| Metamath
Proof Explorer Theorem List (p. 185 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30881) |
(30882-32404) |
(32405-49810) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | latabs2 18401 | Lattice absorption law. From definition of lattice in [Kalmbach] p. 14. (chabs2 31480 analog.) (Contributed by NM, 8-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (𝑋 ∨ 𝑌)) = 𝑋) | ||
| Theorem | latledi 18402 | An ortholattice is distributive in one ordering direction. (ledi 31503 analog.) (Contributed by NM, 7-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ 𝑍)) ≤ (𝑋 ∧ (𝑌 ∨ 𝑍))) | ||
| Theorem | latmlej11 18403 | Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑌) ≤ (𝑋 ∨ 𝑍)) | ||
| Theorem | latmlej12 18404 | Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑌) ≤ (𝑍 ∨ 𝑋)) | ||
| Theorem | latmlej21 18405 | Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∧ 𝑋) ≤ (𝑋 ∨ 𝑍)) | ||
| Theorem | latmlej22 18406 | Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∧ 𝑋) ≤ (𝑍 ∨ 𝑋)) | ||
| Theorem | lubsn 18407 | The least upper bound of a singleton. (chsupsn 31376 analog.) (Contributed by NM, 20-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑋}) = 𝑋) | ||
| Theorem | latjass 18408 | Lattice join is associative. Lemma 2.2 in [MegPav2002] p. 362. (chjass 31496 analog.) (Contributed by NM, 17-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = (𝑋 ∨ (𝑌 ∨ 𝑍))) | ||
| Theorem | latj12 18409 | Swap 1st and 2nd members of lattice join. (chj12 31497 analog.) (Contributed by NM, 4-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = (𝑌 ∨ (𝑋 ∨ 𝑍))) | ||
| Theorem | latj32 18410 | Swap 2nd and 3rd members of lattice join. Lemma 2.2 in [MegPav2002] p. 362. (Contributed by NM, 2-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑋 ∨ 𝑍) ∨ 𝑌)) | ||
| Theorem | latj13 18411 | Swap 1st and 3rd members of lattice join. (Contributed by NM, 4-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = (𝑍 ∨ (𝑌 ∨ 𝑋))) | ||
| Theorem | latj31 18412 | Swap 2nd and 3rd members of lattice join. Lemma 2.2 in [MegPav2002] p. 362. (Contributed by NM, 23-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑍 ∨ 𝑌) ∨ 𝑋)) | ||
| Theorem | latjrot 18413 | Rotate lattice join of 3 classes. (Contributed by NM, 23-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑍 ∨ 𝑋) ∨ 𝑌)) | ||
| Theorem | latj4 18414 | Rearrangement of lattice join of 4 classes. (chj4 31498 analog.) (Contributed by NM, 14-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑊)) = ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑊))) | ||
| Theorem | latj4rot 18415 | Rotate lattice join of 4 classes. (Contributed by NM, 11-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑊)) = ((𝑊 ∨ 𝑋) ∨ (𝑌 ∨ 𝑍))) | ||
| Theorem | latjjdi 18416 | Lattice join distributes over itself. (Contributed by NM, 30-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = ((𝑋 ∨ 𝑌) ∨ (𝑋 ∨ 𝑍))) | ||
| Theorem | latjjdir 18417 | Lattice join distributes over itself. (Contributed by NM, 2-Aug-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑍))) | ||
| Theorem | mod1ile 18418 | The weak direction of the modular law (e.g., pmod1i 39847, atmod1i1 39856) that holds in any lattice. (Contributed by NM, 11-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑍 → (𝑋 ∨ (𝑌 ∧ 𝑍)) ≤ ((𝑋 ∨ 𝑌) ∧ 𝑍))) | ||
| Theorem | mod2ile 18419 | The weak direction of the modular law (e.g., pmod2iN 39848) that holds in any lattice. (Contributed by NM, 11-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑍 ≤ 𝑋 → ((𝑋 ∧ 𝑌) ∨ 𝑍) ≤ (𝑋 ∧ (𝑌 ∨ 𝑍)))) | ||
| Theorem | latmass 18420 | Lattice meet is associative. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = (𝑋 ∧ (𝑌 ∧ 𝑍))) | ||
| Theorem | latdisdlem 18421* | Lemma for latdisd 18422. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ Lat → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) | ||
| Theorem | latdisd 18422* | In a lattice, joins distribute over meets if and only if meets distribute over joins; the distributive property is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) | ||
| Syntax | ccla 18423 | Extend class notation with complete lattices. |
| class CLat | ||
| Definition | df-clat 18424 | Define the class of all complete lattices, where every subset of the base set has an LUB and a GLB. (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
| ⊢ CLat = {𝑝 ∈ Poset ∣ (dom (lub‘𝑝) = 𝒫 (Base‘𝑝) ∧ dom (glb‘𝑝) = 𝒫 (Base‘𝑝))} | ||
| Theorem | isclat 18425 | The predicate "is a complete lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) | ||
| Theorem | clatpos 18426 | A complete lattice is a poset. (Contributed by NM, 8-Sep-2018.) |
| ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Poset) | ||
| Theorem | clatlem 18427 | Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ (𝐺‘𝑆) ∈ 𝐵)) | ||
| Theorem | clatlubcl 18428 | Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) | ||
| Theorem | clatlubcl2 18429 | Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 13-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝑈) | ||
| Theorem | clatglbcl 18430 | Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) ∈ 𝐵) | ||
| Theorem | clatglbcl2 18431 | Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 13-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) | ||
| Theorem | oduclatb 18432 | Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) ⇒ ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) | ||
| Theorem | clatl 18433 | A complete lattice is a lattice. (Contributed by NM, 18-Sep-2011.) TODO: use eqrelrdv2 5742 to shorten proof and eliminate joindmss 18302 and meetdmss 18316? |
| ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Lat) | ||
| Theorem | isglbd 18434* | Properties that determine the greatest lower bound of a complete lattice. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐻 ≤ 𝑦) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝐻) & ⊢ (𝜑 → 𝐾 ∈ CLat) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝐻 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = 𝐻) | ||
| Theorem | lublem 18435* | Lemma for the least upper bound properties in a complete lattice. (Contributed by NM, 19-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) | ||
| Theorem | lubub 18436 | The LUB of a complete lattice subset is an upper bound. (Contributed by NM, 19-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ≤ (𝑈‘𝑆)) | ||
| Theorem | lubl 18437* | The LUB of a complete lattice subset is the least bound. (Contributed by NM, 19-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → (𝑈‘𝑆) ≤ 𝑋)) | ||
| Theorem | lubss 18438 | Subset law for least upper bounds. (chsupss 31305 analog.) (Contributed by NM, 20-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝑈‘𝑆) ≤ (𝑈‘𝑇)) | ||
| Theorem | lubel 18439 | An element of a set is less than or equal to the least upper bound of the set. (Contributed by NM, 21-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → 𝑋 ≤ (𝑈‘𝑆)) | ||
| Theorem | lubun 18440 | The LUB of a union. (Contributed by NM, 5-Mar-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑈‘(𝑆 ∪ 𝑇)) = ((𝑈‘𝑆) ∨ (𝑈‘𝑇))) | ||
| Theorem | clatglb 18441* | Properties of greatest lower bound of a complete lattice. (Contributed by NM, 5-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (∀𝑦 ∈ 𝑆 (𝐺‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝐺‘𝑆)))) | ||
| Theorem | clatglble 18442 | The greatest lower bound is the least element. (Contributed by NM, 5-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑆) ≤ 𝑋) | ||
| Theorem | clatleglb 18443* | Two ways of expressing "less than or equal to the greatest lower bound." (Contributed by NM, 5-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵) → (𝑋 ≤ (𝐺‘𝑆) ↔ ∀𝑦 ∈ 𝑆 𝑋 ≤ 𝑦)) | ||
| Theorem | clatglbss 18444 | Subset law for greatest lower bound. (Contributed by Mario Carneiro, 16-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ≤ (𝐺‘𝑆)) | ||
| Syntax | cdlat 18445 | The class of distributive lattices. |
| class DLat | ||
| Definition | df-dlat 18446* | A distributive lattice is a lattice in which meets distribute over joins, or equivalently (latdisd 18422) joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ DLat = {𝑘 ∈ Lat ∣ [(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))} | ||
| Theorem | isdlat 18447* | Property of being a distributive lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) | ||
| Theorem | dlatmjdi 18448 | In a distributive lattice, meets distribute over joins. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ DLat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ (𝑌 ∨ 𝑍)) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ 𝑍))) | ||
| Theorem | dlatl 18449 | A distributive lattice is a lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ (𝐾 ∈ DLat → 𝐾 ∈ Lat) | ||
| Theorem | odudlatb 18450 | The dual of a distributive lattice is a distributive lattice and conversely. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ DLat ↔ 𝐷 ∈ DLat)) | ||
| Theorem | dlatjmdi 18451 | In a distributive lattice, joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ DLat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∧ 𝑍)) = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑍))) | ||
| Syntax | cipo 18452 | Class function defining inclusion posets. |
| class toInc | ||
| Definition | df-ipo 18453* |
For any family of sets, define the poset of that family ordered by
inclusion. See ipobas 18456, ipolerval 18457, and ipole 18459 for its contract.
EDITORIAL: I'm not thrilled with the name. Any suggestions? (Contributed by Stefan O'Rear, 30-Jan-2015.) (New usage is discouraged.) |
| ⊢ toInc = (𝑓 ∈ V ↦ ⦋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑓 ∧ 𝑥 ⊆ 𝑦)} / 𝑜⦌({〈(Base‘ndx), 𝑓〉, 〈(TopSet‘ndx), (ordTop‘𝑜)〉} ∪ {〈(le‘ndx), 𝑜〉, 〈(oc‘ndx), (𝑥 ∈ 𝑓 ↦ ∪ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) | ||
| Theorem | ipostr 18454 | The structure of df-ipo 18453 is a structure defining indices up to 11. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉} ∪ {〈(le‘ndx), ≤ 〉, 〈(oc‘ndx), ⊥ 〉}) Struct 〈1, ;11〉 | ||
| Theorem | ipoval 18455* | Value of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} ⇒ ⊢ (𝐹 ∈ 𝑉 → 𝐼 = ({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘ ≤ )〉} ∪ {〈(le‘ndx), ≤ 〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) | ||
| Theorem | ipobas 18456 | Base set of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by Mario Carneiro, 25-Oct-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) ⇒ ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) | ||
| Theorem | ipolerval 18457* | Relation of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) ⇒ ⊢ (𝐹 ∈ 𝑉 → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) | ||
| Theorem | ipotset 18458 | Topology of the inclusion poset. (Contributed by Mario Carneiro, 24-Oct-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ ≤ = (le‘𝐼) ⇒ ⊢ (𝐹 ∈ 𝑉 → (ordTop‘ ≤ ) = (TopSet‘𝐼)) | ||
| Theorem | ipole 18459 | Weak order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ ≤ = (le‘𝐼) ⇒ ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 ≤ 𝑌 ↔ 𝑋 ⊆ 𝑌)) | ||
| Theorem | ipolt 18460 | Strict order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ < = (lt‘𝐼) ⇒ ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 < 𝑌 ↔ 𝑋 ⊊ 𝑌)) | ||
| Theorem | ipopos 18461 | The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) ⇒ ⊢ 𝐼 ∈ Poset | ||
| Theorem | isipodrs 18462* | Condition for a family of sets to be directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐴 (𝑥 ∪ 𝑦) ⊆ 𝑧)) | ||
| Theorem | ipodrscl 18463 | Direction by inclusion as used here implies sethood. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V) | ||
| Theorem | ipodrsfi 18464* | Finite upper bound property for directed collections of sets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧) | ||
| Theorem | fpwipodrs 18465 | The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset) | ||
| Theorem | ipodrsima 18466* | The monotone image of a directed set. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (𝜑 → 𝐹 Fn 𝒫 𝐴) & ⊢ ((𝜑 ∧ (𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴)) → (𝐹‘𝑢) ⊆ (𝐹‘𝑣)) & ⊢ (𝜑 → (toInc‘𝐵) ∈ Dirset) & ⊢ (𝜑 → 𝐵 ⊆ 𝒫 𝐴) & ⊢ (𝜑 → (𝐹 “ 𝐵) ∈ 𝑉) ⇒ ⊢ (𝜑 → (toInc‘(𝐹 “ 𝐵)) ∈ Dirset) | ||
| Theorem | isacs3lem 18467* | An algebraic closure system satisfies isacs3 18475. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | ||
| Theorem | acsdrsel 18468 | An algebraic closure system contains all directed unions of closed sets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝐶 ∧ (toInc‘𝑌) ∈ Dirset) → ∪ 𝑌 ∈ 𝐶) | ||
| Theorem | isacs4lem 18469* | In a closure system in which directed unions of closed sets are closed, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡)))) | ||
| Theorem | isacs5lem 18470* | If closure commutes with directed unions, then the closure of a set is the closure of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) | ||
| Theorem | acsdrscl 18471 | In an algebraic closure system, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋 ∧ (toInc‘𝑌) ∈ Dirset) → (𝐹‘∪ 𝑌) = ∪ (𝐹 “ 𝑌)) | ||
| Theorem | acsficl 18472 | A closure in an algebraic closure system is the union of the closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝐹‘𝑆) = ∪ (𝐹 “ (𝒫 𝑆 ∩ Fin))) | ||
| Theorem | isacs5 18473* | A closure system is algebraic iff the closure of a generating set is the union of the closures of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) | ||
| Theorem | isacs4 18474* | A closure system is algebraic iff closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝒫 𝑋((toInc‘𝑠) ∈ Dirset → (𝐹‘∪ 𝑠) = ∪ (𝐹 “ 𝑠)))) | ||
| Theorem | isacs3 18475* | A closure system is algebraic iff directed unions of closed sets are closed. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | ||
| Theorem | acsficld 18476 | In an algebraic closure system, the closure of a set is the union of the closures of its finite subsets. Deduction form of acsficl 18472. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑁‘𝑆) = ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin))) | ||
| Theorem | acsficl2d 18477* | In an algebraic closure system, an element is in the closure of a set if and only if it is in the closure of a finite subset. Alternate form of acsficl 18472. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) | ||
| Theorem | acsfiindd 18478 | In an algebraic closure system, a set is independent if and only if all its finite subsets are independent. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼)) | ||
| Theorem | acsmapd 18479* | In an algebraic closure system, if 𝑇 is contained in the closure of 𝑆, there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that the closure of ∪ ran 𝑓 contains 𝑇. This is proven by applying acsficl2d 18477 to each element of 𝑇. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑆)) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) | ||
| Theorem | acsmap2d 18480* | In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is independent, then there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that 𝑆 equals the union of ran 𝑓. This is proven by taking the map 𝑓 from acsmapd 18479 and observing that, since 𝑆 and 𝑇 have the same closure, the closure of ∪ ran 𝑓 must contain 𝑆. Since 𝑆 is independent, by mrissmrcd 17565, ∪ ran 𝑓 must equal 𝑆. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ⊆ 𝑋) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) | ||
| Theorem | acsinfd 18481 | In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is infinite independent, then 𝑇 is infinite. This follows from applying unirnffid 9256 to the map given in acsmap2d 18480. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ⊆ 𝑋) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) & ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) ⇒ ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) | ||
| Theorem | acsdomd 18482 | In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is infinite independent, then 𝑇 dominates 𝑆. This follows from applying acsinfd 18481 and then applying unirnfdomd 10480 to the map given in acsmap2d 18480. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ⊆ 𝑋) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) & ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) ⇒ ⊢ (𝜑 → 𝑆 ≼ 𝑇) | ||
| Theorem | acsinfdimd 18483 | In an algebraic closure system, if two independent sets have equal closure and one is infinite, then they are equinumerous. This is proven by using acsdomd 18482 twice with acsinfd 18481. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐼) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) & ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) ⇒ ⊢ (𝜑 → 𝑆 ≈ 𝑇) | ||
| Theorem | acsexdimd 18484* | In an algebraic closure system whose closure operator has the exchange property, if two independent sets have equal closure, they are equinumerous. See mreexfidimd 17575 for the finite case and acsinfdimd 18483 for the infinite case. This is a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐼) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) ⇒ ⊢ (𝜑 → 𝑆 ≈ 𝑇) | ||
| Theorem | mrelatglb 18485 | Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.) See mrelatglbALT 49000 for an alternate proof. |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐺 = (glb‘𝐼) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) | ||
| Theorem | mrelatglb0 18486 | The empty intersection in a Moore space is realized by the base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐺 = (glb‘𝐼) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐺‘∅) = 𝑋) | ||
| Theorem | mrelatlub 18487 | Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015.) See mrelatlubALT 48999 for an alternate proof. |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐹 = (mrCls‘𝐶) & ⊢ 𝐿 = (lub‘𝐼) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → (𝐿‘𝑈) = (𝐹‘∪ 𝑈)) | ||
| Theorem | mreclatBAD 18488* | A Moore space is a complete lattice under inclusion. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 7310 update): Reprove using isclat 18425 instead of the isclatBAD. hypothesis. See commented-out mreclat above. See mreclat 49001 for a good version. |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ (𝐼 ∈ CLat ↔ (𝐼 ∈ Poset ∧ ∀𝑥(𝑥 ⊆ (Base‘𝐼) → (((lub‘𝐼)‘𝑥) ∈ (Base‘𝐼) ∧ ((glb‘𝐼)‘𝑥) ∈ (Base‘𝐼))))) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) | ||
See commented-out notes for lattices as relations. | ||
| Syntax | cps 18489 | Extend class notation with the class of all posets. |
| class PosetRel | ||
| Syntax | ctsr 18490 | Extend class notation with the class of all totally ordered sets. |
| class TosetRel | ||
| Definition | df-ps 18491 | Define the class of all posets (partially ordered sets) with weak ordering (e.g., "less than or equal to" instead of "less than"). A poset is a relation which is transitive, reflexive, and antisymmetric. (Contributed by NM, 11-May-2008.) |
| ⊢ PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (𝑟 ∩ ◡𝑟) = ( I ↾ ∪ ∪ 𝑟))} | ||
| Definition | df-tsr 18492 | Define the class of all totally ordered sets. (Contributed by FL, 1-Nov-2009.) |
| ⊢ TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟)} | ||
| Theorem | isps 18493 | The predicate "is a poset" i.e. a transitive, reflexive, antisymmetric relation. (Contributed by NM, 11-May-2008.) |
| ⊢ (𝑅 ∈ 𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)))) | ||
| Theorem | psrel 18494 | A poset is a relation. (Contributed by NM, 12-May-2008.) |
| ⊢ (𝐴 ∈ PosetRel → Rel 𝐴) | ||
| Theorem | psref2 18495 | A poset is antisymmetric and reflexive. (Contributed by FL, 3-Aug-2009.) |
| ⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)) | ||
| Theorem | pstr2 18496 | A poset is transitive. (Contributed by FL, 3-Aug-2009.) |
| ⊢ (𝑅 ∈ PosetRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) | ||
| Theorem | pslem 18497 | Lemma for psref 18499 and others. (Contributed by NM, 12-May-2008.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (𝑅 ∈ PosetRel → (((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) ∧ (𝐴 ∈ ∪ ∪ 𝑅 → 𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵))) | ||
| Theorem | psdmrn 18498 | The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008.) |
| ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) | ||
| Theorem | psref 18499 | A poset is reflexive. (Contributed by NM, 13-May-2008.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) | ||
| Theorem | psrn 18500 | The range of a poset equals it domain. (Contributed by NM, 7-Jul-2008.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |