Detailed syntax breakdown of Definition df-bj-oppc
| Step | Hyp | Ref
| Expression |
| 1 | | coppcc 37233 |
. 2
class
-ℂ̅ |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cccbar 37209 |
. . . 4
class
ℂ̅ |
| 4 | | ccchat 37226 |
. . . 4
class
ℂ̂ |
| 5 | 3, 4 | cun 3948 |
. . 3
class
(ℂ̅ ∪ ℂ̂) |
| 6 | 2 | cv 1539 |
. . . . 5
class 𝑥 |
| 7 | | cinfty 37224 |
. . . . 5
class
∞ |
| 8 | 6, 7 | wceq 1540 |
. . . 4
wff 𝑥 = ∞ |
| 9 | | cc 11149 |
. . . . . 6
class
ℂ |
| 10 | 6, 9 | wcel 2108 |
. . . . 5
wff 𝑥 ∈ ℂ |
| 11 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 12 | 11 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 13 | | caddcc 37231 |
. . . . . . . 8
class
+ℂ̅ |
| 14 | 6, 12, 13 | co 7429 |
. . . . . . 7
class (𝑥 +ℂ̅
𝑦) |
| 15 | | cc0 11151 |
. . . . . . 7
class
0 |
| 16 | 14, 15 | wceq 1540 |
. . . . . 6
wff (𝑥 +ℂ̅
𝑦) = 0 |
| 17 | 16, 11, 9 | crio 7385 |
. . . . 5
class
(℩𝑦
∈ ℂ (𝑥
+ℂ̅ 𝑦) = 0) |
| 18 | | chalf 37197 |
. . . . . . . 8
class
1/2 |
| 19 | | c0r 10902 |
. . . . . . . 8
class
0R |
| 20 | 18, 19 | cop 4630 |
. . . . . . 7
class
〈1/2, 0R〉 |
| 21 | 6, 20, 13 | co 7429 |
. . . . . 6
class (𝑥 +ℂ̅
〈1/2, 0R〉) |
| 22 | | cinftyexpitau 37192 |
. . . . . 6
class
+∞eiτ |
| 23 | 21, 22 | cfv 6559 |
. . . . 5
class
(+∞eiτ‘(𝑥 +ℂ̅ 〈1/2,
0R〉)) |
| 24 | 10, 17, 23 | cif 4524 |
. . . 4
class if(𝑥 ∈ ℂ,
(℩𝑦 ∈
ℂ (𝑥
+ℂ̅ 𝑦) = 0),
(+∞eiτ‘(𝑥 +ℂ̅ 〈1/2,
0R〉))) |
| 25 | 8, 7, 24 | cif 4524 |
. . 3
class if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ,
(℩𝑦 ∈
ℂ (𝑥
+ℂ̅ 𝑦) = 0),
(+∞eiτ‘(𝑥 +ℂ̅ 〈1/2,
0R〉)))) |
| 26 | 2, 5, 25 | cmpt 5223 |
. 2
class (𝑥 ∈ (ℂ̅ ∪
ℂ̂) ↦ if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ, (℩𝑦 ∈ ℂ (𝑥 +ℂ̅
𝑦) = 0),
(+∞eiτ‘(𝑥 +ℂ̅ 〈1/2,
0R〉))))) |
| 27 | 1, 26 | wceq 1540 |
1
wff
-ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂)
↦ if(𝑥 = ∞,
∞, if(𝑥 ∈
ℂ, (℩𝑦
∈ ℂ (𝑥
+ℂ̅ 𝑦) = 0),
(+∞eiτ‘(𝑥 +ℂ̅ 〈1/2,
0R〉))))) |