![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isclat | Structured version Visualization version GIF version |
Description: The predicate "is a complete lattice." (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
isclat.b | ⊢ 𝐵 = (Base‘𝐾) |
isclat.u | ⊢ 𝑈 = (lub‘𝐾) |
isclat.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
isclat | ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6448 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (lub‘𝑙) = (lub‘𝐾)) | |
2 | isclat.u | . . . . . 6 ⊢ 𝑈 = (lub‘𝐾) | |
3 | 1, 2 | syl6eqr 2832 | . . . . 5 ⊢ (𝑙 = 𝐾 → (lub‘𝑙) = 𝑈) |
4 | 3 | dmeqd 5573 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (lub‘𝑙) = dom 𝑈) |
5 | fveq2 6448 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = (Base‘𝐾)) | |
6 | isclat.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
7 | 5, 6 | syl6eqr 2832 | . . . . 5 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = 𝐵) |
8 | 7 | pweqd 4384 | . . . 4 ⊢ (𝑙 = 𝐾 → 𝒫 (Base‘𝑙) = 𝒫 𝐵) |
9 | 4, 8 | eqeq12d 2793 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ↔ dom 𝑈 = 𝒫 𝐵)) |
10 | fveq2 6448 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (glb‘𝑙) = (glb‘𝐾)) | |
11 | isclat.g | . . . . . 6 ⊢ 𝐺 = (glb‘𝐾) | |
12 | 10, 11 | syl6eqr 2832 | . . . . 5 ⊢ (𝑙 = 𝐾 → (glb‘𝑙) = 𝐺) |
13 | 12 | dmeqd 5573 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (glb‘𝑙) = dom 𝐺) |
14 | 13, 8 | eqeq12d 2793 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (glb‘𝑙) = 𝒫 (Base‘𝑙) ↔ dom 𝐺 = 𝒫 𝐵)) |
15 | 9, 14 | anbi12d 624 | . 2 ⊢ (𝑙 = 𝐾 → ((dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ∧ dom (glb‘𝑙) = 𝒫 (Base‘𝑙)) ↔ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
16 | df-clat 17498 | . 2 ⊢ CLat = {𝑙 ∈ Poset ∣ (dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ∧ dom (glb‘𝑙) = 𝒫 (Base‘𝑙))} | |
17 | 15, 16 | elrab2 3576 | 1 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 𝒫 cpw 4379 dom cdm 5357 ‘cfv 6137 Basecbs 16259 Posetcpo 17330 lubclub 17332 glbcglb 17333 CLatccla 17497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-dm 5367 df-iota 6101 df-fv 6145 df-clat 17498 |
This theorem is referenced by: clatpos 17500 clatlem 17501 clatlubcl2 17503 clatglbcl2 17505 clatl 17506 oduclatb 17534 xrsclat 30246 |
Copyright terms: Public domain | W3C validator |