Detailed syntax breakdown of Definition df-bj-oppc
Step | Hyp | Ref
| Expression |
1 | | coppcc 35410 |
. 2
class
-ℂ̅ |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | cccbar 35386 |
. . . 4
class
ℂ̅ |
4 | | ccchat 35403 |
. . . 4
class
ℂ̂ |
5 | 3, 4 | cun 3885 |
. . 3
class
(ℂ̅ ∪ ℂ̂) |
6 | 2 | cv 1538 |
. . . . 5
class 𝑥 |
7 | | cinfty 35401 |
. . . . 5
class
∞ |
8 | 6, 7 | wceq 1539 |
. . . 4
wff 𝑥 = ∞ |
9 | | cc 10869 |
. . . . . 6
class
ℂ |
10 | 6, 9 | wcel 2106 |
. . . . 5
wff 𝑥 ∈ ℂ |
11 | | vy |
. . . . . . . . 9
setvar 𝑦 |
12 | 11 | cv 1538 |
. . . . . . . 8
class 𝑦 |
13 | | caddcc 35408 |
. . . . . . . 8
class
+ℂ̅ |
14 | 6, 12, 13 | co 7275 |
. . . . . . 7
class (𝑥 +ℂ̅
𝑦) |
15 | | cc0 10871 |
. . . . . . 7
class
0 |
16 | 14, 15 | wceq 1539 |
. . . . . 6
wff (𝑥 +ℂ̅
𝑦) = 0 |
17 | 16, 11, 9 | crio 7231 |
. . . . 5
class
(℩𝑦
∈ ℂ (𝑥
+ℂ̅ 𝑦) = 0) |
18 | | chalf 35374 |
. . . . . . . 8
class
1/2 |
19 | | c0r 10622 |
. . . . . . . 8
class
0R |
20 | 18, 19 | cop 4567 |
. . . . . . 7
class
〈1/2, 0R〉 |
21 | 6, 20, 13 | co 7275 |
. . . . . 6
class (𝑥 +ℂ̅
〈1/2, 0R〉) |
22 | | cinftyexpitau 35369 |
. . . . . 6
class
+∞eiτ |
23 | 21, 22 | cfv 6433 |
. . . . 5
class
(+∞eiτ‘(𝑥 +ℂ̅ 〈1/2,
0R〉)) |
24 | 10, 17, 23 | cif 4459 |
. . . 4
class if(𝑥 ∈ ℂ,
(℩𝑦 ∈
ℂ (𝑥
+ℂ̅ 𝑦) = 0),
(+∞eiτ‘(𝑥 +ℂ̅ 〈1/2,
0R〉))) |
25 | 8, 7, 24 | cif 4459 |
. . 3
class if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ,
(℩𝑦 ∈
ℂ (𝑥
+ℂ̅ 𝑦) = 0),
(+∞eiτ‘(𝑥 +ℂ̅ 〈1/2,
0R〉)))) |
26 | 2, 5, 25 | cmpt 5157 |
. 2
class (𝑥 ∈ (ℂ̅ ∪
ℂ̂) ↦ if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ, (℩𝑦 ∈ ℂ (𝑥 +ℂ̅
𝑦) = 0),
(+∞eiτ‘(𝑥 +ℂ̅ 〈1/2,
0R〉))))) |
27 | 1, 26 | wceq 1539 |
1
wff
-ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂)
↦ if(𝑥 = ∞,
∞, if(𝑥 ∈
ℂ, (℩𝑦
∈ ℂ (𝑥
+ℂ̅ 𝑦) = 0),
(+∞eiτ‘(𝑥 +ℂ̅ 〈1/2,
0R〉))))) |