MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclat Structured version   Visualization version   GIF version

Theorem isclat 18463
Description: The predicate "is a complete lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
isclat.b 𝐵 = (Base‘𝐾)
isclat.u 𝑈 = (lub‘𝐾)
isclat.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
isclat (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))

Proof of Theorem isclat
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . . . 6 (𝑙 = 𝐾 → (lub‘𝑙) = (lub‘𝐾))
2 isclat.u . . . . . 6 𝑈 = (lub‘𝐾)
31, 2eqtr4di 2789 . . . . 5 (𝑙 = 𝐾 → (lub‘𝑙) = 𝑈)
43dmeqd 5905 . . . 4 (𝑙 = 𝐾 → dom (lub‘𝑙) = dom 𝑈)
5 fveq2 6891 . . . . . 6 (𝑙 = 𝐾 → (Base‘𝑙) = (Base‘𝐾))
6 isclat.b . . . . . 6 𝐵 = (Base‘𝐾)
75, 6eqtr4di 2789 . . . . 5 (𝑙 = 𝐾 → (Base‘𝑙) = 𝐵)
87pweqd 4619 . . . 4 (𝑙 = 𝐾 → 𝒫 (Base‘𝑙) = 𝒫 𝐵)
94, 8eqeq12d 2747 . . 3 (𝑙 = 𝐾 → (dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ↔ dom 𝑈 = 𝒫 𝐵))
10 fveq2 6891 . . . . . 6 (𝑙 = 𝐾 → (glb‘𝑙) = (glb‘𝐾))
11 isclat.g . . . . . 6 𝐺 = (glb‘𝐾)
1210, 11eqtr4di 2789 . . . . 5 (𝑙 = 𝐾 → (glb‘𝑙) = 𝐺)
1312dmeqd 5905 . . . 4 (𝑙 = 𝐾 → dom (glb‘𝑙) = dom 𝐺)
1413, 8eqeq12d 2747 . . 3 (𝑙 = 𝐾 → (dom (glb‘𝑙) = 𝒫 (Base‘𝑙) ↔ dom 𝐺 = 𝒫 𝐵))
159, 14anbi12d 630 . 2 (𝑙 = 𝐾 → ((dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ∧ dom (glb‘𝑙) = 𝒫 (Base‘𝑙)) ↔ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
16 df-clat 18462 . 2 CLat = {𝑙 ∈ Poset ∣ (dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ∧ dom (glb‘𝑙) = 𝒫 (Base‘𝑙))}
1715, 16elrab2 3686 1 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1540  wcel 2105  𝒫 cpw 4602  dom cdm 5676  cfv 6543  Basecbs 17151  Posetcpo 18270  lubclub 18272  glbcglb 18273  CLatccla 18461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-dm 5686  df-iota 6495  df-fv 6551  df-clat 18462
This theorem is referenced by:  clatpos  18464  clatlem  18465  clatlubcl2  18467  clatglbcl2  18469  oduclatb  18470  clatl  18471  xrsclat  32614  isclatd  47770
  Copyright terms: Public domain W3C validator