MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclat Structured version   Visualization version   GIF version

Theorem isclat 17499
Description: The predicate "is a complete lattice." (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
isclat.b 𝐵 = (Base‘𝐾)
isclat.u 𝑈 = (lub‘𝐾)
isclat.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
isclat (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))

Proof of Theorem isclat
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6448 . . . . . 6 (𝑙 = 𝐾 → (lub‘𝑙) = (lub‘𝐾))
2 isclat.u . . . . . 6 𝑈 = (lub‘𝐾)
31, 2syl6eqr 2832 . . . . 5 (𝑙 = 𝐾 → (lub‘𝑙) = 𝑈)
43dmeqd 5573 . . . 4 (𝑙 = 𝐾 → dom (lub‘𝑙) = dom 𝑈)
5 fveq2 6448 . . . . . 6 (𝑙 = 𝐾 → (Base‘𝑙) = (Base‘𝐾))
6 isclat.b . . . . . 6 𝐵 = (Base‘𝐾)
75, 6syl6eqr 2832 . . . . 5 (𝑙 = 𝐾 → (Base‘𝑙) = 𝐵)
87pweqd 4384 . . . 4 (𝑙 = 𝐾 → 𝒫 (Base‘𝑙) = 𝒫 𝐵)
94, 8eqeq12d 2793 . . 3 (𝑙 = 𝐾 → (dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ↔ dom 𝑈 = 𝒫 𝐵))
10 fveq2 6448 . . . . . 6 (𝑙 = 𝐾 → (glb‘𝑙) = (glb‘𝐾))
11 isclat.g . . . . . 6 𝐺 = (glb‘𝐾)
1210, 11syl6eqr 2832 . . . . 5 (𝑙 = 𝐾 → (glb‘𝑙) = 𝐺)
1312dmeqd 5573 . . . 4 (𝑙 = 𝐾 → dom (glb‘𝑙) = dom 𝐺)
1413, 8eqeq12d 2793 . . 3 (𝑙 = 𝐾 → (dom (glb‘𝑙) = 𝒫 (Base‘𝑙) ↔ dom 𝐺 = 𝒫 𝐵))
159, 14anbi12d 624 . 2 (𝑙 = 𝐾 → ((dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ∧ dom (glb‘𝑙) = 𝒫 (Base‘𝑙)) ↔ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
16 df-clat 17498 . 2 CLat = {𝑙 ∈ Poset ∣ (dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ∧ dom (glb‘𝑙) = 𝒫 (Base‘𝑙))}
1715, 16elrab2 3576 1 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1601  wcel 2107  𝒫 cpw 4379  dom cdm 5357  cfv 6137  Basecbs 16259  Posetcpo 17330  lubclub 17332  glbcglb 17333  CLatccla 17497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-dm 5367  df-iota 6101  df-fv 6145  df-clat 17498
This theorem is referenced by:  clatpos  17500  clatlem  17501  clatlubcl2  17503  clatglbcl2  17505  clatl  17506  oduclatb  17534  xrsclat  30246
  Copyright terms: Public domain W3C validator