Home | Metamath
Proof Explorer Theorem List (p. 363 of 458) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28800) |
Hilbert Space Explorer
(28801-30323) |
Users' Mathboxes
(30324-45724) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | refrelid 36201 | Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.) |
⊢ RefRel I | ||
Theorem | refrelcoss 36202 | The class of cosets by 𝑅 is reflexive. (Contributed by Peter Mazsa, 4-Jul-2020.) |
⊢ RefRel ≀ 𝑅 | ||
Definition | df-cnvrefs 36203 | Define the class of all converse reflexive sets, see the comment of df-ssr 36178. It is used only by df-cnvrefrels 36204. (Contributed by Peter Mazsa, 22-Jul-2019.) |
⊢ CnvRefs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥))◡ S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
Definition | df-cnvrefrels 36204 |
Define the class of converse reflexive relations. This is practically
dfcnvrefrels2 36206 (which uses the traditional subclass
relation ⊆) :
we use converse subset relation (brcnvssr 36186) here to ensure the
comparability to the definitions of the classes of all reflexive
(df-ref 22205), symmetric (df-syms 36218) and transitive (df-trs 36248) sets.
We use this concept to define functions (df-funsALTV 36354, df-funALTV 36355) and disjoints (df-disjs 36377, df-disjALTV 36378). For sets, being an element of the class of converse reflexive relations is equivalent to satisfying the converse reflexive relation predicate, see elcnvrefrelsrel 36212. Alternate definitions are dfcnvrefrels2 36206 and dfcnvrefrels3 36207. (Contributed by Peter Mazsa, 7-Jul-2019.) |
⊢ CnvRefRels = ( CnvRefs ∩ Rels ) | ||
Definition | df-cnvrefrel 36205 | Define the converse reflexive relation predicate (read: 𝑅 is a converse reflexive relation), see also the comment of dfcnvrefrel3 36209. Alternate definitions are dfcnvrefrel2 36208 and dfcnvrefrel3 36209. (Contributed by Peter Mazsa, 16-Jul-2021.) |
⊢ ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
Theorem | dfcnvrefrels2 36206 | Alternate definition of the class of converse reflexive relations. See the comment of dfrefrels2 36193. (Contributed by Peter Mazsa, 21-Jul-2021.) |
⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} | ||
Theorem | dfcnvrefrels3 36207* | Alternate definition of the class of converse reflexive relations. (Contributed by Peter Mazsa, 22-Jul-2019.) |
⊢ CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)} | ||
Theorem | dfcnvrefrel2 36208 | Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 24-Jul-2019.) |
⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
Theorem | dfcnvrefrel3 36209* | Alternate definition of the converse reflexive relation predicate. A relation is converse reflexive iff: for all elements on its domain and range, if for an element of its domain and for an element of its range there is the relation between them, then the two elements are the same, cf. the comment of dfrefrel3 36196. (Contributed by Peter Mazsa, 25-Jul-2021.) |
⊢ ( CnvRefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ Rel 𝑅)) | ||
Theorem | elcnvrefrels2 36210 | Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 25-Jul-2019.) |
⊢ (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elcnvrefrels3 36211* | Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 30-Aug-2021.) |
⊢ (𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elcnvrefrelsrel 36212 | For sets, being an element of the class of converse reflexive relations (df-cnvrefrels 36204) is equivalent to satisfying the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅)) | ||
Theorem | cnvrefrelcoss2 36213 | Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I ) | ||
Theorem | cosselcnvrefrels2 36214 | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 25-Aug-2021.) |
⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels )) | ||
Theorem | cosselcnvrefrels3 36215* | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 30-Aug-2021.) |
⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦) ∧ ≀ 𝑅 ∈ Rels )) | ||
Theorem | cosselcnvrefrels4 36216* | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑢∃*𝑥 𝑢𝑅𝑥 ∧ ≀ 𝑅 ∈ Rels )) | ||
Theorem | cosselcnvrefrels5 36217* | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ ran 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]◡𝑅 ∩ [𝑦]◡𝑅) = ∅) ∧ ≀ 𝑅 ∈ Rels )) | ||
Definition | df-syms 36218 |
Define the class of all symmetric sets. It is used only by df-symrels 36219.
Note the similarity of Definitions df-refs 36190, df-syms 36218 and df-trs 36248, cf. the comment of dfrefrels2 36193. (Contributed by Peter Mazsa, 19-Jul-2019.) |
⊢ Syms = {𝑥 ∣ ◡(𝑥 ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
Definition | df-symrels 36219 |
Define the class of symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 36233. Alternate definitions are
dfsymrels2 36221, dfsymrels3 36222, dfsymrels4 36223 and dfsymrels5 36224.
This definition is similar to the definitions of the classes of reflexive (df-refrels 36191) and transitive (df-trrels 36249) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
⊢ SymRels = ( Syms ∩ Rels ) | ||
Definition | df-symrel 36220 | Define the symmetric relation predicate. (Read: 𝑅 is a symmetric relation.) For sets, being an element of the class of symmetric relations (df-symrels 36219) is equivalent to satisfying the symmetric relation predicate, see elsymrelsrel 36233. Alternate definitions are dfsymrel2 36225 and dfsymrel3 36226. (Contributed by Peter Mazsa, 16-Jul-2021.) |
⊢ ( SymRel 𝑅 ↔ (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
Theorem | dfsymrels2 36221 | Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 36193. (Contributed by Peter Mazsa, 20-Jul-2019.) |
⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} | ||
Theorem | dfsymrels3 36222* | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥)} | ||
Theorem | dfsymrels4 36223 | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 20-Jul-2019.) |
⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 = 𝑟} | ||
Theorem | dfsymrels5 36224* | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | ||
Theorem | dfsymrel2 36225 | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 19-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | ||
Theorem | dfsymrel3 36226* | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 21-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
⊢ ( SymRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ Rel 𝑅)) | ||
Theorem | dfsymrel4 36227 | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ ( SymRel 𝑅 ↔ (◡𝑅 = 𝑅 ∧ Rel 𝑅)) | ||
Theorem | dfsymrel5 36228* | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ ( SymRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ Rel 𝑅)) | ||
Theorem | elsymrels2 36229 | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
Theorem | elsymrels3 36230* | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ (𝑅 ∈ SymRels ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elsymrels4 36231 | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 = 𝑅 ∧ 𝑅 ∈ Rels )) | ||
Theorem | elsymrels5 36232* | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ (𝑅 ∈ SymRels ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elsymrelsrel 36233 | For sets, being an element of the class of symmetric relations (df-symrels 36219) is equivalent to satisfying the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ SymRels ↔ SymRel 𝑅)) | ||
Theorem | symreleq 36234 | Equality theorem for symmetric relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆)) | ||
Theorem | symrelim 36235 | Symmetric relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ ( SymRel 𝑅 → dom 𝑅 = ran 𝑅) | ||
Theorem | symrelcoss 36236 | The class of cosets by 𝑅 is symmetric. (Contributed by Peter Mazsa, 20-Dec-2021.) |
⊢ SymRel ≀ 𝑅 | ||
Theorem | idsymrel 36237 | The identity relation is symmetric. (Contributed by AV, 19-Jun-2022.) |
⊢ SymRel I | ||
Theorem | epnsymrel 36238 | The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
⊢ ¬ SymRel E | ||
Theorem | symrefref2 36239 | Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref3 36240. (Contributed by Peter Mazsa, 19-Jul-2018.) |
⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) | ||
Theorem | symrefref3 36240* | Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref2 36239. (Contributed by Peter Mazsa, 23-Aug-2021.) (Proof modification is discouraged.) |
⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥)) | ||
Theorem | refsymrels2 36241 | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 36263) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 version of dfrefrels2 36193, cf. the comment of dfrefrels2 36193. (Contributed by Peter Mazsa, 20-Jul-2019.) |
⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | ||
Theorem | refsymrels3 36242* | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 36264) can use the ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 version for their reflexive part, not just the ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦) version of dfrefrels3 36194, cf. the comment of dfrefrel3 36196. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.) |
⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥))} | ||
Theorem | refsymrel2 36243 | A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrel2 36195, cf. the comment of dfrefrels2 36193. (Contributed by Peter Mazsa, 23-Aug-2021.) |
⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) | ||
Theorem | refsymrel3 36244* | A relation which is reflexive and symmetric (like an equivalence relation) can use the ∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for its reflexive part, not just the ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) version of dfrefrel3 36196, cf. the comment of dfrefrel3 36196. (Contributed by Peter Mazsa, 23-Aug-2021.) |
⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ Rel 𝑅)) | ||
Theorem | elrefsymrels2 36245 | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 36263) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrels2 36193, cf. the comment of dfrefrels2 36193. (Contributed by Peter Mazsa, 22-Jul-2019.) |
⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elrefsymrels3 36246* | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 36264) can use the ∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for their reflexive part, not just the ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) version of dfrefrels3 36194, cf. the comment of dfrefrel3 36196. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.) |
⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elrefsymrelsrel 36247 | For sets, being an element of the class of reflexive and symmetric relations is equivalent to satisfying the reflexive and symmetric relation predicates. (Contributed by Peter Mazsa, 23-Aug-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅))) | ||
Definition | df-trs 36248 |
Define the class of all transitive sets (versus the transitive class
defined in df-tr 5139). It is used only by df-trrels 36249.
Note the similarity of the definitions of df-refs 36190, df-syms 36218 and df-trs 36248. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ Trs = {𝑥 ∣ ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥))) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
Definition | df-trrels 36249 |
Define the class of transitive relations. For sets, being an element of
the class of transitive relations is equivalent to satisfying the
transitive relation predicate, see eltrrelsrel 36257. Alternate definitions
are dftrrels2 36251 and dftrrels3 36252.
This definition is similar to the definitions of the classes of reflexive (df-refrels 36191) and symmetric (df-symrels 36219) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
⊢ TrRels = ( Trs ∩ Rels ) | ||
Definition | df-trrel 36250 | Define the transitive relation predicate. (Read: 𝑅 is a transitive relation.) For sets, being an element of the class of transitive relations (df-trrels 36249) is equivalent to satisfying the transitive relation predicate, see eltrrelsrel 36257. Alternate definitions are dftrrel2 36253 and dftrrel3 36254. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ ( TrRel 𝑅 ↔ (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
Theorem | dftrrels2 36251 |
Alternate definition of the class of transitive relations.
I'd prefer to define the class of transitive relations by using the definition of composition by [Suppes] p. 63. df-coSUP (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐴𝑢 ∧ 𝑢𝐵𝑦)} as opposed to the present definition of composition df-co 5533 (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐵𝑢 ∧ 𝑢𝐴𝑦)} because the Suppes definition keeps the order of 𝐴, 𝐵, 𝐶, 𝑅, 𝑆, 𝑇 by default in trsinxpSUP (((𝑅 ∩ (𝐴 × 𝐵)) ∘ (𝑆 ∩ (𝐵 × 𝐶))) ⊆ (𝑇 ∩ (𝐴 × 𝐶)) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀ 𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧)) while the present definition of composition disarranges them: trsinxp (((𝑆 ∩ (𝐵 × 𝐶)) ∘ (𝑅 ∩ (𝐴 × 𝐵))) ⊆ (𝑇 ∩ (𝐴 × 𝐶 )) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧) ). This is not mission critical to me, the implication of the Suppes definition is just more aesthetic, at least in the above case. If we swap to the Suppes definition of class composition, I would define the present class of all transitive sets as df-trsSUP and I would consider to switch the definition of the class of cosets by 𝑅 from the present df-coss 36099 to a df-cossSUP. But perhaps there is a mathematical reason to keep the present definition of composition. (Contributed by Peter Mazsa, 21-Jul-2021.) |
⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} | ||
Theorem | dftrrels3 36252* | Alternate definition of the class of transitive relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
⊢ TrRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)} | ||
Theorem | dftrrel2 36253 | Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ ( TrRel 𝑅 ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅)) | ||
Theorem | dftrrel3 36254* | Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ ( TrRel 𝑅 ↔ (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ Rel 𝑅)) | ||
Theorem | eltrrels2 36255 | Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ TrRels ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
Theorem | eltrrels3 36256* | Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ TrRels ↔ (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ 𝑅 ∈ Rels )) | ||
Theorem | eltrrelsrel 36257 | For sets, being an element of the class of transitive relations is equivalent to satisfying the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ TrRels ↔ TrRel 𝑅)) | ||
Theorem | trreleq 36258 | Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆)) | ||
Definition | df-eqvrels 36259 | Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 36269. Alternate definitions are dfeqvrels2 36263 and dfeqvrels3 36264. (Contributed by Peter Mazsa, 7-Nov-2018.) |
⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | ||
Definition | df-eqvrel 36260 | Define the equivalence relation predicate. (Read: 𝑅 is an equivalence relation.) For sets, being an element of the class of equivalence relations (df-eqvrels 36259) is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 36269. Alternate definitions are dfeqvrel2 36265 and dfeqvrel3 36266. (Contributed by Peter Mazsa, 17-Apr-2019.) |
⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | ||
Definition | df-coeleqvrels 36261 | Define the the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 36271. Alternate definition is dfcoeleqvrels 36296. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } | ||
Definition | df-coeleqvrel 36262 | Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 36297. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 36271. (Contributed by Peter Mazsa, 11-Dec-2021.) |
⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) | ||
Theorem | dfeqvrels2 36263 | Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} | ||
Theorem | dfeqvrels3 36264* | Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
⊢ EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} | ||
Theorem | dfeqvrel2 36265 | Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.) |
⊢ ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) | ||
Theorem | dfeqvrel3 36266* | Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.) |
⊢ ( EqvRel 𝑅 ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ Rel 𝑅)) | ||
Theorem | eleqvrels2 36267 | Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
⊢ (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) | ||
Theorem | eleqvrels3 36268* | Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
⊢ (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels )) | ||
Theorem | eleqvrelsrel 36269 | For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate. (Contributed by Peter Mazsa, 24-Aug-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅)) | ||
Theorem | elcoeleqvrels 36270 | Elementhood in the coelement equivalence relations class. (Contributed by Peter Mazsa, 24-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ (◡ E ↾ 𝐴) ∈ EqvRels )) | ||
Theorem | elcoeleqvrelsrel 36271 | For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate. (Contributed by Peter Mazsa, 24-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴)) | ||
Theorem | eqvrelrel 36272 | An equivalence relation is a relation. (Contributed by Peter Mazsa, 2-Jun-2019.) |
⊢ ( EqvRel 𝑅 → Rel 𝑅) | ||
Theorem | eqvrelrefrel 36273 | An equivalence relation is reflexive. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ ( EqvRel 𝑅 → RefRel 𝑅) | ||
Theorem | eqvrelsymrel 36274 | An equivalence relation is symmetric. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ ( EqvRel 𝑅 → SymRel 𝑅) | ||
Theorem | eqvreltrrel 36275 | An equivalence relation is transitive. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ ( EqvRel 𝑅 → TrRel 𝑅) | ||
Theorem | eqvrelim 36276 | Equivalence relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ ( EqvRel 𝑅 → dom 𝑅 = ran 𝑅) | ||
Theorem | eqvreleq 36277 | Equality theorem for equivalence relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | ||
Theorem | eqvreleqi 36278 | Equality theorem for equivalence relation, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ 𝑅 = 𝑆 ⇒ ⊢ ( EqvRel 𝑅 ↔ EqvRel 𝑆) | ||
Theorem | eqvreleqd 36279 | Equality theorem for equivalence relation, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | ||
Theorem | eqvrelsym 36280 | An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐵𝑅𝐴) | ||
Theorem | eqvrelsymb 36281 | An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised and distinct variable conditions removed by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) | ||
Theorem | eqvreltr 36282 | An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) ⇒ ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) | ||
Theorem | eqvreltrd 36283 | A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
Theorem | eqvreltr4d 36284 | A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
Theorem | eqvrelref 36285 | An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐴) | ||
Theorem | eqvrelth 36286 | Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) | ||
Theorem | eqvrelcl 36287 | Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) | ||
Theorem | eqvrelthi 36288 | Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) | ||
Theorem | eqvreldisj 36289 | Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ ( EqvRel 𝑅 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)) | ||
Theorem | qsdisjALTV 36290 | Elements of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) (Revised by Peter Mazsa, 3-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) ⇒ ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) | ||
Theorem | eqvrelqsel 36291 | If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 28-Dec-2019.) |
⊢ (( EqvRel 𝑅 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) | ||
Theorem | eqvrelcoss 36292 | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 20-Dec-2021.) |
⊢ ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅) | ||
Theorem | eqvrelcoss3 36293* | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 28-Apr-2019.) |
⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | ||
Theorem | eqvrelcoss2 36294 | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.) |
⊢ ( EqvRel ≀ 𝑅 ↔ ≀ ≀ 𝑅 ⊆ ≀ 𝑅) | ||
Theorem | eqvrelcoss4 36295* | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 30-Sep-2021.) |
⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) | ||
Theorem | dfcoeleqvrels 36296 | Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 36294, eqvrelcoss3 36293 and eqvrelcoss4 36295 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } | ||
Theorem | dfcoeleqvrel 36297 | Alternate definition of the coelement equivalence relation predicate: a coelement equivalence relation is an equivalence relation on coelements. Other alternate definitions should be based on eqvrelcoss2 36294, eqvrelcoss3 36293 and eqvrelcoss4 36295 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) | ||
Definition | df-redunds 36298* | Define the class of all redundant sets 𝑥 with respect to 𝑦 in 𝑧. For sets, binary relation on the class of all redundant sets (brredunds 36301) is equivalent to satisfying the redundancy predicate (df-redund 36299). (Contributed by Peter Mazsa, 23-Oct-2022.) |
⊢ Redunds = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧))} | ||
Definition | df-redund 36299 | Define the redundancy predicate. Read: 𝐴 is redundant with respect to 𝐵 in 𝐶. For sets, binary relation on the class of all redundant sets (brredunds 36301) is equivalent to satisfying the redundancy predicate. (Contributed by Peter Mazsa, 23-Oct-2022.) |
⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) | ||
Definition | df-redundp 36300 | Define the redundancy operator for propositions, cf. df-redund 36299. (Contributed by Peter Mazsa, 23-Oct-2022.) |
⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |