![]() |
Metamath
Proof Explorer Theorem List (p. 363 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cbvdisjvw2 36201* | Change bound variable and domain in a disjoint collection, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑦 ∈ 𝐵 𝐷) | ||
Theorem | cbvriotavw2 36202* | Change bound variable and domain in a restricted description binder, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐵 𝜓) | ||
Theorem | cbvoprab1vw 36203* | Change the first bound variable in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
⊢ (𝑥 = 𝑤 → (𝜓 ↔ 𝜒)) ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑤, 𝑦〉, 𝑧〉 ∣ 𝜒} | ||
Theorem | cbvoprab2vw 36204* | Change the second bound variable in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑥, 𝑤〉, 𝑧〉 ∣ 𝜒} | ||
Theorem | cbvoprab123vw 36205* | Change all bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
⊢ (((𝑥 = 𝑤 ∧ 𝑦 = 𝑢) ∧ 𝑧 = 𝑣) → (𝜓 ↔ 𝜒)) ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑤, 𝑢〉, 𝑣〉 ∣ 𝜒} | ||
Theorem | cbvoprab23vw 36206* | Change the second and third bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝑦 = 𝑤 ∧ 𝑧 = 𝑣) → (𝜓 ↔ 𝜒)) ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑥, 𝑤〉, 𝑣〉 ∣ 𝜒} | ||
Theorem | cbvoprab13vw 36207* | Change the first and third bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝑥 = 𝑤 ∧ 𝑧 = 𝑣) → (𝜓 ↔ 𝜒)) ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑤, 𝑦〉, 𝑣〉 ∣ 𝜒} | ||
Theorem | cbvmpovw2 36208* | Change bound variables and domains in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐸 = 𝐹) & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐴 = 𝐵) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑧 ∈ 𝐵, 𝑤 ∈ 𝐷 ↦ 𝐹) | ||
Theorem | cbvmpo1vw2 36209* | Change domains and the first bound variable in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
⊢ (𝑥 = 𝑧 → 𝐸 = 𝐹) & ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝑧 → 𝐴 = 𝐵) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑧 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹) | ||
Theorem | cbvmpo2vw2 36210* | Change domains and the second bound variable in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
⊢ (𝑦 = 𝑧 → 𝐸 = 𝐹) & ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) & ⊢ (𝑦 = 𝑧 → 𝐴 = 𝐵) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑥 ∈ 𝐵, 𝑧 ∈ 𝐷 ↦ 𝐹) | ||
Theorem | cbvixpvw2 36211* | Change bound variable and domain in an indexed Cartesian product, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ X𝑥 ∈ 𝐴 𝐶 = X𝑦 ∈ 𝐵 𝐷 | ||
Theorem | cbvsumvw2 36212* | Change bound variable and the set of integers in a sum, using implicit substitution. (Contributed by GG, 1-Sep-2025.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝑗 = 𝑘 → 𝐶 = 𝐷) ⇒ ⊢ Σ𝑗 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷 | ||
Theorem | cbvprodvw2 36213* | Change bound variable and the set of integers in a product, using implicit substitution. (Contributed by GG, 1-Sep-2025.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝑗 = 𝑘 → 𝐶 = 𝐷) ⇒ ⊢ ∏𝑗 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐷 | ||
Theorem | cbvitgvw2 36214* | Change bound variable and domain in an integral, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦 | ||
Theorem | cbvditgvw2 36215* | Change bound variable and domain in a directed integral, using implicit substitution. (Contributed by GG, 1-Sep-2025.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 & ⊢ (𝑥 = 𝑦 → 𝐸 = 𝐹) ⇒ ⊢ ⨜[𝐴 → 𝐶]𝐸 d𝑥 = ⨜[𝐵 → 𝐷]𝐹 d𝑦 | ||
Theorem | cbvmodavw 36216* | Change bound variable in the at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑦𝜒)) | ||
Theorem | cbveudavw 36217* | Change bound variable in the existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑦𝜒)) | ||
Theorem | cbvrmodavw 36218* | Change bound variable in the restricted at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑦 ∈ 𝐴 𝜒)) | ||
Theorem | cbvreudavw 36219* | Change bound variable in the restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑦 ∈ 𝐴 𝜒)) | ||
Theorem | cbvsbdavw 36220* | Change bound variable in proper substitution. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝑧 / 𝑥]𝜓 ↔ [𝑧 / 𝑦]𝜒)) | ||
Theorem | cbvsbdavw2 36221* | Change bound variable in proper substitution. General version of cbvsbdavw 36220. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ (𝜑 → 𝑧 = 𝑤) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝑧 / 𝑥]𝜓 ↔ [𝑤 / 𝑦]𝜒)) | ||
Theorem | cbvabdavw 36222* | Change bound variable in class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑦 ∣ 𝜒}) | ||
Theorem | cbvsbcdavw 36223* | Change bound variable of a class substitution. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑦]𝜒)) | ||
Theorem | cbvsbcdavw2 36224* | Change bound variable of a class substitution. General version of cbvsbcdavw 36223. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑦]𝜒)) | ||
Theorem | cbvcsbdavw 36225* | Change bound variable of a proper substitution into a class. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶) | ||
Theorem | cbvcsbdavw2 36226* | Change bound variable of a proper substitution into a class. General version of cbvcsbdavw 36225. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑦⦌𝐷) | ||
Theorem | cbvrabdavw 36227* | Change bound variable in restricted class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑦 ∈ 𝐴 ∣ 𝜒}) | ||
Theorem | cbviundavw 36228* | Change bound variable in indexed unions. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶) | ||
Theorem | cbviindavw 36229* | Change bound variable in indexed intersections. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶) | ||
Theorem | cbvopab1davw 36230* | Change the first bound variable in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑧) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑧, 𝑦〉 ∣ 𝜒}) | ||
Theorem | cbvopab2davw 36231* | Change the second bound variable in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑦 = 𝑧) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑧〉 ∣ 𝜒}) | ||
Theorem | cbvopabdavw 36232* | Change bound variables in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑧, 𝑤〉 ∣ 𝜒}) | ||
Theorem | cbvmptdavw 36233* | Change bound variable in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶)) | ||
Theorem | cbvdisjdavw 36234* | Change bound variable in a disjoint collection. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶)) | ||
Theorem | cbviotadavw 36235* | Change bound variable in a description binder. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑦𝜒)) | ||
Theorem | cbvriotadavw 36236* | Change bound variable in a restricted description binder. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑦 ∈ 𝐴 𝜒)) | ||
Theorem | cbvoprab1davw 36237* | Change the first bound variable in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑤) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑤, 𝑦〉, 𝑧〉 ∣ 𝜒}) | ||
Theorem | cbvoprab2davw 36238* | Change the second bound variable in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑦 = 𝑤) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑥, 𝑤〉, 𝑧〉 ∣ 𝜒}) | ||
Theorem | cbvoprab3davw 36239* | Change the third bound variable in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑧 = 𝑤) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ 𝜒}) | ||
Theorem | cbvoprab123davw 36240* | Change all bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((((𝜑 ∧ 𝑥 = 𝑤) ∧ 𝑦 = 𝑢) ∧ 𝑧 = 𝑣) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑤, 𝑢〉, 𝑣〉 ∣ 𝜒}) | ||
Theorem | cbvoprab12davw 36241* | Change the first and second bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ (((𝜑 ∧ 𝑥 = 𝑤) ∧ 𝑦 = 𝑣) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑤, 𝑣〉, 𝑧〉 ∣ 𝜒}) | ||
Theorem | cbvoprab23davw 36242* | Change the second and third bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ (((𝜑 ∧ 𝑦 = 𝑤) ∧ 𝑧 = 𝑣) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑥, 𝑤〉, 𝑣〉 ∣ 𝜒}) | ||
Theorem | cbvoprab13davw 36243* | Change the first and third bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ (((𝜑 ∧ 𝑥 = 𝑤) ∧ 𝑧 = 𝑣) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑤, 𝑦〉, 𝑣〉 ∣ 𝜒}) | ||
Theorem | cbvixpdavw 36244* | Change bound variable in an indexed Cartesian product. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶) | ||
Theorem | cbvsumdavw 36245* | Change bound variable in a sum. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑘 = 𝑗) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑗 ∈ 𝐴 𝐶) | ||
Theorem | cbvproddavw 36246* | Change bound variable in a product. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑗 = 𝑘) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) | ||
Theorem | cbvitgdavw 36247* | Change bound variable in an integral. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦) | ||
Theorem | cbvditgdavw 36248* | Change bound variable in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ⨜[𝐴 → 𝐵]𝐷 d𝑦) | ||
Theorem | cbvrmodavw2 36249* | Change bound variable and quantifier domain in the restricted at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | cbvreudavw2 36250* | Change bound variable and quantifier domain in the restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | cbvrabdavw2 36251* | Change bound variable and domain in restricted class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑦 ∈ 𝐵 ∣ 𝜒}) | ||
Theorem | cbviundavw2 36252* | Change bound variable and domain in indexed unions. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑦 ∈ 𝐵 𝐷) | ||
Theorem | cbviindavw2 36253* | Change bound variable and domain in indexed intersections. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑦 ∈ 𝐵 𝐷) | ||
Theorem | cbvmptdavw2 36254* | Change bound variable and domain in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑦 ∈ 𝐵 ↦ 𝐷)) | ||
Theorem | cbvdisjdavw2 36255* | Change bound variable and domain in a disjoint collection. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑦 ∈ 𝐵 𝐷)) | ||
Theorem | cbvriotadavw2 36256* | Change bound variable and domain in a restricted description binder. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | cbvmpodavw2 36257* | Change bound variable and domains in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝐸 = 𝐹) & ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) & ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑧 ∈ 𝐵, 𝑤 ∈ 𝐷 ↦ 𝐹)) | ||
Theorem | cbvmpo1davw2 36258* | Change first bound variable and domains in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑧) → 𝐸 = 𝐹) & ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑧 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹)) | ||
Theorem | cbvmpo2davw2 36259* | Change second bound variable and domains in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑦 = 𝑧) → 𝐸 = 𝐹) & ⊢ ((𝜑 ∧ 𝑦 = 𝑧) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑦 = 𝑧) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑥 ∈ 𝐵, 𝑧 ∈ 𝐷 ↦ 𝐹)) | ||
Theorem | cbvixpdavw2 36260* | Change bound variable and domain in an indexed Cartesian product. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐶 = X𝑦 ∈ 𝐵 𝐷) | ||
Theorem | cbvsumdavw2 36261* | Change bound variable and the set of integers in a sum. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑗 = 𝑘) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷) | ||
Theorem | cbvproddavw2 36262* | Change bound variable and the set of integers in a product. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑗 = 𝑘) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐷) | ||
Theorem | cbvitgdavw2 36263* | Change bound variable and domain in an integral. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦) | ||
Theorem | cbvditgdavw2 36264* | Change bound variable and limits in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐸 = 𝐹) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐶]𝐸 d𝑥 = ⨜[𝐵 → 𝐷]𝐹 d𝑦) | ||
Theorem | mpomulnzcnf 36265* | Multiplication maps nonzero complex numbers to nonzero complex numbers. Version of mulnzcnf 11936 using maps-to notation, which does not require ax-mulf 11264. (Contributed by GG, 18-Apr-2025.) |
⊢ (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) | ||
Theorem | a1i14 36266 | Add two antecedents to a wff. (Contributed by Jeff Hankins, 4-Aug-2009.) |
⊢ (𝜓 → (𝜒 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | a1i24 36267 | Add two antecedents to a wff. Deduction associated with a1i13 27. (Contributed by Jeff Hankins, 5-Aug-2009.) |
⊢ (𝜑 → (𝜒 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | exp5d 36268 | An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ((𝜃 ∧ 𝜏) → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | exp5g 36269 | An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ ((𝜑 ∧ 𝜓) → (((𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | exp5k 36270 | An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ (𝜑 → (((𝜓 ∧ (𝜒 ∧ 𝜃)) ∧ 𝜏) → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | exp56 36271 | An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ (𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | exp58 36272 | An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ (((𝜑 ∧ 𝜓) ∧ ((𝜒 ∧ 𝜃) ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | exp510 36273 | An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ ((𝜑 ∧ (((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | exp511 36274 | An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ ((𝜑 ∧ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | exp512 36275 | An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏))) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | 3com12d 36276 | Commutation in consequent. Swap 1st and 2nd. (Contributed by Jeff Hankins, 17-Nov-2009.) |
⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) ⇒ ⊢ (𝜑 → (𝜒 ∧ 𝜓 ∧ 𝜃)) | ||
Theorem | imp5p 36277 | A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) ⇒ ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜂))) | ||
Theorem | imp5q 36278 | A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜂)) | ||
Theorem | ecase13d 36279 | Deduction for elimination by cases. (Contributed by Jeff Hankins, 18-Aug-2009.) |
⊢ (𝜑 → ¬ 𝜒) & ⊢ (𝜑 → ¬ 𝜃) & ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | subtr 36280 | Transitivity of implicit substitution. (Contributed by Jeff Hankins, 13-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝑌 & ⊢ Ⅎ𝑥𝑍 & ⊢ (𝑥 = 𝐴 → 𝑋 = 𝑌) & ⊢ (𝑥 = 𝐵 → 𝑋 = 𝑍) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 = 𝐵 → 𝑌 = 𝑍)) | ||
Theorem | subtr2 36281 | Transitivity of implicit substitution into a wff. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 = 𝐵 → (𝜓 ↔ 𝜒))) | ||
Theorem | trer 36282* | A relation intersected with its converse is an equivalence relation if the relation is transitive. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → ( ≤ ∩ ◡ ≤ ) Er dom ( ≤ ∩ ◡ ≤ )) | ||
Theorem | elicc3 36283 | An equivalent membership condition for closed intervals. (Contributed by Jeff Hankins, 14-Jul-2009.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))) | ||
Theorem | finminlem 36284* | A useful lemma about finite sets. If a property holds for a finite set, it holds for a minimal set. (Contributed by Jeff Hankins, 4-Dec-2009.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ Fin 𝜑 → ∃𝑥(𝜑 ∧ ∀𝑦((𝑦 ⊆ 𝑥 ∧ 𝜓) → 𝑥 = 𝑦))) | ||
Theorem | gtinf 36285* | Any number greater than an infimum is greater than some element of the set. (Contributed by Jeff Hankins, 29-Sep-2013.) (Revised by AV, 10-Oct-2021.) |
⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ∃𝑧 ∈ 𝑆 𝑧 < 𝐴) | ||
Theorem | opnrebl 36286* | A set is open in the standard topology of the reals precisely when every point can be enclosed in an open ball. (Contributed by Jeff Hankins, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.) |
⊢ (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴)) | ||
Theorem | opnrebl2 36287* | A set is open in the standard topology of the reals precisely when every point can be enclosed in an arbitrarily small ball. (Contributed by Jeff Hankins, 22-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.) |
⊢ (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ (𝑧 ≤ 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))) | ||
Theorem | nn0prpwlem 36288* | Lemma for nn0prpw 36289. Use strong induction to show that every positive integer has unique prime power divisors. (Contributed by Jeff Hankins, 28-Sep-2013.) |
⊢ (𝐴 ∈ ℕ → ∀𝑘 ∈ ℕ (𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐴))) | ||
Theorem | nn0prpw 36289* | Two nonnegative integers are the same if and only if they are divisible by the same prime powers. (Contributed by Jeff Hankins, 29-Sep-2013.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵))) | ||
Theorem | topbnd 36290 | Two equivalent expressions for the boundary of a topology. (Contributed by Jeff Hankins, 23-Sep-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) | ||
Theorem | opnbnd 36291 | A set is open iff it is disjoint from its boundary. (Contributed by Jeff Hankins, 23-Sep-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅)) | ||
Theorem | cldbnd 36292 | A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴)) | ||
Theorem | ntruni 36293* | A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) | ||
Theorem | clsun 36294 | A pairwise union of closures is the closure of the union. (Contributed by Jeff Hankins, 31-Aug-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((cls‘𝐽)‘(𝐴 ∪ 𝐵)) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵))) | ||
Theorem | clsint2 36295* | The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐)) | ||
Theorem | opnregcld 36296* | A set is regularly closed iff it is the closure of some open set. (Contributed by Jeff Hankins, 27-Sep-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑜 ∈ 𝐽 𝐴 = ((cls‘𝐽)‘𝑜))) | ||
Theorem | cldregopn 36297* | A set if regularly open iff it is the interior of some closed set. (Contributed by Jeff Hankins, 27-Sep-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐))) | ||
Theorem | neiin 36298 | Two neighborhoods intersect to form a neighborhood of the intersection. (Contributed by Jeff Hankins, 31-Aug-2009.) |
⊢ ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝑀 ∩ 𝑁) ∈ ((nei‘𝐽)‘(𝐴 ∩ 𝐵))) | ||
Theorem | hmeoclda 36299 | Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009.) (Revised by Mario Carneiro, 3-Jun-2014.) |
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑆) ∈ (Clsd‘𝐾)) | ||
Theorem | hmeocldb 36300 | Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009.) |
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝑆) ∈ (Clsd‘𝐽)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |