| Metamath
Proof Explorer Theorem List (p. 185 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30820) |
(30821-32343) |
(32344-49767) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | latlem12 18401 | An element is less than or equal to a meet iff the element is less than or equal to each argument of the meet. (Contributed by NM, 21-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑍) ↔ 𝑋 ≤ (𝑌 ∧ 𝑍))) | ||
| Theorem | latleeqm1 18402 | "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) = 𝑋)) | ||
| Theorem | latleeqm2 18403 | "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑌 ∧ 𝑋) = 𝑋)) | ||
| Theorem | latmlem1 18404 | Add meet to both sides of a lattice ordering. (Contributed by NM, 10-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) | ||
| Theorem | latmlem2 18405 | Add meet to both sides of a lattice ordering. (sslin 4202 analog.) (Contributed by NM, 10-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑍 ∧ 𝑋) ≤ (𝑍 ∧ 𝑌))) | ||
| Theorem | latmlem12 18406 | Add join to both sides of a lattice ordering. (ss2in 4204 analog.) (Contributed by NM, 10-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑍 ≤ 𝑊) → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑊))) | ||
| Theorem | latnlemlt 18407 | Negation of "less than or equal to" expressed in terms of meet and less-than. (nssinpss 4226 analog.) (Contributed by NM, 5-Feb-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) < 𝑋)) | ||
| Theorem | latnle 18408 | Equivalent expressions for "not less than" in a lattice. (chnle 31416 analog.) (Contributed by NM, 16-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑌))) | ||
| Theorem | latmidm 18409 | Lattice meet is idempotent. Analogue of inidm 4186. (Contributed by NM, 8-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) = 𝑋) | ||
| Theorem | latabs1 18410 | Lattice absorption law. From definition of lattice in [Kalmbach] p. 14. (chabs1 31418 analog.) (Contributed by NM, 8-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋) | ||
| Theorem | latabs2 18411 | Lattice absorption law. From definition of lattice in [Kalmbach] p. 14. (chabs2 31419 analog.) (Contributed by NM, 8-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (𝑋 ∨ 𝑌)) = 𝑋) | ||
| Theorem | latledi 18412 | An ortholattice is distributive in one ordering direction. (ledi 31442 analog.) (Contributed by NM, 7-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ 𝑍)) ≤ (𝑋 ∧ (𝑌 ∨ 𝑍))) | ||
| Theorem | latmlej11 18413 | Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑌) ≤ (𝑋 ∨ 𝑍)) | ||
| Theorem | latmlej12 18414 | Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑌) ≤ (𝑍 ∨ 𝑋)) | ||
| Theorem | latmlej21 18415 | Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∧ 𝑋) ≤ (𝑋 ∨ 𝑍)) | ||
| Theorem | latmlej22 18416 | Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∧ 𝑋) ≤ (𝑍 ∨ 𝑋)) | ||
| Theorem | lubsn 18417 | The least upper bound of a singleton. (chsupsn 31315 analog.) (Contributed by NM, 20-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑋}) = 𝑋) | ||
| Theorem | latjass 18418 | Lattice join is associative. Lemma 2.2 in [MegPav2002] p. 362. (chjass 31435 analog.) (Contributed by NM, 17-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = (𝑋 ∨ (𝑌 ∨ 𝑍))) | ||
| Theorem | latj12 18419 | Swap 1st and 2nd members of lattice join. (chj12 31436 analog.) (Contributed by NM, 4-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = (𝑌 ∨ (𝑋 ∨ 𝑍))) | ||
| Theorem | latj32 18420 | Swap 2nd and 3rd members of lattice join. Lemma 2.2 in [MegPav2002] p. 362. (Contributed by NM, 2-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑋 ∨ 𝑍) ∨ 𝑌)) | ||
| Theorem | latj13 18421 | Swap 1st and 3rd members of lattice join. (Contributed by NM, 4-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = (𝑍 ∨ (𝑌 ∨ 𝑋))) | ||
| Theorem | latj31 18422 | Swap 2nd and 3rd members of lattice join. Lemma 2.2 in [MegPav2002] p. 362. (Contributed by NM, 23-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑍 ∨ 𝑌) ∨ 𝑋)) | ||
| Theorem | latjrot 18423 | Rotate lattice join of 3 classes. (Contributed by NM, 23-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑍 ∨ 𝑋) ∨ 𝑌)) | ||
| Theorem | latj4 18424 | Rearrangement of lattice join of 4 classes. (chj4 31437 analog.) (Contributed by NM, 14-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑊)) = ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑊))) | ||
| Theorem | latj4rot 18425 | Rotate lattice join of 4 classes. (Contributed by NM, 11-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑊)) = ((𝑊 ∨ 𝑋) ∨ (𝑌 ∨ 𝑍))) | ||
| Theorem | latjjdi 18426 | Lattice join distributes over itself. (Contributed by NM, 30-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = ((𝑋 ∨ 𝑌) ∨ (𝑋 ∨ 𝑍))) | ||
| Theorem | latjjdir 18427 | Lattice join distributes over itself. (Contributed by NM, 2-Aug-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑍))) | ||
| Theorem | mod1ile 18428 | The weak direction of the modular law (e.g., pmod1i 39815, atmod1i1 39824) that holds in any lattice. (Contributed by NM, 11-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑍 → (𝑋 ∨ (𝑌 ∧ 𝑍)) ≤ ((𝑋 ∨ 𝑌) ∧ 𝑍))) | ||
| Theorem | mod2ile 18429 | The weak direction of the modular law (e.g., pmod2iN 39816) that holds in any lattice. (Contributed by NM, 11-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑍 ≤ 𝑋 → ((𝑋 ∧ 𝑌) ∨ 𝑍) ≤ (𝑋 ∧ (𝑌 ∨ 𝑍)))) | ||
| Theorem | latmass 18430 | Lattice meet is associative. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = (𝑋 ∧ (𝑌 ∧ 𝑍))) | ||
| Theorem | latdisdlem 18431* | Lemma for latdisd 18432. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ Lat → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) | ||
| Theorem | latdisd 18432* | In a lattice, joins distribute over meets if and only if meets distribute over joins; the distributive property is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) | ||
| Syntax | ccla 18433 | Extend class notation with complete lattices. |
| class CLat | ||
| Definition | df-clat 18434 | Define the class of all complete lattices, where every subset of the base set has an LUB and a GLB. (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
| ⊢ CLat = {𝑝 ∈ Poset ∣ (dom (lub‘𝑝) = 𝒫 (Base‘𝑝) ∧ dom (glb‘𝑝) = 𝒫 (Base‘𝑝))} | ||
| Theorem | isclat 18435 | The predicate "is a complete lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) | ||
| Theorem | clatpos 18436 | A complete lattice is a poset. (Contributed by NM, 8-Sep-2018.) |
| ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Poset) | ||
| Theorem | clatlem 18437 | Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ (𝐺‘𝑆) ∈ 𝐵)) | ||
| Theorem | clatlubcl 18438 | Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) | ||
| Theorem | clatlubcl2 18439 | Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 13-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝑈) | ||
| Theorem | clatglbcl 18440 | Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) ∈ 𝐵) | ||
| Theorem | clatglbcl2 18441 | Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 13-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) | ||
| Theorem | oduclatb 18442 | Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) ⇒ ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) | ||
| Theorem | clatl 18443 | A complete lattice is a lattice. (Contributed by NM, 18-Sep-2011.) TODO: use eqrelrdv2 5749 to shorten proof and eliminate joindmss 18314 and meetdmss 18328? |
| ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Lat) | ||
| Theorem | isglbd 18444* | Properties that determine the greatest lower bound of a complete lattice. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐻 ≤ 𝑦) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝐻) & ⊢ (𝜑 → 𝐾 ∈ CLat) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝐻 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = 𝐻) | ||
| Theorem | lublem 18445* | Lemma for the least upper bound properties in a complete lattice. (Contributed by NM, 19-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) | ||
| Theorem | lubub 18446 | The LUB of a complete lattice subset is an upper bound. (Contributed by NM, 19-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ≤ (𝑈‘𝑆)) | ||
| Theorem | lubl 18447* | The LUB of a complete lattice subset is the least bound. (Contributed by NM, 19-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → (𝑈‘𝑆) ≤ 𝑋)) | ||
| Theorem | lubss 18448 | Subset law for least upper bounds. (chsupss 31244 analog.) (Contributed by NM, 20-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝑈‘𝑆) ≤ (𝑈‘𝑇)) | ||
| Theorem | lubel 18449 | An element of a set is less than or equal to the least upper bound of the set. (Contributed by NM, 21-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → 𝑋 ≤ (𝑈‘𝑆)) | ||
| Theorem | lubun 18450 | The LUB of a union. (Contributed by NM, 5-Mar-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑈‘(𝑆 ∪ 𝑇)) = ((𝑈‘𝑆) ∨ (𝑈‘𝑇))) | ||
| Theorem | clatglb 18451* | Properties of greatest lower bound of a complete lattice. (Contributed by NM, 5-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (∀𝑦 ∈ 𝑆 (𝐺‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝐺‘𝑆)))) | ||
| Theorem | clatglble 18452 | The greatest lower bound is the least element. (Contributed by NM, 5-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑆) ≤ 𝑋) | ||
| Theorem | clatleglb 18453* | Two ways of expressing "less than or equal to the greatest lower bound." (Contributed by NM, 5-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵) → (𝑋 ≤ (𝐺‘𝑆) ↔ ∀𝑦 ∈ 𝑆 𝑋 ≤ 𝑦)) | ||
| Theorem | clatglbss 18454 | Subset law for greatest lower bound. (Contributed by Mario Carneiro, 16-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ≤ (𝐺‘𝑆)) | ||
| Syntax | cdlat 18455 | The class of distributive lattices. |
| class DLat | ||
| Definition | df-dlat 18456* | A distributive lattice is a lattice in which meets distribute over joins, or equivalently (latdisd 18432) joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ DLat = {𝑘 ∈ Lat ∣ [(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))} | ||
| Theorem | isdlat 18457* | Property of being a distributive lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) | ||
| Theorem | dlatmjdi 18458 | In a distributive lattice, meets distribute over joins. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ DLat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ (𝑌 ∨ 𝑍)) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ 𝑍))) | ||
| Theorem | dlatl 18459 | A distributive lattice is a lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ (𝐾 ∈ DLat → 𝐾 ∈ Lat) | ||
| Theorem | odudlatb 18460 | The dual of a distributive lattice is a distributive lattice and conversely. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ DLat ↔ 𝐷 ∈ DLat)) | ||
| Theorem | dlatjmdi 18461 | In a distributive lattice, joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ DLat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∧ 𝑍)) = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑍))) | ||
| Syntax | cipo 18462 | Class function defining inclusion posets. |
| class toInc | ||
| Definition | df-ipo 18463* |
For any family of sets, define the poset of that family ordered by
inclusion. See ipobas 18466, ipolerval 18467, and ipole 18469 for its contract.
EDITORIAL: I'm not thrilled with the name. Any suggestions? (Contributed by Stefan O'Rear, 30-Jan-2015.) (New usage is discouraged.) |
| ⊢ toInc = (𝑓 ∈ V ↦ ⦋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑓 ∧ 𝑥 ⊆ 𝑦)} / 𝑜⦌({〈(Base‘ndx), 𝑓〉, 〈(TopSet‘ndx), (ordTop‘𝑜)〉} ∪ {〈(le‘ndx), 𝑜〉, 〈(oc‘ndx), (𝑥 ∈ 𝑓 ↦ ∪ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) | ||
| Theorem | ipostr 18464 | The structure of df-ipo 18463 is a structure defining indices up to 11. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉} ∪ {〈(le‘ndx), ≤ 〉, 〈(oc‘ndx), ⊥ 〉}) Struct 〈1, ;11〉 | ||
| Theorem | ipoval 18465* | Value of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} ⇒ ⊢ (𝐹 ∈ 𝑉 → 𝐼 = ({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘ ≤ )〉} ∪ {〈(le‘ndx), ≤ 〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) | ||
| Theorem | ipobas 18466 | Base set of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by Mario Carneiro, 25-Oct-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) ⇒ ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) | ||
| Theorem | ipolerval 18467* | Relation of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) ⇒ ⊢ (𝐹 ∈ 𝑉 → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) | ||
| Theorem | ipotset 18468 | Topology of the inclusion poset. (Contributed by Mario Carneiro, 24-Oct-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ ≤ = (le‘𝐼) ⇒ ⊢ (𝐹 ∈ 𝑉 → (ordTop‘ ≤ ) = (TopSet‘𝐼)) | ||
| Theorem | ipole 18469 | Weak order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ ≤ = (le‘𝐼) ⇒ ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 ≤ 𝑌 ↔ 𝑋 ⊆ 𝑌)) | ||
| Theorem | ipolt 18470 | Strict order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ < = (lt‘𝐼) ⇒ ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 < 𝑌 ↔ 𝑋 ⊊ 𝑌)) | ||
| Theorem | ipopos 18471 | The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) ⇒ ⊢ 𝐼 ∈ Poset | ||
| Theorem | isipodrs 18472* | Condition for a family of sets to be directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐴 (𝑥 ∪ 𝑦) ⊆ 𝑧)) | ||
| Theorem | ipodrscl 18473 | Direction by inclusion as used here implies sethood. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V) | ||
| Theorem | ipodrsfi 18474* | Finite upper bound property for directed collections of sets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧) | ||
| Theorem | fpwipodrs 18475 | The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset) | ||
| Theorem | ipodrsima 18476* | The monotone image of a directed set. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (𝜑 → 𝐹 Fn 𝒫 𝐴) & ⊢ ((𝜑 ∧ (𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴)) → (𝐹‘𝑢) ⊆ (𝐹‘𝑣)) & ⊢ (𝜑 → (toInc‘𝐵) ∈ Dirset) & ⊢ (𝜑 → 𝐵 ⊆ 𝒫 𝐴) & ⊢ (𝜑 → (𝐹 “ 𝐵) ∈ 𝑉) ⇒ ⊢ (𝜑 → (toInc‘(𝐹 “ 𝐵)) ∈ Dirset) | ||
| Theorem | isacs3lem 18477* | An algebraic closure system satisfies isacs3 18485. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | ||
| Theorem | acsdrsel 18478 | An algebraic closure system contains all directed unions of closed sets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝐶 ∧ (toInc‘𝑌) ∈ Dirset) → ∪ 𝑌 ∈ 𝐶) | ||
| Theorem | isacs4lem 18479* | In a closure system in which directed unions of closed sets are closed, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡)))) | ||
| Theorem | isacs5lem 18480* | If closure commutes with directed unions, then the closure of a set is the closure of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) | ||
| Theorem | acsdrscl 18481 | In an algebraic closure system, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋 ∧ (toInc‘𝑌) ∈ Dirset) → (𝐹‘∪ 𝑌) = ∪ (𝐹 “ 𝑌)) | ||
| Theorem | acsficl 18482 | A closure in an algebraic closure system is the union of the closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝐹‘𝑆) = ∪ (𝐹 “ (𝒫 𝑆 ∩ Fin))) | ||
| Theorem | isacs5 18483* | A closure system is algebraic iff the closure of a generating set is the union of the closures of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) | ||
| Theorem | isacs4 18484* | A closure system is algebraic iff closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝒫 𝑋((toInc‘𝑠) ∈ Dirset → (𝐹‘∪ 𝑠) = ∪ (𝐹 “ 𝑠)))) | ||
| Theorem | isacs3 18485* | A closure system is algebraic iff directed unions of closed sets are closed. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | ||
| Theorem | acsficld 18486 | In an algebraic closure system, the closure of a set is the union of the closures of its finite subsets. Deduction form of acsficl 18482. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑁‘𝑆) = ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin))) | ||
| Theorem | acsficl2d 18487* | In an algebraic closure system, an element is in the closure of a set if and only if it is in the closure of a finite subset. Alternate form of acsficl 18482. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) | ||
| Theorem | acsfiindd 18488 | In an algebraic closure system, a set is independent if and only if all its finite subsets are independent. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼)) | ||
| Theorem | acsmapd 18489* | In an algebraic closure system, if 𝑇 is contained in the closure of 𝑆, there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that the closure of ∪ ran 𝑓 contains 𝑇. This is proven by applying acsficl2d 18487 to each element of 𝑇. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑆)) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) | ||
| Theorem | acsmap2d 18490* | In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is independent, then there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that 𝑆 equals the union of ran 𝑓. This is proven by taking the map 𝑓 from acsmapd 18489 and observing that, since 𝑆 and 𝑇 have the same closure, the closure of ∪ ran 𝑓 must contain 𝑆. Since 𝑆 is independent, by mrissmrcd 17577, ∪ ran 𝑓 must equal 𝑆. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ⊆ 𝑋) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) | ||
| Theorem | acsinfd 18491 | In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is infinite independent, then 𝑇 is infinite. This follows from applying unirnffid 9274 to the map given in acsmap2d 18490. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ⊆ 𝑋) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) & ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) ⇒ ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) | ||
| Theorem | acsdomd 18492 | In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is infinite independent, then 𝑇 dominates 𝑆. This follows from applying acsinfd 18491 and then applying unirnfdomd 10496 to the map given in acsmap2d 18490. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ⊆ 𝑋) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) & ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) ⇒ ⊢ (𝜑 → 𝑆 ≼ 𝑇) | ||
| Theorem | acsinfdimd 18493 | In an algebraic closure system, if two independent sets have equal closure and one is infinite, then they are equinumerous. This is proven by using acsdomd 18492 twice with acsinfd 18491. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐼) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) & ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) ⇒ ⊢ (𝜑 → 𝑆 ≈ 𝑇) | ||
| Theorem | acsexdimd 18494* | In an algebraic closure system whose closure operator has the exchange property, if two independent sets have equal closure, they are equinumerous. See mreexfidimd 17587 for the finite case and acsinfdimd 18493 for the infinite case. This is a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐼) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) ⇒ ⊢ (𝜑 → 𝑆 ≈ 𝑇) | ||
| Theorem | mrelatglb 18495 | Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.) See mrelatglbALT 48957 for an alternate proof. |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐺 = (glb‘𝐼) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) | ||
| Theorem | mrelatglb0 18496 | The empty intersection in a Moore space is realized by the base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐺 = (glb‘𝐼) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐺‘∅) = 𝑋) | ||
| Theorem | mrelatlub 18497 | Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015.) See mrelatlubALT 48956 for an alternate proof. |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐹 = (mrCls‘𝐶) & ⊢ 𝐿 = (lub‘𝐼) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → (𝐿‘𝑈) = (𝐹‘∪ 𝑈)) | ||
| Theorem | mreclatBAD 18498* | A Moore space is a complete lattice under inclusion. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 7326 update): Reprove using isclat 18435 instead of the isclatBAD. hypothesis. See commented-out mreclat above. See mreclat 48958 for a good version. |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ (𝐼 ∈ CLat ↔ (𝐼 ∈ Poset ∧ ∀𝑥(𝑥 ⊆ (Base‘𝐼) → (((lub‘𝐼)‘𝑥) ∈ (Base‘𝐼) ∧ ((glb‘𝐼)‘𝑥) ∈ (Base‘𝐼))))) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) | ||
See commented-out notes for lattices as relations. | ||
| Syntax | cps 18499 | Extend class notation with the class of all posets. |
| class PosetRel | ||
| Syntax | ctsr 18500 | Extend class notation with the class of all totally ordered sets. |
| class TosetRel | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |