Home | Metamath
Proof Explorer Theorem List (p. 363 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sbcalfi 36201* | Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ Ⅎ𝑦𝐴 & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦𝜓) | ||
Theorem | sbcexfi 36202* | Move existential quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ Ⅎ𝑦𝐴 & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦𝜓) | ||
Theorem | spsbcdi 36203 | A lemma for eliminating a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ (𝜑 → ∀𝑥𝜒) & ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | alrimii 36204* | A lemma for introducing a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝜓) & ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜓) & ⊢ Ⅎ𝑦𝜒 ⇒ ⊢ (𝜑 → ∀𝑥𝜒) | ||
Theorem | spesbcdi 36205 | A lemma for introducing an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ (𝜑 → 𝜓) & ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜒) | ||
Theorem | exlimddvf 36206 | A lemma for eliminating an existential quantifier. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ (𝜑 → ∃𝑥𝜃) & ⊢ Ⅎ𝑥𝜓 & ⊢ ((𝜃 ∧ 𝜓) → 𝜒) & ⊢ Ⅎ𝑥𝜒 ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | exlimddvfi 36207 | A lemma for eliminating an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ (𝜑 → ∃𝑥𝜃) & ⊢ Ⅎ𝑦𝜃 & ⊢ Ⅎ𝑦𝜓 & ⊢ ([𝑦 / 𝑥]𝜃 ↔ 𝜂) & ⊢ ((𝜂 ∧ 𝜓) → 𝜒) & ⊢ Ⅎ𝑦𝜒 ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | sbceq1ddi 36208 | A lemma for eliminating inequality, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝜃) & ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜃) & ⊢ ([𝐵 / 𝑥]𝜒 ↔ 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜂) | ||
Theorem | sbccom2lem 36209* | Lemma for sbccom2 36210. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom2 36210* | Commutative law for double class substitution. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom2f 36211* | Commutative law for double class substitution, with nonfree variable condition. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom2fi 36212* | Commutative law for double class substitution, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑦𝐴 & ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜓) | ||
Theorem | csbcom2fi 36213* | Commutative law for double class substitution in a class, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑦𝐴 & ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 & ⊢ ⦋𝐴 / 𝑥⦌𝐷 = 𝐸 ⇒ ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐷 = ⦋𝐶 / 𝑦⦌𝐸 | ||
A collection of Tseitin axioms used to convert a wff to Conjunctive Normal Form. | ||
Theorem | fald 36214 | Refutation of falsity, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ¬ ⊥) | ||
Theorem | tsim1 36215 | A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 → 𝜓))) | ||
Theorem | tsim2 36216 | A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (𝜑 ∨ (𝜑 → 𝜓))) | ||
Theorem | tsim3 36217 | A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (¬ 𝜓 ∨ (𝜑 → 𝜓))) | ||
Theorem | tsbi1 36218 | A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ↔ 𝜓))) | ||
Theorem | tsbi2 36219 | A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∨ 𝜓) ∨ (𝜑 ↔ 𝜓))) | ||
Theorem | tsbi3 36220 | A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) | ||
Theorem | tsbi4 36221 | A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) | ||
Theorem | tsxo1 36222 | A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ⊻ 𝜓))) | ||
Theorem | tsxo2 36223 | A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ⊻ 𝜓))) | ||
Theorem | tsxo3 36224 | A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ⊻ 𝜓))) | ||
Theorem | tsxo4 36225 | A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ (𝜑 ⊻ 𝜓))) | ||
Theorem | tsan1 36226 | A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ∧ 𝜓))) | ||
Theorem | tsan2 36227 | A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (𝜑 ∨ ¬ (𝜑 ∧ 𝜓))) | ||
Theorem | tsan3 36228 | A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (𝜓 ∨ ¬ (𝜑 ∧ 𝜓))) | ||
Theorem | tsna1 36229 | A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ⊼ 𝜓))) | ||
Theorem | tsna2 36230 | A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (𝜑 ∨ (𝜑 ⊼ 𝜓))) | ||
Theorem | tsna3 36231 | A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (𝜓 ∨ (𝜑 ⊼ 𝜓))) | ||
Theorem | tsor1 36232 | A Tseitin axiom for logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) | ||
Theorem | tsor2 36233 | A Tseitin axiom for logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (¬ 𝜑 ∨ (𝜑 ∨ 𝜓))) | ||
Theorem | tsor3 36234 | A Tseitin axiom for logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (¬ 𝜓 ∨ (𝜑 ∨ 𝜓))) | ||
Theorem | ts3an1 36235 | A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → ((¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒) ∨ (𝜑 ∧ 𝜓 ∧ 𝜒))) | ||
Theorem | ts3an2 36236 | A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∧ 𝜓) ∨ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒))) | ||
Theorem | ts3an3 36237 | A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (𝜒 ∨ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒))) | ||
Theorem | ts3or1 36238 | A Tseitin axiom for triple logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (((𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ 𝜓 ∨ 𝜒))) | ||
Theorem | ts3or2 36239 | A Tseitin axiom for triple logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∨ 𝜓 ∨ 𝜒))) | ||
Theorem | ts3or3 36240 | A Tseitin axiom for triple logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (¬ 𝜒 ∨ (𝜑 ∨ 𝜓 ∨ 𝜒))) | ||
A collection of theorems for commuting equalities (or biconditionals) with other constructs. | ||
Theorem | iuneq2f 36241 | Equality deduction for indexed union. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | ||
Theorem | rabeq12f 36242 | Equality deduction for restricted class abstraction. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓)) → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | ||
Theorem | csbeq12 36243 | Equality deduction for substitution in class. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐷) | ||
Theorem | sbeqi 36244 | Equality deduction for substitution. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ ((𝑥 = 𝑦 ∧ ∀𝑧(𝜑 ↔ 𝜓)) → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜓)) | ||
Theorem | ralbi12f 36245 | Equality deduction for restricted universal quantification. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓)) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | oprabbi 36246 | Equality deduction for class abstraction of nested ordered pairs. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ (∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓}) | ||
Theorem | mpobi123f 36247* | Equality deduction for maps-to notations with two arguments. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑦𝐷 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑥𝐷 ⇒ ⊢ (((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹)) | ||
Theorem | iuneq12f 36248 | Equality deduction for indexed unions. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) | ||
Theorem | iineq12f 36249 | Equality deduction for indexed intersections. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) | ||
Theorem | opabbi 36250 | Equality deduction for class abstraction of ordered pairs. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) | ||
Theorem | mptbi12f 36251 | Equality deduction for maps-to notations. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐷 = 𝐸) → (𝑥 ∈ 𝐴 ↦ 𝐷) = (𝑥 ∈ 𝐵 ↦ 𝐸)) | ||
Work in progress or things that do not belong anywhere else. | ||
Theorem | orcomdd 36252 | Commutativity of logic disjunction, in double deduction form. Should not be moved to main, see PR #3034 in Github. Use orcomd 867 instead. (Contributed by Giovanni Mascellani, 19-Mar-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 ∨ 𝜒))) | ||
Theorem | scottexf 36253* | A version of scottex 9574 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V | ||
Theorem | scott0f 36254* | A version of scott0 9575 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 = ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅) | ||
Theorem | scottn0f 36255* | A version of scott0f 36254 with inequalities instead of equalities. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≠ ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ≠ ∅) | ||
Theorem | ac6s3f 36256* | Generalization of the Axiom of Choice to classes, with bound-variable hypothesis. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
⊢ Ⅎ𝑦𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ac6s6 36257* | Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
⊢ Ⅎ𝑦𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓) | ||
Theorem | ac6s6f 36258* | Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 20-Aug-2018.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ ∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓) | ||
Syntax | cxrn 36259 | Extend the definition of a class to include the range Cartesian product class. |
class (𝐴 ⋉ 𝐵) | ||
Syntax | ccoss 36260 | Extend the definition of a class to include the class of cosets by a class. (Read: the class of cosets by 𝑅.) |
class ≀ 𝑅 | ||
Syntax | ccoels 36261 | Extend the definition of a class to include the class of coelements on a class. (Read: the class of coelements on 𝐴.) |
class ∼ 𝐴 | ||
Syntax | crels 36262 | Extend the definition of a class to include the relation class. |
class Rels | ||
Syntax | cssr 36263 | Extend the definition of a class to include the subset class. |
class S | ||
Syntax | crefs 36264 | Extend the definition of a class to include the reflexivity class. |
class Refs | ||
Syntax | crefrels 36265 | Extend the definition of a class to include the reflexive relations class. |
class RefRels | ||
Syntax | wrefrel 36266 | Extend the definition of a wff to include the reflexive relation predicate. (Read: 𝑅 is a reflexive relation.) |
wff RefRel 𝑅 | ||
Syntax | ccnvrefs 36267 | Extend the definition of a class to include the converse reflexivity class. |
class CnvRefs | ||
Syntax | ccnvrefrels 36268 | Extend the definition of a class to include the converse reflexive relations class. |
class CnvRefRels | ||
Syntax | wcnvrefrel 36269 | Extend the definition of a wff to include the converse reflexive relation predicate. (Read: 𝑅 is a converse reflexive relation.) |
wff CnvRefRel 𝑅 | ||
Syntax | csyms 36270 | Extend the definition of a class to include the symmetry class. |
class Syms | ||
Syntax | csymrels 36271 | Extend the definition of a class to include the symmetry relations class. |
class SymRels | ||
Syntax | wsymrel 36272 | Extend the definition of a wff to include the symmetry relation predicate. (Read: 𝑅 is a symmetric relation.) |
wff SymRel 𝑅 | ||
Syntax | ctrs 36273 | Extend the definition of a class to include the transitivity class (but cf. the transitive class defined in df-tr 5188). |
class Trs | ||
Syntax | ctrrels 36274 | Extend the definition of a class to include the transitive relations class. |
class TrRels | ||
Syntax | wtrrel 36275 | Extend the definition of a wff to include the transitive relation predicate. (Read: 𝑅 is a transitive relation.) |
wff TrRel 𝑅 | ||
Syntax | ceqvrels 36276 | Extend the definition of a class to include the equivalence relations class. |
class EqvRels | ||
Syntax | weqvrel 36277 | Extend the definition of a wff to include the equivalence relation predicate. (Read: 𝑅 is an equivalence relation.) |
wff EqvRel 𝑅 | ||
Syntax | ccoeleqvrels 36278 | Extend the definition of a class to include the coelement equivalence relations class. |
class CoElEqvRels | ||
Syntax | wcoeleqvrel 36279 | Extend the definition of a wff to include the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) |
wff CoElEqvRel 𝐴 | ||
Syntax | credunds 36280 | Extend the definition of a class to include the redundancy class. |
class Redunds | ||
Syntax | wredund 36281 | Extend the definition of a wff to include the redundancy predicate. (Read: 𝐴 is redundant with respect to 𝐵 in 𝐶.) |
wff 𝐴 Redund 〈𝐵, 𝐶〉 | ||
Syntax | wredundp 36282 | Extend wff definition to include the redundancy operator for propositions. |
wff redund (𝜑, 𝜓, 𝜒) | ||
Syntax | cdmqss 36283 | Extend the definition of a class to include the domain quotients class. |
class DomainQss | ||
Syntax | wdmqs 36284 | Extend the definition of a wff to include the domain quotient predicate. (Read: the domain quotient of 𝑅 is 𝐴.) |
wff 𝑅 DomainQs 𝐴 | ||
Syntax | cers 36285 | Extend the definition of a class to include the equivalence relations on their domain quotients class. |
class Ers | ||
Syntax | werALTV 36286 | Extend the definition of a wff to include the equivalence relation on its domain quotient predicate. (Read: 𝑅 is an equivalence relation on its domain quotient 𝐴.) |
wff 𝑅 ErALTV 𝐴 | ||
Syntax | cmembers 36287 | Extend the definition of a class to include the membership equivalence relations class. |
class MembErs | ||
Syntax | wmember 36288 | Extend the definition of a wff to include the membership equivalence relation predicate. (Read: the membership equivalence relation on 𝐴, or, the restricted elementhood equivalence relation on its domain quotient 𝐴.) |
wff MembEr 𝐴 | ||
Syntax | cfunss 36289 | Extend the definition of a class to include the function set class. |
class Funss | ||
Syntax | cfunsALTV 36290 | Extend the definition of a class to include the functions class, i.e., the function relations class. |
class FunsALTV | ||
Syntax | wfunALTV 36291 | Extend the definition of a wff to include the function predicate, i.e., the function relation predicate. (Read: 𝐹 is a function.) |
wff FunALTV 𝐹 | ||
Syntax | cdisjss 36292 | Extend the definition of a class to include the disjoint set class. |
class Disjss | ||
Syntax | cdisjs 36293 | Extend the definition of a class to include the disjoints class, i.e., the disjoint relations class. |
class Disjs | ||
Syntax | wdisjALTV 36294 | Extend the definition of a wff to include the disjoint predicate, i.e., the disjoint relation predicate. (Read: 𝑅 is a disjoint.) |
wff Disj 𝑅 | ||
Syntax | celdisjs 36295 | Extend the definition of a class to include the disjoint elements class, i.e., the disjoint elementhood relations class. |
class ElDisjs | ||
Syntax | weldisj 36296 | Extend the definition of a wff to include the disjoint elementhood predicate, i.e., the disjoint elementhood relation predicate. (Read: the elements of 𝐴 are disjoint.) |
wff ElDisj 𝐴 | ||
Theorem | el2v1 36297 | New way (elv 3428, and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 23-Oct-2018.) |
⊢ ((𝑥 ∈ V ∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | el3v 36298 | New way (elv 3428, and the theorems beginning with "el2v" or "el3v") to shorten some proofs. Inference forms (with ⊢ 𝐴 ∈ V, ⊢ 𝐵 ∈ V and ⊢ 𝐶 ∈ V hypotheses) of the general theorems (proving ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → assertions) may be superfluous. (Contributed by Peter Mazsa, 13-Oct-2018.) |
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | el3v1 36299 | New way (elv 3428, and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 16-Oct-2020.) |
⊢ ((𝑥 ∈ V ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | el3v2 36300 | New way (elv 3428, and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 16-Oct-2020.) |
⊢ ((𝜑 ∧ 𝑦 ∈ V ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |