Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-mgmhom Structured version   Visualization version   GIF version

Definition df-bj-mgmhom 37115
Description: Define the set of magma morphisms between two magmas. If domain and codomain are semigroups, monoids, or groups, then one obtains the set of morphisms of these structures. (Contributed by BJ, 10-Feb-2022.)
Assertion
Ref Expression
df-bj-mgmhom Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
Distinct variable group:   𝑥,𝑓,𝑦,𝑢,𝑣

Detailed syntax breakdown of Definition df-bj-mgmhom
StepHypRef Expression
1 cmgmhom 37114 . 2 class Mgm
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cmgm 18565 . . 3 class Mgm
5 vu . . . . . . . . . 10 setvar 𝑢
65cv 1539 . . . . . . . . 9 class 𝑢
7 vv . . . . . . . . . 10 setvar 𝑣
87cv 1539 . . . . . . . . 9 class 𝑣
92cv 1539 . . . . . . . . . 10 class 𝑥
10 cplusg 17220 . . . . . . . . . 10 class +g
119, 10cfv 6511 . . . . . . . . 9 class (+g𝑥)
126, 8, 11co 7387 . . . . . . . 8 class (𝑢(+g𝑥)𝑣)
13 vf . . . . . . . . 9 setvar 𝑓
1413cv 1539 . . . . . . . 8 class 𝑓
1512, 14cfv 6511 . . . . . . 7 class (𝑓‘(𝑢(+g𝑥)𝑣))
166, 14cfv 6511 . . . . . . . 8 class (𝑓𝑢)
178, 14cfv 6511 . . . . . . . 8 class (𝑓𝑣)
183cv 1539 . . . . . . . . 9 class 𝑦
1918, 10cfv 6511 . . . . . . . 8 class (+g𝑦)
2016, 17, 19co 7387 . . . . . . 7 class ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
2115, 20wceq 1540 . . . . . 6 wff (𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
22 cbs 17179 . . . . . . 7 class Base
239, 22cfv 6511 . . . . . 6 class (Base‘𝑥)
2421, 7, 23wral 3044 . . . . 5 wff 𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
2524, 5, 23wral 3044 . . . 4 wff 𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))
2618, 22cfv 6511 . . . . 5 class (Base‘𝑦)
27 csethom 37110 . . . . 5 class Set
2823, 26, 27co 7387 . . . 4 class ((Base‘𝑥) Set⟶ (Base‘𝑦))
2925, 13, 28crab 3405 . . 3 class {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))}
302, 3, 4, 4, 29cmpo 7389 . 2 class (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
311, 30wceq 1540 1 wff Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator