HomeHome Metamath Proof Explorer
Theorem List (p. 363 of 489)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30950)
  Hilbert Space Explorer  Hilbert Space Explorer
(30951-32473)
  Users' Mathboxes  Users' Mathboxes
(32474-48899)
 

Theorem List for Metamath Proof Explorer - 36201-36300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcbvdisjvw2 36201* Change bound variable and domain in a disjoint collection, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
(𝑥 = 𝑦𝐶 = 𝐷)    &   (𝑥 = 𝑦𝐴 = 𝐵)       (Disj 𝑥𝐴 𝐶Disj 𝑦𝐵 𝐷)
 
Theoremcbvriotavw2 36202* Change bound variable and domain in a restricted description binder, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
(𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝑥𝐴 𝜑) = (𝑦𝐵 𝜓)
 
Theoremcbvoprab1vw 36203* Change the first bound variable in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
(𝑥 = 𝑤 → (𝜓𝜒))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜒}
 
Theoremcbvoprab2vw 36204* Change the second bound variable in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
(𝑦 = 𝑤 → (𝜓𝜒))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜒}
 
Theoremcbvoprab123vw 36205* Change all bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
(((𝑥 = 𝑤𝑦 = 𝑢) ∧ 𝑧 = 𝑣) → (𝜓𝜒))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑤, 𝑢⟩, 𝑣⟩ ∣ 𝜒}
 
Theoremcbvoprab23vw 36206* Change the second and third bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
((𝑦 = 𝑤𝑧 = 𝑣) → (𝜓𝜒))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑤⟩, 𝑣⟩ ∣ 𝜒}
 
Theoremcbvoprab13vw 36207* Change the first and third bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
((𝑥 = 𝑤𝑧 = 𝑣) → (𝜓𝜒))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑤, 𝑦⟩, 𝑣⟩ ∣ 𝜒}
 
Theoremcbvmpovw2 36208* Change bound variables and domains in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
((𝑥 = 𝑧𝑦 = 𝑤) → 𝐸 = 𝐹)    &   ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)    &   ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐴 = 𝐵)       (𝑥𝐴, 𝑦𝐶𝐸) = (𝑧𝐵, 𝑤𝐷𝐹)
 
Theoremcbvmpo1vw2 36209* Change domains and the first bound variable in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
(𝑥 = 𝑧𝐸 = 𝐹)    &   (𝑥 = 𝑧𝐶 = 𝐷)    &   (𝑥 = 𝑧𝐴 = 𝐵)       (𝑥𝐴, 𝑦𝐶𝐸) = (𝑧𝐵, 𝑦𝐷𝐹)
 
Theoremcbvmpo2vw2 36210* Change domains and the second bound variable in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
(𝑦 = 𝑧𝐸 = 𝐹)    &   (𝑦 = 𝑧𝐶 = 𝐷)    &   (𝑦 = 𝑧𝐴 = 𝐵)       (𝑥𝐴, 𝑦𝐶𝐸) = (𝑥𝐵, 𝑧𝐷𝐹)
 
Theoremcbvixpvw2 36211* Change bound variable and domain in an indexed Cartesian product, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
(𝑥 = 𝑦𝐶 = 𝐷)    &   (𝑥 = 𝑦𝐴 = 𝐵)       X𝑥𝐴 𝐶 = X𝑦𝐵 𝐷
 
Theoremcbvsumvw2 36212* Change bound variable and the set of integers in a sum, using implicit substitution. (Contributed by GG, 1-Sep-2025.)
𝐴 = 𝐵    &   (𝑗 = 𝑘𝐶 = 𝐷)       Σ𝑗𝐴 𝐶 = Σ𝑘𝐵 𝐷
 
Theoremcbvprodvw2 36213* Change bound variable and the set of integers in a product, using implicit substitution. (Contributed by GG, 1-Sep-2025.)
𝐴 = 𝐵    &   (𝑗 = 𝑘𝐶 = 𝐷)       𝑗𝐴 𝐶 = ∏𝑘𝐵 𝐷
 
Theoremcbvitgvw2 36214* Change bound variable and domain in an integral, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
(𝑥 = 𝑦𝐶 = 𝐷)    &   (𝑥 = 𝑦𝐴 = 𝐵)       𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦
 
Theoremcbvditgvw2 36215* Change bound variable and domain in a directed integral, using implicit substitution. (Contributed by GG, 1-Sep-2025.)
𝐴 = 𝐵    &   𝐶 = 𝐷    &   (𝑥 = 𝑦𝐸 = 𝐹)       ⨜[𝐴𝐶]𝐸 d𝑥 = ⨜[𝐵𝐷]𝐹 d𝑦
 
21.12.2.2  Change bound variables, deduction versions.
 
Theoremcbvmodavw 36216* Change bound variable in the at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑦𝜒))
 
Theoremcbveudavw 36217* Change bound variable in the existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑦𝜒))
 
Theoremcbvrmodavw 36218* Change bound variable in the restricted at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑦𝐴 𝜒))
 
Theoremcbvreudavw 36219* Change bound variable in the restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑦𝐴 𝜒))
 
Theoremcbvsbdavw 36220* Change bound variable in proper substitution. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → ([𝑧 / 𝑥]𝜓 ↔ [𝑧 / 𝑦]𝜒))
 
Theoremcbvsbdavw2 36221* Change bound variable in proper substitution. General version of cbvsbdavw 36220. Deduction form. (Contributed by GG, 14-Aug-2025.)
(𝜑𝑧 = 𝑤)    &   ((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → ([𝑧 / 𝑥]𝜓 ↔ [𝑤 / 𝑦]𝜒))
 
Theoremcbvabdavw 36222* Change bound variable in class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → {𝑥𝜓} = {𝑦𝜒})
 
Theoremcbvsbcdavw 36223* Change bound variable of a class substitution. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑦]𝜒))
 
Theoremcbvsbcdavw2 36224* Change bound variable of a class substitution. General version of cbvsbcdavw 36223. Deduction form. (Contributed by GG, 14-Aug-2025.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑦]𝜒))
 
Theoremcbvcsbdavw 36225* Change bound variable of a proper substitution into a class. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶)
 
Theoremcbvcsbdavw2 36226* Change bound variable of a proper substitution into a class. General version of cbvcsbdavw 36225. Deduction form. (Contributed by GG, 14-Aug-2025.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)       (𝜑𝐴 / 𝑥𝐶 = 𝐵 / 𝑦𝐷)
 
Theoremcbvrabdavw 36227* Change bound variable in restricted class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑦𝐴𝜒})
 
Theoremcbviundavw 36228* Change bound variable in indexed unions. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)       (𝜑 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶)
 
Theoremcbviindavw 36229* Change bound variable in indexed intersections. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)       (𝜑 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶)
 
Theoremcbvopab1davw 36230* Change the first bound variable in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑧) → (𝜓𝜒))       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑧, 𝑦⟩ ∣ 𝜒})
 
Theoremcbvopab2davw 36231* Change the second bound variable in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑦 = 𝑧) → (𝜓𝜒))       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑧⟩ ∣ 𝜒})
 
Theoremcbvopabdavw 36232* Change bound variables in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.)
(((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝜓𝜒))       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑧, 𝑤⟩ ∣ 𝜒})
 
Theoremcbvmptdavw 36233* Change bound variable in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)       (𝜑 → (𝑥𝐴𝐵) = (𝑦𝐴𝐶))
 
Theoremcbvdisjdavw 36234* Change bound variable in a disjoint collection. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)       (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶))
 
Theoremcbviotadavw 36235* Change bound variable in a description binder. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (℩𝑥𝜓) = (℩𝑦𝜒))
 
Theoremcbvriotadavw 36236* Change bound variable in a restricted description binder. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (𝑥𝐴 𝜓) = (𝑦𝐴 𝜒))
 
Theoremcbvoprab1davw 36237* Change the first bound variable in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑤) → (𝜓𝜒))       (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜒})
 
Theoremcbvoprab2davw 36238* Change the second bound variable in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑦 = 𝑤) → (𝜓𝜒))       (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜒})
 
Theoremcbvoprab3davw 36239* Change the third bound variable in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑧 = 𝑤) → (𝜓𝜒))       (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜒})
 
Theoremcbvoprab123davw 36240* Change all bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.)
((((𝜑𝑥 = 𝑤) ∧ 𝑦 = 𝑢) ∧ 𝑧 = 𝑣) → (𝜓𝜒))       (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑤, 𝑢⟩, 𝑣⟩ ∣ 𝜒})
 
Theoremcbvoprab12davw 36241* Change the first and second bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.)
(((𝜑𝑥 = 𝑤) ∧ 𝑦 = 𝑣) → (𝜓𝜒))       (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜒})
 
Theoremcbvoprab23davw 36242* Change the second and third bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.)
(((𝜑𝑦 = 𝑤) ∧ 𝑧 = 𝑣) → (𝜓𝜒))       (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑤⟩, 𝑣⟩ ∣ 𝜒})
 
Theoremcbvoprab13davw 36243* Change the first and third bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.)
(((𝜑𝑥 = 𝑤) ∧ 𝑧 = 𝑣) → (𝜓𝜒))       (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑤, 𝑦⟩, 𝑣⟩ ∣ 𝜒})
 
Theoremcbvixpdavw 36244* Change bound variable in an indexed Cartesian product. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)       (𝜑X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶)
 
Theoremcbvsumdavw 36245* Change bound variable in a sum. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑘 = 𝑗) → 𝐵 = 𝐶)       (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑗𝐴 𝐶)
 
Theoremcbvproddavw 36246* Change bound variable in a product. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑗 = 𝑘) → 𝐵 = 𝐶)       (𝜑 → ∏𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theoremcbvitgdavw 36247* Change bound variable in an integral. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)       (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦)
 
Theoremcbvditgdavw 36248* Change bound variable in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)       (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 = ⨜[𝐴𝐵]𝐷 d𝑦)
 
21.12.2.3  Change bound variables and domains, deduction versions.
 
Theoremcbvrmodavw2 36249* Change bound variable and quantifier domain in the restricted at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑦𝐵 𝜒))
 
Theoremcbvreudavw2 36250* Change bound variable and quantifier domain in the restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑦𝐵 𝜒))
 
Theoremcbvrabdavw2 36251* Change bound variable and domain in restricted class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑 → {𝑥𝐴𝜓} = {𝑦𝐵𝜒})
 
Theoremcbviundavw2 36252* Change bound variable and domain in indexed unions. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑 𝑥𝐴 𝐶 = 𝑦𝐵 𝐷)
 
Theoremcbviindavw2 36253* Change bound variable and domain in indexed intersections. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑 𝑥𝐴 𝐶 = 𝑦𝐵 𝐷)
 
Theoremcbvmptdavw2 36254* Change bound variable and domain in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑 → (𝑥𝐴𝐶) = (𝑦𝐵𝐷))
 
Theoremcbvdisjdavw2 36255* Change bound variable and domain in a disjoint collection. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑦𝐵 𝐷))
 
Theoremcbvriotadavw2 36256* Change bound variable and domain in a restricted description binder. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑 → (𝑥𝐴 𝜓) = (𝑦𝐵 𝜒))
 
Theoremcbvmpodavw2 36257* Change bound variable and domains in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.)
(((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝐸 = 𝐹)    &   (((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷)    &   (((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝐴 = 𝐵)       (𝜑 → (𝑥𝐴, 𝑦𝐶𝐸) = (𝑧𝐵, 𝑤𝐷𝐹))
 
Theoremcbvmpo1davw2 36258* Change first bound variable and domains in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑧) → 𝐸 = 𝐹)    &   ((𝜑𝑥 = 𝑧) → 𝐶 = 𝐷)    &   ((𝜑𝑥 = 𝑧) → 𝐴 = 𝐵)       (𝜑 → (𝑥𝐴, 𝑦𝐶𝐸) = (𝑧𝐵, 𝑦𝐷𝐹))
 
Theoremcbvmpo2davw2 36259* Change second bound variable and domains in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑦 = 𝑧) → 𝐸 = 𝐹)    &   ((𝜑𝑦 = 𝑧) → 𝐶 = 𝐷)    &   ((𝜑𝑦 = 𝑧) → 𝐴 = 𝐵)       (𝜑 → (𝑥𝐴, 𝑦𝐶𝐸) = (𝑥𝐵, 𝑧𝐷𝐹))
 
Theoremcbvixpdavw2 36260* Change bound variable and domain in an indexed Cartesian product. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑X𝑥𝐴 𝐶 = X𝑦𝐵 𝐷)
 
Theoremcbvsumdavw2 36261* Change bound variable and the set of integers in a sum. Deduction form. (Contributed by GG, 14-Aug-2025.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑗 = 𝑘) → 𝐶 = 𝐷)       (𝜑 → Σ𝑗𝐴 𝐶 = Σ𝑘𝐵 𝐷)
 
Theoremcbvproddavw2 36262* Change bound variable and the set of integers in a product. Deduction form. (Contributed by GG, 14-Aug-2025.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑗 = 𝑘) → 𝐶 = 𝐷)       (𝜑 → ∏𝑗𝐴 𝐶 = ∏𝑘𝐵 𝐷)
 
Theoremcbvitgdavw2 36263* Change bound variable and domain in an integral. Deduction form. (Contributed by GG, 14-Aug-2025.)
((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦)
 
Theoremcbvditgdavw2 36264* Change bound variable and limits in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)    &   ((𝜑𝑥 = 𝑦) → 𝐸 = 𝐹)       (𝜑 → ⨜[𝐴𝐶]𝐸 d𝑥 = ⨜[𝐵𝐷]𝐹 d𝑦)
 
21.12.3  Study of ax-mulf usage.
 
Theoremmpomulnzcnf 36265* Multiplication maps nonzero complex numbers to nonzero complex numbers. Version of mulnzcnf 11936 using maps-to notation, which does not require ax-mulf 11264. (Contributed by GG, 18-Apr-2025.)
(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0})
 
21.13  Mathbox for Jeff Hankins
 
21.13.1  Miscellany
 
Theorema1i14 36266 Add two antecedents to a wff. (Contributed by Jeff Hankins, 4-Aug-2009.)
(𝜓 → (𝜒𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
 
Theorema1i24 36267 Add two antecedents to a wff. Deduction associated with a1i13 27. (Contributed by Jeff Hankins, 5-Aug-2009.)
(𝜑 → (𝜒𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
 
Theoremexp5d 36268 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(((𝜑𝜓) ∧ 𝜒) → ((𝜃𝜏) → 𝜂))       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp5g 36269 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
((𝜑𝜓) → (((𝜒𝜃) ∧ 𝜏) → 𝜂))       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp5k 36270 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(𝜑 → (((𝜓 ∧ (𝜒𝜃)) ∧ 𝜏) → 𝜂))       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp56 36271 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
((((𝜑𝜓) ∧ 𝜒) ∧ (𝜃𝜏)) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp58 36272 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(((𝜑𝜓) ∧ ((𝜒𝜃) ∧ 𝜏)) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp510 36273 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
((𝜑 ∧ (((𝜓𝜒) ∧ 𝜃) ∧ 𝜏)) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp511 36274 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
((𝜑 ∧ ((𝜓 ∧ (𝜒𝜃)) ∧ 𝜏)) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp512 36275 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
((𝜑 ∧ ((𝜓𝜒) ∧ (𝜃𝜏))) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theorem3com12d 36276 Commutation in consequent. Swap 1st and 2nd. (Contributed by Jeff Hankins, 17-Nov-2009.)
(𝜑 → (𝜓𝜒𝜃))       (𝜑 → (𝜒𝜓𝜃))
 
Theoremimp5p 36277 A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
(𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))       (𝜑 → (𝜓 → ((𝜒𝜃𝜏) → 𝜂)))
 
Theoremimp5q 36278 A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
(𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))       ((𝜑𝜓) → ((𝜒𝜃𝜏) → 𝜂))
 
Theoremecase13d 36279 Deduction for elimination by cases. (Contributed by Jeff Hankins, 18-Aug-2009.)
(𝜑 → ¬ 𝜒)    &   (𝜑 → ¬ 𝜃)    &   (𝜑 → (𝜒𝜓𝜃))       (𝜑𝜓)
 
Theoremsubtr 36280 Transitivity of implicit substitution. (Contributed by Jeff Hankins, 13-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝑌    &   𝑥𝑍    &   (𝑥 = 𝐴𝑋 = 𝑌)    &   (𝑥 = 𝐵𝑋 = 𝑍)       ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵𝑌 = 𝑍))
 
Theoremsubtr2 36281 Transitivity of implicit substitution into a wff. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝜓    &   𝑥𝜒    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵 → (𝜓𝜒)))
 
Theoremtrer 36282* A relation intersected with its converse is an equivalence relation if the relation is transitive. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
(∀𝑎𝑏𝑐((𝑎 𝑏𝑏 𝑐) → 𝑎 𝑐) → ( ) Er dom ( ))
 
Theoremelicc3 36283 An equivalent membership condition for closed intervals. (Contributed by Jeff Hankins, 14-Jul-2009.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
 
Theoremfinminlem 36284* A useful lemma about finite sets. If a property holds for a finite set, it holds for a minimal set. (Contributed by Jeff Hankins, 4-Dec-2009.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥 ∈ Fin 𝜑 → ∃𝑥(𝜑 ∧ ∀𝑦((𝑦𝑥𝜓) → 𝑥 = 𝑦)))
 
Theoremgtinf 36285* Any number greater than an infimum is greater than some element of the set. (Contributed by Jeff Hankins, 29-Sep-2013.) (Revised by AV, 10-Oct-2021.)
(((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ∃𝑧𝑆 𝑧 < 𝐴)
 
Theoremopnrebl 36286* A set is open in the standard topology of the reals precisely when every point can be enclosed in an open ball. (Contributed by Jeff Hankins, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.)
(𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+ ((𝑥𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴))
 
Theoremopnrebl2 36287* A set is open in the standard topology of the reals precisely when every point can be enclosed in an arbitrarily small ball. (Contributed by Jeff Hankins, 22-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.)
(𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
 
Theoremnn0prpwlem 36288* Lemma for nn0prpw 36289. Use strong induction to show that every positive integer has unique prime power divisors. (Contributed by Jeff Hankins, 28-Sep-2013.)
(𝐴 ∈ ℕ → ∀𝑘 ∈ ℕ (𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴)))
 
Theoremnn0prpw 36289* Two nonnegative integers are the same if and only if they are divisible by the same prime powers. (Contributed by Jeff Hankins, 29-Sep-2013.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
 
21.13.2  Basic topological facts
 
Theoremtopbnd 36290 Two equivalent expressions for the boundary of a topology. (Contributed by Jeff Hankins, 23-Sep-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴)))
 
Theoremopnbnd 36291 A set is open iff it is disjoint from its boundary. (Contributed by Jeff Hankins, 23-Sep-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅))
 
Theoremcldbnd 36292 A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴))
 
Theoremntruni 36293* A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → 𝑜𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂))
 
Theoremclsun 36294 A pairwise union of closures is the closure of the union. (Contributed by Jeff Hankins, 31-Aug-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((cls‘𝐽)‘(𝐴𝐵)) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))
 
Theoremclsint2 36295* The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘ 𝐶) ⊆ 𝑐𝐶 ((cls‘𝐽)‘𝑐))
 
Theoremopnregcld 36296* A set is regularly closed iff it is the closure of some open set. (Contributed by Jeff Hankins, 27-Sep-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜)))
 
Theoremcldregopn 36297* A set if regularly open iff it is the interior of some closed set. (Contributed by Jeff Hankins, 27-Sep-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)))
 
Theoremneiin 36298 Two neighborhoods intersect to form a neighborhood of the intersection. (Contributed by Jeff Hankins, 31-Aug-2009.)
((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)))
 
Theoremhmeoclda 36299 Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
(((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹𝑆) ∈ (Clsd‘𝐾))
 
Theoremhmeocldb 36300 Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009.)
(((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐾)) → (𝐹𝑆) ∈ (Clsd‘𝐽))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48899
  Copyright terms: Public domain < Previous  Next >