑣)
13 vf . . . . . . . . 9 setvar 𝑓
1413cv 1538 . . . . . . . 8 class 𝑓
1512, 14cfv 6433 . . . . . . 7 class (𝑓‘(𝑢(+g𝑥)𝑣))
166, 14cfv 6433 . . . . . . . 8 class (𝑓𝑢)
178, 14cfv 6433 . . . . . . . 8 class (𝑓𝑣)
183cv 1538 . . . . . . . . 9 class 𝑦
1918, 10cfv 6433 . . . . . . . 8 class (+g𝑦)
2016, 17, 19co 7275 . . . . . . 7 class ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
2115, 20wceq 1539 . . . . . 6 wff (𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
22 cbs 16912 . . . . . . 7 class Base
239, 22cfv 6433 . . . . . 6 class (Base‘𝑥)
2421, 7, 23wral 3064 . . . . 5 wff 𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
2524, 5, 23wral 3064 . . . 4 wff 𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
2618, 22cfv 6433 . . . . 5 class (Base‘𝑦)
27 csethom 35293 . . . . 5 class Set
2823, 26, 27co 7275 . . . 4 class ((Base‘𝑥) Set⟶ (Base‘𝑦))
2925, 13, 28crab 3068 . . 3 class {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))}
302, 3, 4, 4, 29cmpo 7277 . 2 class (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
311, 30wceq 1539 1 wff Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator