MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclat Structured version   Visualization version   GIF version

Theorem isclat 18558
Description: The predicate "is a complete lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
isclat.b 𝐵 = (Base‘𝐾)
isclat.u 𝑈 = (lub‘𝐾)
isclat.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
isclat (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))

Proof of Theorem isclat
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . . . . 6 (𝑙 = 𝐾 → (lub‘𝑙) = (lub‘𝐾))
2 isclat.u . . . . . 6 𝑈 = (lub‘𝐾)
31, 2eqtr4di 2793 . . . . 5 (𝑙 = 𝐾 → (lub‘𝑙) = 𝑈)
43dmeqd 5919 . . . 4 (𝑙 = 𝐾 → dom (lub‘𝑙) = dom 𝑈)
5 fveq2 6907 . . . . . 6 (𝑙 = 𝐾 → (Base‘𝑙) = (Base‘𝐾))
6 isclat.b . . . . . 6 𝐵 = (Base‘𝐾)
75, 6eqtr4di 2793 . . . . 5 (𝑙 = 𝐾 → (Base‘𝑙) = 𝐵)
87pweqd 4622 . . . 4 (𝑙 = 𝐾 → 𝒫 (Base‘𝑙) = 𝒫 𝐵)
94, 8eqeq12d 2751 . . 3 (𝑙 = 𝐾 → (dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ↔ dom 𝑈 = 𝒫 𝐵))
10 fveq2 6907 . . . . . 6 (𝑙 = 𝐾 → (glb‘𝑙) = (glb‘𝐾))
11 isclat.g . . . . . 6 𝐺 = (glb‘𝐾)
1210, 11eqtr4di 2793 . . . . 5 (𝑙 = 𝐾 → (glb‘𝑙) = 𝐺)
1312dmeqd 5919 . . . 4 (𝑙 = 𝐾 → dom (glb‘𝑙) = dom 𝐺)
1413, 8eqeq12d 2751 . . 3 (𝑙 = 𝐾 → (dom (glb‘𝑙) = 𝒫 (Base‘𝑙) ↔ dom 𝐺 = 𝒫 𝐵))
159, 14anbi12d 632 . 2 (𝑙 = 𝐾 → ((dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ∧ dom (glb‘𝑙) = 𝒫 (Base‘𝑙)) ↔ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
16 df-clat 18557 . 2 CLat = {𝑙 ∈ Poset ∣ (dom (lub‘𝑙) = 𝒫 (Base‘𝑙) ∧ dom (glb‘𝑙) = 𝒫 (Base‘𝑙))}
1715, 16elrab2 3698 1 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  𝒫 cpw 4605  dom cdm 5689  cfv 6563  Basecbs 17245  Posetcpo 18365  lubclub 18367  glbcglb 18368  CLatccla 18556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-dm 5699  df-iota 6516  df-fv 6571  df-clat 18557
This theorem is referenced by:  clatpos  18559  clatlem  18560  clatlubcl2  18562  clatglbcl2  18564  oduclatb  18565  clatl  18566  xrsclat  32996  isclatd  48772
  Copyright terms: Public domain W3C validator