Detailed syntax breakdown of Definition df-clat
| Step | Hyp | Ref
| Expression |
| 1 | | ccla 18543 |
. 2
class
CLat |
| 2 | | vp |
. . . . . . . 8
setvar 𝑝 |
| 3 | 2 | cv 1539 |
. . . . . . 7
class 𝑝 |
| 4 | | club 18355 |
. . . . . . 7
class
lub |
| 5 | 3, 4 | cfv 6561 |
. . . . . 6
class
(lub‘𝑝) |
| 6 | 5 | cdm 5685 |
. . . . 5
class dom
(lub‘𝑝) |
| 7 | | cbs 17247 |
. . . . . . 7
class
Base |
| 8 | 3, 7 | cfv 6561 |
. . . . . 6
class
(Base‘𝑝) |
| 9 | 8 | cpw 4600 |
. . . . 5
class 𝒫
(Base‘𝑝) |
| 10 | 6, 9 | wceq 1540 |
. . . 4
wff dom
(lub‘𝑝) = 𝒫
(Base‘𝑝) |
| 11 | | cglb 18356 |
. . . . . . 7
class
glb |
| 12 | 3, 11 | cfv 6561 |
. . . . . 6
class
(glb‘𝑝) |
| 13 | 12 | cdm 5685 |
. . . . 5
class dom
(glb‘𝑝) |
| 14 | 13, 9 | wceq 1540 |
. . . 4
wff dom
(glb‘𝑝) = 𝒫
(Base‘𝑝) |
| 15 | 10, 14 | wa 395 |
. . 3
wff (dom
(lub‘𝑝) = 𝒫
(Base‘𝑝) ∧ dom
(glb‘𝑝) = 𝒫
(Base‘𝑝)) |
| 16 | | cpo 18353 |
. . 3
class
Poset |
| 17 | 15, 2, 16 | crab 3436 |
. 2
class {𝑝 ∈ Poset ∣ (dom
(lub‘𝑝) = 𝒫
(Base‘𝑝) ∧ dom
(glb‘𝑝) = 𝒫
(Base‘𝑝))} |
| 18 | 1, 17 | wceq 1540 |
1
wff CLat =
{𝑝 ∈ Poset ∣
(dom (lub‘𝑝) =
𝒫 (Base‘𝑝)
∧ dom (glb‘𝑝) =
𝒫 (Base‘𝑝))} |