MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clat Structured version   Visualization version   GIF version

Definition df-clat 17789
Description: Define the class of all complete lattices, where every subset of the base set has an LUB and a GLB. (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.)
Assertion
Ref Expression
df-clat CLat = {𝑝 ∈ Poset ∣ (dom (lub‘𝑝) = 𝒫 (Base‘𝑝) ∧ dom (glb‘𝑝) = 𝒫 (Base‘𝑝))}

Detailed syntax breakdown of Definition df-clat
StepHypRef Expression
1 ccla 17788 . 2 class CLat
2 vp . . . . . . . 8 setvar 𝑝
32cv 1537 . . . . . . 7 class 𝑝
4 club 17623 . . . . . . 7 class lub
53, 4cfv 6339 . . . . . 6 class (lub‘𝑝)
65cdm 5527 . . . . 5 class dom (lub‘𝑝)
7 cbs 16546 . . . . . . 7 class Base
83, 7cfv 6339 . . . . . 6 class (Base‘𝑝)
98cpw 4497 . . . . 5 class 𝒫 (Base‘𝑝)
106, 9wceq 1538 . . . 4 wff dom (lub‘𝑝) = 𝒫 (Base‘𝑝)
11 cglb 17624 . . . . . . 7 class glb
123, 11cfv 6339 . . . . . 6 class (glb‘𝑝)
1312cdm 5527 . . . . 5 class dom (glb‘𝑝)
1413, 9wceq 1538 . . . 4 wff dom (glb‘𝑝) = 𝒫 (Base‘𝑝)
1510, 14wa 399 . . 3 wff (dom (lub‘𝑝) = 𝒫 (Base‘𝑝) ∧ dom (glb‘𝑝) = 𝒫 (Base‘𝑝))
16 cpo 17621 . . 3 class Poset
1715, 2, 16crab 3074 . 2 class {𝑝 ∈ Poset ∣ (dom (lub‘𝑝) = 𝒫 (Base‘𝑝) ∧ dom (glb‘𝑝) = 𝒫 (Base‘𝑝))}
181, 17wceq 1538 1 wff CLat = {𝑝 ∈ Poset ∣ (dom (lub‘𝑝) = 𝒫 (Base‘𝑝) ∧ dom (glb‘𝑝) = 𝒫 (Base‘𝑝))}
Colors of variables: wff setvar class
This definition is referenced by:  isclat  17790
  Copyright terms: Public domain W3C validator