![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isclat | Structured version Visualization version GIF version |
Description: The predicate "is a complete lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
isclat.b | ⊢ 𝐵 = (Base‘𝐾) |
isclat.u | ⊢ 𝑈 = (lub‘𝐾) |
isclat.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
isclat | ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (lub‘𝑙) = (lub‘𝐾)) | |
2 | isclat.u | . . . . . 6 ⊢ 𝑈 = (lub‘𝐾) | |
3 | 1, 2 | eqtr4di 2789 | . . . . 5 ⊢ (𝑙 = 𝐾 → (lub‘𝑙) = 𝑈) |
4 | 3 | dmeqd 5905 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (lub‘𝑙) = dom 𝑈) |
5 | fveq2 6891 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = (Base‘𝐾)) | |
6 | isclat.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
7 | 5, 6 | eqtr4di 2789 | . . . . 5 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = 𝐵) |
8 | 7 | pweqd 4619 | . . . 4 ⊢ (𝑙 = 𝐾 → 𝒫 (Base‘𝑙) = 𝒫 𝐵) |
9 | 4, 8 | eqeq12d 2747 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ↔ dom 𝑈 = 𝒫 𝐵)) |
10 | fveq2 6891 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (glb‘𝑙) = (glb‘𝐾)) | |
11 | isclat.g | . . . . . 6 ⊢ 𝐺 = (glb‘𝐾) | |
12 | 10, 11 | eqtr4di 2789 | . . . . 5 ⊢ (𝑙 = 𝐾 → (glb‘𝑙) = 𝐺) |
13 | 12 | dmeqd 5905 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (glb‘𝑙) = dom 𝐺) |
14 | 13, 8 | eqeq12d 2747 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (glb‘𝑙) = 𝒫 (Base‘𝑙) ↔ dom 𝐺 = 𝒫 𝐵)) |
15 | 9, 14 | anbi12d 630 | . 2 ⊢ (𝑙 = 𝐾 → ((dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ∧ dom (glb‘𝑙) = 𝒫 (Base‘𝑙)) ↔ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
16 | df-clat 18462 | . 2 ⊢ CLat = {𝑙 ∈ Poset ∣ (dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ∧ dom (glb‘𝑙) = 𝒫 (Base‘𝑙))} | |
17 | 15, 16 | elrab2 3686 | 1 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 𝒫 cpw 4602 dom cdm 5676 ‘cfv 6543 Basecbs 17151 Posetcpo 18270 lubclub 18272 glbcglb 18273 CLatccla 18461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-dm 5686 df-iota 6495 df-fv 6551 df-clat 18462 |
This theorem is referenced by: clatpos 18464 clatlem 18465 clatlubcl2 18467 clatglbcl2 18469 oduclatb 18470 clatl 18471 xrsclat 32614 isclatd 47770 |
Copyright terms: Public domain | W3C validator |