| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isclat | Structured version Visualization version GIF version | ||
| Description: The predicate "is a complete lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
| Ref | Expression |
|---|---|
| isclat.b | ⊢ 𝐵 = (Base‘𝐾) |
| isclat.u | ⊢ 𝑈 = (lub‘𝐾) |
| isclat.g | ⊢ 𝐺 = (glb‘𝐾) |
| Ref | Expression |
|---|---|
| isclat | ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (lub‘𝑙) = (lub‘𝐾)) | |
| 2 | isclat.u | . . . . . 6 ⊢ 𝑈 = (lub‘𝐾) | |
| 3 | 1, 2 | eqtr4di 2784 | . . . . 5 ⊢ (𝑙 = 𝐾 → (lub‘𝑙) = 𝑈) |
| 4 | 3 | dmeqd 5845 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (lub‘𝑙) = dom 𝑈) |
| 5 | fveq2 6822 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = (Base‘𝐾)) | |
| 6 | isclat.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | 5, 6 | eqtr4di 2784 | . . . . 5 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = 𝐵) |
| 8 | 7 | pweqd 4567 | . . . 4 ⊢ (𝑙 = 𝐾 → 𝒫 (Base‘𝑙) = 𝒫 𝐵) |
| 9 | 4, 8 | eqeq12d 2747 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ↔ dom 𝑈 = 𝒫 𝐵)) |
| 10 | fveq2 6822 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (glb‘𝑙) = (glb‘𝐾)) | |
| 11 | isclat.g | . . . . . 6 ⊢ 𝐺 = (glb‘𝐾) | |
| 12 | 10, 11 | eqtr4di 2784 | . . . . 5 ⊢ (𝑙 = 𝐾 → (glb‘𝑙) = 𝐺) |
| 13 | 12 | dmeqd 5845 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (glb‘𝑙) = dom 𝐺) |
| 14 | 13, 8 | eqeq12d 2747 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (glb‘𝑙) = 𝒫 (Base‘𝑙) ↔ dom 𝐺 = 𝒫 𝐵)) |
| 15 | 9, 14 | anbi12d 632 | . 2 ⊢ (𝑙 = 𝐾 → ((dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ∧ dom (glb‘𝑙) = 𝒫 (Base‘𝑙)) ↔ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
| 16 | df-clat 18402 | . 2 ⊢ CLat = {𝑙 ∈ Poset ∣ (dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ∧ dom (glb‘𝑙) = 𝒫 (Base‘𝑙))} | |
| 17 | 15, 16 | elrab2 3650 | 1 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 𝒫 cpw 4550 dom cdm 5616 ‘cfv 6481 Basecbs 17117 Posetcpo 18210 lubclub 18212 glbcglb 18213 CLatccla 18401 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-dm 5626 df-iota 6437 df-fv 6489 df-clat 18402 |
| This theorem is referenced by: clatpos 18404 clatlem 18405 clatlubcl2 18407 clatglbcl2 18409 oduclatb 18410 clatl 18411 xrsclat 32987 isclatd 49013 |
| Copyright terms: Public domain | W3C validator |