Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-oppc Structured version   Visualization version   GIF version

Definition df-bj-oppc 35338
Description: Define the negation (operation giving the opposite) on the set of extended complex numbers and the complex projective line (Riemann sphere). (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
df-bj-oppc -ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂) ↦ if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ, (𝑦 ∈ ℂ (𝑥 +ℂ̅ 𝑦) = 0), (+∞e‘(𝑥 +ℂ̅ ⟨1/2, 0R⟩)))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-bj-oppc
StepHypRef Expression
1 coppcc 35337 . 2 class -ℂ̅
2 vx . . 3 setvar 𝑥
3 cccbar 35313 . . . 4 class ℂ̅
4 ccchat 35330 . . . 4 class ℂ̂
53, 4cun 3881 . . 3 class (ℂ̅ ∪ ℂ̂)
62cv 1538 . . . . 5 class 𝑥
7 cinfty 35328 . . . . 5 class
86, 7wceq 1539 . . . 4 wff 𝑥 = ∞
9 cc 10800 . . . . . 6 class
106, 9wcel 2108 . . . . 5 wff 𝑥 ∈ ℂ
11 vy . . . . . . . . 9 setvar 𝑦
1211cv 1538 . . . . . . . 8 class 𝑦
13 caddcc 35335 . . . . . . . 8 class +ℂ̅
146, 12, 13co 7255 . . . . . . 7 class (𝑥 +ℂ̅ 𝑦)
15 cc0 10802 . . . . . . 7 class 0
1614, 15wceq 1539 . . . . . 6 wff (𝑥 +ℂ̅ 𝑦) = 0
1716, 11, 9crio 7211 . . . . 5 class (𝑦 ∈ ℂ (𝑥 +ℂ̅ 𝑦) = 0)
18 chalf 35301 . . . . . . . 8 class 1/2
19 c0r 10553 . . . . . . . 8 class 0R
2018, 19cop 4564 . . . . . . 7 class ⟨1/2, 0R
216, 20, 13co 7255 . . . . . 6 class (𝑥 +ℂ̅ ⟨1/2, 0R⟩)
22 cinftyexpitau 35296 . . . . . 6 class +∞e
2321, 22cfv 6418 . . . . 5 class (+∞e‘(𝑥 +ℂ̅ ⟨1/2, 0R⟩))
2410, 17, 23cif 4456 . . . 4 class if(𝑥 ∈ ℂ, (𝑦 ∈ ℂ (𝑥 +ℂ̅ 𝑦) = 0), (+∞e‘(𝑥 +ℂ̅ ⟨1/2, 0R⟩)))
258, 7, 24cif 4456 . . 3 class if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ, (𝑦 ∈ ℂ (𝑥 +ℂ̅ 𝑦) = 0), (+∞e‘(𝑥 +ℂ̅ ⟨1/2, 0R⟩))))
262, 5, 25cmpt 5153 . 2 class (𝑥 ∈ (ℂ̅ ∪ ℂ̂) ↦ if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ, (𝑦 ∈ ℂ (𝑥 +ℂ̅ 𝑦) = 0), (+∞e‘(𝑥 +ℂ̅ ⟨1/2, 0R⟩)))))
271, 26wceq 1539 1 wff -ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂) ↦ if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ, (𝑦 ∈ ℂ (𝑥 +ℂ̅ 𝑦) = 0), (+∞e‘(𝑥 +ℂ̅ ⟨1/2, 0R⟩)))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator