HomeHome Metamath Proof Explorer
Theorem List (p. 185 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30166)
  Hilbert Space Explorer  Hilbert Space Explorer
(30167-31689)
  Users' Mathboxes  Users' Mathboxes
(31690-47842)
 

Theorem List for Metamath Proof Explorer - 18401-18500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlatlej2 18401 A join's second argument is less than or equal to the join. (chub2 30756 analog.) (Contributed by NM, 17-Sep-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ π‘Œ ≀ (𝑋 ∨ π‘Œ))
 
Theoremlatjle12 18402 A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 30757 analog.) (Contributed by NM, 17-Sep-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ≀ 𝑍 ∧ π‘Œ ≀ 𝑍) ↔ (𝑋 ∨ π‘Œ) ≀ 𝑍))
 
Theoremlatleeqj1 18403 "Less than or equal to" in terms of join. (chlejb1 30760 analog.) (Contributed by NM, 21-Oct-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ≀ π‘Œ ↔ (𝑋 ∨ π‘Œ) = π‘Œ))
 
Theoremlatleeqj2 18404 "Less than or equal to" in terms of join. (chlejb2 30761 analog.) (Contributed by NM, 14-Nov-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ≀ π‘Œ ↔ (π‘Œ ∨ 𝑋) = π‘Œ))
 
Theoremlatjlej1 18405 Add join to both sides of a lattice ordering. (chlej1i 30721 analog.) (Contributed by NM, 8-Nov-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ≀ π‘Œ β†’ (𝑋 ∨ 𝑍) ≀ (π‘Œ ∨ 𝑍)))
 
Theoremlatjlej2 18406 Add join to both sides of a lattice ordering. (chlej2i 30722 analog.) (Contributed by NM, 8-Nov-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ≀ π‘Œ β†’ (𝑍 ∨ 𝑋) ≀ (𝑍 ∨ π‘Œ)))
 
Theoremlatjlej12 18407 Add join to both sides of a lattice ordering. (chlej12i 30723 analog.) (Contributed by NM, 8-Nov-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ≀ π‘Œ ∧ 𝑍 ≀ π‘Š) β†’ (𝑋 ∨ 𝑍) ≀ (π‘Œ ∨ π‘Š)))
 
Theoremlatnlej 18408 An idiom to express that a lattice element differs from two others. (Contributed by NM, 28-May-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) ∧ Β¬ 𝑋 ≀ (π‘Œ ∨ 𝑍)) β†’ (𝑋 β‰  π‘Œ ∧ 𝑋 β‰  𝑍))
 
Theoremlatnlej1l 18409 An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) ∧ Β¬ 𝑋 ≀ (π‘Œ ∨ 𝑍)) β†’ 𝑋 β‰  π‘Œ)
 
Theoremlatnlej1r 18410 An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) ∧ Β¬ 𝑋 ≀ (π‘Œ ∨ 𝑍)) β†’ 𝑋 β‰  𝑍)
 
Theoremlatnlej2 18411 An idiom to express that a lattice element differs from two others. (Contributed by NM, 10-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) ∧ Β¬ 𝑋 ≀ (π‘Œ ∨ 𝑍)) β†’ (Β¬ 𝑋 ≀ π‘Œ ∧ Β¬ 𝑋 ≀ 𝑍))
 
Theoremlatnlej2l 18412 An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) ∧ Β¬ 𝑋 ≀ (π‘Œ ∨ 𝑍)) β†’ Β¬ 𝑋 ≀ π‘Œ)
 
Theoremlatnlej2r 18413 An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) ∧ Β¬ 𝑋 ≀ (π‘Œ ∨ 𝑍)) β†’ Β¬ 𝑋 ≀ 𝑍)
 
Theoremlatjidm 18414 Lattice join is idempotent. Analogue of unidm 4152. (Contributed by NM, 8-Oct-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∨ 𝑋) = 𝑋)
 
Theoremlatmcom 18415 The join of a lattice commutes. (Contributed by NM, 6-Nov-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ∧ π‘Œ) = (π‘Œ ∧ 𝑋))
 
Theoremlatmle1 18416 A meet is less than or equal to its first argument. (Contributed by NM, 21-Oct-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ∧ π‘Œ) ≀ 𝑋)
 
Theoremlatmle2 18417 A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ∧ π‘Œ) ≀ π‘Œ)
 
Theoremlatlem12 18418 An element is less than or equal to a meet iff the element is less than or equal to each argument of the meet. (Contributed by NM, 21-Oct-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ≀ π‘Œ ∧ 𝑋 ≀ 𝑍) ↔ 𝑋 ≀ (π‘Œ ∧ 𝑍)))
 
Theoremlatleeqm1 18419 "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ≀ π‘Œ ↔ (𝑋 ∧ π‘Œ) = 𝑋))
 
Theoremlatleeqm2 18420 "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ≀ π‘Œ ↔ (π‘Œ ∧ 𝑋) = 𝑋))
 
Theoremlatmlem1 18421 Add meet to both sides of a lattice ordering. (Contributed by NM, 10-Nov-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ≀ π‘Œ β†’ (𝑋 ∧ 𝑍) ≀ (π‘Œ ∧ 𝑍)))
 
Theoremlatmlem2 18422 Add meet to both sides of a lattice ordering. (sslin 4234 analog.) (Contributed by NM, 10-Nov-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ≀ π‘Œ β†’ (𝑍 ∧ 𝑋) ≀ (𝑍 ∧ π‘Œ)))
 
Theoremlatmlem12 18423 Add join to both sides of a lattice ordering. (ss2in 4236 analog.) (Contributed by NM, 10-Nov-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ≀ π‘Œ ∧ 𝑍 ≀ π‘Š) β†’ (𝑋 ∧ 𝑍) ≀ (π‘Œ ∧ π‘Š)))
 
Theoremlatnlemlt 18424 Negation of "less than or equal to" expressed in terms of meet and less-than. (nssinpss 4256 analog.) (Contributed by NM, 5-Feb-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    < = (ltβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (Β¬ 𝑋 ≀ π‘Œ ↔ (𝑋 ∧ π‘Œ) < 𝑋))
 
Theoremlatnle 18425 Equivalent expressions for "not less than" in a lattice. (chnle 30762 analog.) (Contributed by NM, 16-Nov-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    < = (ltβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (Β¬ π‘Œ ≀ 𝑋 ↔ 𝑋 < (𝑋 ∨ π‘Œ)))
 
Theoremlatmidm 18426 Lattice meet is idempotent. Analogue of inidm 4218. (Contributed by NM, 8-Nov-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∧ 𝑋) = 𝑋)
 
Theoremlatabs1 18427 Lattice absorption law. From definition of lattice in [Kalmbach] p. 14. (chabs1 30764 analog.) (Contributed by NM, 8-Nov-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ∨ (𝑋 ∧ π‘Œ)) = 𝑋)
 
Theoremlatabs2 18428 Lattice absorption law. From definition of lattice in [Kalmbach] p. 14. (chabs2 30765 analog.) (Contributed by NM, 8-Nov-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ∧ (𝑋 ∨ π‘Œ)) = 𝑋)
 
Theoremlatledi 18429 An ortholattice is distributive in one ordering direction. (ledi 30788 analog.) (Contributed by NM, 7-Nov-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑍)) ≀ (𝑋 ∧ (π‘Œ ∨ 𝑍)))
 
Theoremlatmlej11 18430 Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ∧ π‘Œ) ≀ (𝑋 ∨ 𝑍))
 
Theoremlatmlej12 18431 Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ∧ π‘Œ) ≀ (𝑍 ∨ 𝑋))
 
Theoremlatmlej21 18432 Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (π‘Œ ∧ 𝑋) ≀ (𝑋 ∨ 𝑍))
 
Theoremlatmlej22 18433 Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (π‘Œ ∧ 𝑋) ≀ (𝑍 ∨ 𝑋))
 
Theoremlubsn 18434 The least upper bound of a singleton. (chsupsn 30661 analog.) (Contributed by NM, 20-Oct-2011.)
𝐡 = (Baseβ€˜πΎ)    &   π‘ˆ = (lubβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡) β†’ (π‘ˆβ€˜{𝑋}) = 𝑋)
 
Theoremlatjass 18435 Lattice join is associative. Lemma 2.2 in [MegPav2002] p. 362. (chjass 30781 analog.) (Contributed by NM, 17-Sep-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ 𝑍) = (𝑋 ∨ (π‘Œ ∨ 𝑍)))
 
Theoremlatj12 18436 Swap 1st and 2nd members of lattice join. (chj12 30782 analog.) (Contributed by NM, 4-Jun-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ∨ (π‘Œ ∨ 𝑍)) = (π‘Œ ∨ (𝑋 ∨ 𝑍)))
 
Theoremlatj32 18437 Swap 2nd and 3rd members of lattice join. Lemma 2.2 in [MegPav2002] p. 362. (Contributed by NM, 2-Dec-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ 𝑍) = ((𝑋 ∨ 𝑍) ∨ π‘Œ))
 
Theoremlatj13 18438 Swap 1st and 3rd members of lattice join. (Contributed by NM, 4-Jun-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ∨ (π‘Œ ∨ 𝑍)) = (𝑍 ∨ (π‘Œ ∨ 𝑋)))
 
Theoremlatj31 18439 Swap 2nd and 3rd members of lattice join. Lemma 2.2 in [MegPav2002] p. 362. (Contributed by NM, 23-Jun-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ 𝑍) = ((𝑍 ∨ π‘Œ) ∨ 𝑋))
 
Theoremlatjrot 18440 Rotate lattice join of 3 classes. (Contributed by NM, 23-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ 𝑍) = ((𝑍 ∨ 𝑋) ∨ π‘Œ))
 
Theoremlatj4 18441 Rearrangement of lattice join of 4 classes. (chj4 30783 analog.) (Contributed by NM, 14-Jun-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ (𝑍 ∨ π‘Š)) = ((𝑋 ∨ 𝑍) ∨ (π‘Œ ∨ π‘Š)))
 
Theoremlatj4rot 18442 Rotate lattice join of 4 classes. (Contributed by NM, 11-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ (𝑍 ∨ π‘Š)) = ((π‘Š ∨ 𝑋) ∨ (π‘Œ ∨ 𝑍)))
 
Theoremlatjjdi 18443 Lattice join distributes over itself. (Contributed by NM, 30-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ∨ (π‘Œ ∨ 𝑍)) = ((𝑋 ∨ π‘Œ) ∨ (𝑋 ∨ 𝑍)))
 
Theoremlatjjdir 18444 Lattice join distributes over itself. (Contributed by NM, 2-Aug-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ 𝑍) = ((𝑋 ∨ 𝑍) ∨ (π‘Œ ∨ 𝑍)))
 
Theoremmod1ile 18445 The weak direction of the modular law (e.g., pmod1i 38714, atmod1i1 38723) that holds in any lattice. (Contributed by NM, 11-May-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ≀ 𝑍 β†’ (𝑋 ∨ (π‘Œ ∧ 𝑍)) ≀ ((𝑋 ∨ π‘Œ) ∧ 𝑍)))
 
Theoremmod2ile 18446 The weak direction of the modular law (e.g., pmod2iN 38715) that holds in any lattice. (Contributed by NM, 11-May-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑍 ≀ 𝑋 β†’ ((𝑋 ∧ π‘Œ) ∨ 𝑍) ≀ (𝑋 ∧ (π‘Œ ∨ 𝑍))))
 
Theoremlatmass 18447 Lattice meet is associative. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐡 = (Baseβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ∧ π‘Œ) ∧ 𝑍) = (𝑋 ∧ (π‘Œ ∧ 𝑍)))
 
Theoremlatdisdlem 18448* Lemma for latdisd 18449. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   (𝐾 ∈ Lat β†’ (βˆ€π‘’ ∈ 𝐡 βˆ€π‘£ ∈ 𝐡 βˆ€π‘€ ∈ 𝐡 (𝑒 ∨ (𝑣 ∧ 𝑀)) = ((𝑒 ∨ 𝑣) ∧ (𝑒 ∨ 𝑀)) β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ∧ (𝑦 ∨ 𝑧)) = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ 𝑧))))
 
Theoremlatdisd 18449* In a lattice, joins distribute over meets if and only if meets distribute over joins; the distributive property is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   (𝐾 ∈ Lat β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ∨ (𝑦 ∧ 𝑧)) = ((π‘₯ ∨ 𝑦) ∧ (π‘₯ ∨ 𝑧)) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ∧ (𝑦 ∨ 𝑧)) = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ 𝑧))))
 
9.5.2  Complete lattices
 
Syntaxccla 18450 Extend class notation with complete lattices.
class CLat
 
Definitiondf-clat 18451 Define the class of all complete lattices, where every subset of the base set has an LUB and a GLB. (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.)
CLat = {𝑝 ∈ Poset ∣ (dom (lubβ€˜π‘) = 𝒫 (Baseβ€˜π‘) ∧ dom (glbβ€˜π‘) = 𝒫 (Baseβ€˜π‘))}
 
Theoremisclat 18452 The predicate "is a complete lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.)
𝐡 = (Baseβ€˜πΎ)    &   π‘ˆ = (lubβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    β‡’   (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom π‘ˆ = 𝒫 𝐡 ∧ dom 𝐺 = 𝒫 𝐡)))
 
Theoremclatpos 18453 A complete lattice is a poset. (Contributed by NM, 8-Sep-2018.)
(𝐾 ∈ CLat β†’ 𝐾 ∈ Poset)
 
Theoremclatlem 18454 Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011.)
𝐡 = (Baseβ€˜πΎ)    &   π‘ˆ = (lubβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    β‡’   ((𝐾 ∈ CLat ∧ 𝑆 βŠ† 𝐡) β†’ ((π‘ˆβ€˜π‘†) ∈ 𝐡 ∧ (πΊβ€˜π‘†) ∈ 𝐡))
 
Theoremclatlubcl 18455 Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011.)
𝐡 = (Baseβ€˜πΎ)    &   π‘ˆ = (lubβ€˜πΎ)    β‡’   ((𝐾 ∈ CLat ∧ 𝑆 βŠ† 𝐡) β†’ (π‘ˆβ€˜π‘†) ∈ 𝐡)
 
Theoremclatlubcl2 18456 Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 13-Sep-2018.)
𝐡 = (Baseβ€˜πΎ)    &   π‘ˆ = (lubβ€˜πΎ)    β‡’   ((𝐾 ∈ CLat ∧ 𝑆 βŠ† 𝐡) β†’ 𝑆 ∈ dom π‘ˆ)
 
Theoremclatglbcl 18457 Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011.)
𝐡 = (Baseβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    β‡’   ((𝐾 ∈ CLat ∧ 𝑆 βŠ† 𝐡) β†’ (πΊβ€˜π‘†) ∈ 𝐡)
 
Theoremclatglbcl2 18458 Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 13-Sep-2018.)
𝐡 = (Baseβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    β‡’   ((𝐾 ∈ CLat ∧ 𝑆 βŠ† 𝐡) β†’ 𝑆 ∈ dom 𝐺)
 
Theoremoduclatb 18459 Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.)
𝐷 = (ODualβ€˜π‘‚)    β‡’   (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)
 
Theoremclatl 18460 A complete lattice is a lattice. (Contributed by NM, 18-Sep-2011.) TODO: use eqrelrdv2 5795 to shorten proof and eliminate joindmss 18331 and meetdmss 18345?
(𝐾 ∈ CLat β†’ 𝐾 ∈ Lat)
 
Theoremisglbd 18461* Properties that determine the greatest lower bound of a complete lattice. (Contributed by Mario Carneiro, 19-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    &   ((πœ‘ ∧ 𝑦 ∈ 𝑆) β†’ 𝐻 ≀ 𝑦)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐡 ∧ βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦) β†’ π‘₯ ≀ 𝐻)    &   (πœ‘ β†’ 𝐾 ∈ CLat)    &   (πœ‘ β†’ 𝑆 βŠ† 𝐡)    &   (πœ‘ β†’ 𝐻 ∈ 𝐡)    β‡’   (πœ‘ β†’ (πΊβ€˜π‘†) = 𝐻)
 
Theoremlublem 18462* Lemma for the least upper bound properties in a complete lattice. (Contributed by NM, 19-Oct-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π‘ˆ = (lubβ€˜πΎ)    β‡’   ((𝐾 ∈ CLat ∧ 𝑆 βŠ† 𝐡) β†’ (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ (π‘ˆβ€˜π‘†) ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧 β†’ (π‘ˆβ€˜π‘†) ≀ 𝑧)))
 
Theoremlubub 18463 The LUB of a complete lattice subset is an upper bound. (Contributed by NM, 19-Oct-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π‘ˆ = (lubβ€˜πΎ)    β‡’   ((𝐾 ∈ CLat ∧ 𝑆 βŠ† 𝐡 ∧ 𝑋 ∈ 𝑆) β†’ 𝑋 ≀ (π‘ˆβ€˜π‘†))
 
Theoremlubl 18464* The LUB of a complete lattice subset is the least bound. (Contributed by NM, 19-Oct-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π‘ˆ = (lubβ€˜πΎ)    β‡’   ((𝐾 ∈ CLat ∧ 𝑆 βŠ† 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑋 β†’ (π‘ˆβ€˜π‘†) ≀ 𝑋))
 
Theoremlubss 18465 Subset law for least upper bounds. (chsupss 30590 analog.) (Contributed by NM, 20-Oct-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π‘ˆ = (lubβ€˜πΎ)    β‡’   ((𝐾 ∈ CLat ∧ 𝑇 βŠ† 𝐡 ∧ 𝑆 βŠ† 𝑇) β†’ (π‘ˆβ€˜π‘†) ≀ (π‘ˆβ€˜π‘‡))
 
Theoremlubel 18466 An element of a set is less than or equal to the least upper bound of the set. (Contributed by NM, 21-Oct-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π‘ˆ = (lubβ€˜πΎ)    β‡’   ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 βŠ† 𝐡) β†’ 𝑋 ≀ (π‘ˆβ€˜π‘†))
 
Theoremlubun 18467 The LUB of a union. (Contributed by NM, 5-Mar-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π‘ˆ = (lubβ€˜πΎ)    β‡’   ((𝐾 ∈ CLat ∧ 𝑆 βŠ† 𝐡 ∧ 𝑇 βŠ† 𝐡) β†’ (π‘ˆβ€˜(𝑆 βˆͺ 𝑇)) = ((π‘ˆβ€˜π‘†) ∨ (π‘ˆβ€˜π‘‡)))
 
Theoremclatglb 18468* Properties of greatest lower bound of a complete lattice. (Contributed by NM, 5-Dec-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    β‡’   ((𝐾 ∈ CLat ∧ 𝑆 βŠ† 𝐡) β†’ (βˆ€π‘¦ ∈ 𝑆 (πΊβ€˜π‘†) ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ (πΊβ€˜π‘†))))
 
Theoremclatglble 18469 The greatest lower bound is the least element. (Contributed by NM, 5-Dec-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    β‡’   ((𝐾 ∈ CLat ∧ 𝑆 βŠ† 𝐡 ∧ 𝑋 ∈ 𝑆) β†’ (πΊβ€˜π‘†) ≀ 𝑋)
 
Theoremclatleglb 18470* Two ways of expressing "less than or equal to the greatest lower bound." (Contributed by NM, 5-Dec-2011.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    β‡’   ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐡 ∧ 𝑆 βŠ† 𝐡) β†’ (𝑋 ≀ (πΊβ€˜π‘†) ↔ βˆ€π‘¦ ∈ 𝑆 𝑋 ≀ 𝑦))
 
Theoremclatglbss 18471 Subset law for greatest lower bound. (Contributed by Mario Carneiro, 16-Apr-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    β‡’   ((𝐾 ∈ CLat ∧ 𝑇 βŠ† 𝐡 ∧ 𝑆 βŠ† 𝑇) β†’ (πΊβ€˜π‘‡) ≀ (πΊβ€˜π‘†))
 
9.5.3  Distributive lattices
 
Syntaxcdlat 18472 The class of distributive lattices.
class DLat
 
Definitiondf-dlat 18473* A distributive lattice is a lattice in which meets distribute over joins, or equivalently (latdisd 18449) joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015.)
DLat = {π‘˜ ∈ Lat ∣ [(Baseβ€˜π‘˜) / 𝑏][(joinβ€˜π‘˜) / 𝑗][(meetβ€˜π‘˜) / π‘š]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 (π‘₯π‘š(𝑦𝑗𝑧)) = ((π‘₯π‘šπ‘¦)𝑗(π‘₯π‘šπ‘§))}
 
Theoremisdlat 18474* Property of being a distributive lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ∧ (𝑦 ∨ 𝑧)) = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ 𝑧))))
 
Theoremdlatmjdi 18475 In a distributive lattice, meets distribute over joins. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ DLat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ∧ (π‘Œ ∨ 𝑍)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑍)))
 
Theoremdlatl 18476 A distributive lattice is a lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.)
(𝐾 ∈ DLat β†’ 𝐾 ∈ Lat)
 
Theoremodudlatb 18477 The dual of a distributive lattice is a distributive lattice and conversely. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐷 = (ODualβ€˜πΎ)    β‡’   (𝐾 ∈ 𝑉 β†’ (𝐾 ∈ DLat ↔ 𝐷 ∈ DLat))
 
Theoremdlatjmdi 18478 In a distributive lattice, joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    β‡’   ((𝐾 ∈ DLat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ∨ (π‘Œ ∧ 𝑍)) = ((𝑋 ∨ π‘Œ) ∧ (𝑋 ∨ 𝑍)))
 
9.5.4  Subset order structures
 
Syntaxcipo 18479 Class function defining inclusion posets.
class toInc
 
Definitiondf-ipo 18480* For any family of sets, define the poset of that family ordered by inclusion. See ipobas 18483, ipolerval 18484, and ipole 18486 for its contract.

EDITORIAL: I'm not thrilled with the name. Any suggestions? (Contributed by Stefan O'Rear, 30-Jan-2015.) (New usage is discouraged.)

toInc = (𝑓 ∈ V ↦ ⦋{⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝑓 ∧ π‘₯ βŠ† 𝑦)} / π‘œβ¦Œ({⟨(Baseβ€˜ndx), π‘“βŸ©, ⟨(TopSetβ€˜ndx), (ordTopβ€˜π‘œ)⟩} βˆͺ {⟨(leβ€˜ndx), π‘œβŸ©, ⟨(ocβ€˜ndx), (π‘₯ ∈ 𝑓 ↦ βˆͺ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ π‘₯) = βˆ…})⟩}))
 
Theoremipostr 18481 The structure of df-ipo 18480 is a structure defining indices up to 11. (Contributed by Mario Carneiro, 25-Oct-2015.)
({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(TopSetβ€˜ndx), 𝐽⟩} βˆͺ {⟨(leβ€˜ndx), ≀ ⟩, ⟨(ocβ€˜ndx), βŠ₯ ⟩}) Struct ⟨1, 11⟩
 
Theoremipoval 18482* Value of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐼 = (toIncβ€˜πΉ)    &    ≀ = {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐹 ∧ π‘₯ βŠ† 𝑦)}    β‡’   (𝐹 ∈ 𝑉 β†’ 𝐼 = ({⟨(Baseβ€˜ndx), 𝐹⟩, ⟨(TopSetβ€˜ndx), (ordTopβ€˜ ≀ )⟩} βˆͺ {⟨(leβ€˜ndx), ≀ ⟩, ⟨(ocβ€˜ndx), (π‘₯ ∈ 𝐹 ↦ βˆͺ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ π‘₯) = βˆ…})⟩}))
 
Theoremipobas 18483 Base set of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by Mario Carneiro, 25-Oct-2015.)
𝐼 = (toIncβ€˜πΉ)    β‡’   (𝐹 ∈ 𝑉 β†’ 𝐹 = (Baseβ€˜πΌ))
 
Theoremipolerval 18484* Relation of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐼 = (toIncβ€˜πΉ)    β‡’   (𝐹 ∈ 𝑉 β†’ {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐹 ∧ π‘₯ βŠ† 𝑦)} = (leβ€˜πΌ))
 
Theoremipotset 18485 Topology of the inclusion poset. (Contributed by Mario Carneiro, 24-Oct-2015.)
𝐼 = (toIncβ€˜πΉ)    &    ≀ = (leβ€˜πΌ)    β‡’   (𝐹 ∈ 𝑉 β†’ (ordTopβ€˜ ≀ ) = (TopSetβ€˜πΌ))
 
Theoremipole 18486 Weak order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐼 = (toIncβ€˜πΉ)    &    ≀ = (leβ€˜πΌ)    β‡’   ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ π‘Œ ∈ 𝐹) β†’ (𝑋 ≀ π‘Œ ↔ 𝑋 βŠ† π‘Œ))
 
Theoremipolt 18487 Strict order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐼 = (toIncβ€˜πΉ)    &    < = (ltβ€˜πΌ)    β‡’   ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ π‘Œ ∈ 𝐹) β†’ (𝑋 < π‘Œ ↔ 𝑋 ⊊ π‘Œ))
 
Theoremipopos 18488 The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐼 = (toIncβ€˜πΉ)    β‡’   πΌ ∈ Poset
 
Theoremisipodrs 18489* Condition for a family of sets to be directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.)
((toIncβ€˜π΄) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 β‰  βˆ… ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ 𝐴 (π‘₯ βˆͺ 𝑦) βŠ† 𝑧))
 
Theoremipodrscl 18490 Direction by inclusion as used here implies sethood. (Contributed by Stefan O'Rear, 2-Apr-2015.)
((toIncβ€˜π΄) ∈ Dirset β†’ 𝐴 ∈ V)
 
Theoremipodrsfi 18491* Finite upper bound property for directed collections of sets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
(((toIncβ€˜π΄) ∈ Dirset ∧ 𝑋 βŠ† 𝐴 ∧ 𝑋 ∈ Fin) β†’ βˆƒπ‘§ ∈ 𝐴 βˆͺ 𝑋 βŠ† 𝑧)
 
Theoremfpwipodrs 18492 The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.)
(𝐴 ∈ 𝑉 β†’ (toIncβ€˜(𝒫 𝐴 ∩ Fin)) ∈ Dirset)
 
Theoremipodrsima 18493* The monotone image of a directed set. (Contributed by Stefan O'Rear, 2-Apr-2015.)
(πœ‘ β†’ 𝐹 Fn 𝒫 𝐴)    &   ((πœ‘ ∧ (𝑒 βŠ† 𝑣 ∧ 𝑣 βŠ† 𝐴)) β†’ (πΉβ€˜π‘’) βŠ† (πΉβ€˜π‘£))    &   (πœ‘ β†’ (toIncβ€˜π΅) ∈ Dirset)    &   (πœ‘ β†’ 𝐡 βŠ† 𝒫 𝐴)    &   (πœ‘ β†’ (𝐹 β€œ 𝐡) ∈ 𝑉)    β‡’   (πœ‘ β†’ (toIncβ€˜(𝐹 β€œ 𝐡)) ∈ Dirset)
 
Theoremisacs3lem 18494* An algebraic closure system satisfies isacs3 18502. (Contributed by Stefan O'Rear, 2-Apr-2015.)
(𝐢 ∈ (ACSβ€˜π‘‹) β†’ (𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘  ∈ 𝒫 𝐢((toIncβ€˜π‘ ) ∈ Dirset β†’ βˆͺ 𝑠 ∈ 𝐢)))
 
Theoremacsdrsel 18495 An algebraic closure system contains all directed unions of closed sets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
((𝐢 ∈ (ACSβ€˜π‘‹) ∧ π‘Œ βŠ† 𝐢 ∧ (toIncβ€˜π‘Œ) ∈ Dirset) β†’ βˆͺ π‘Œ ∈ 𝐢)
 
Theoremisacs4lem 18496* In a closure system in which directed unions of closed sets are closed, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.)
𝐹 = (mrClsβ€˜πΆ)    β‡’   ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘  ∈ 𝒫 𝐢((toIncβ€˜π‘ ) ∈ Dirset β†’ βˆͺ 𝑠 ∈ 𝐢)) β†’ (𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘‘ ∈ 𝒫 𝒫 𝑋((toIncβ€˜π‘‘) ∈ Dirset β†’ (πΉβ€˜βˆͺ 𝑑) = βˆͺ (𝐹 β€œ 𝑑))))
 
Theoremisacs5lem 18497* If closure commutes with directed unions, then the closure of a set is the closure of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
𝐹 = (mrClsβ€˜πΆ)    β‡’   ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘‘ ∈ 𝒫 𝒫 𝑋((toIncβ€˜π‘‘) ∈ Dirset β†’ (πΉβ€˜βˆͺ 𝑑) = βˆͺ (𝐹 β€œ 𝑑))) β†’ (𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘  ∈ 𝒫 𝑋(πΉβ€˜π‘ ) = βˆͺ (𝐹 β€œ (𝒫 𝑠 ∩ Fin))))
 
Theoremacsdrscl 18498 In an algebraic closure system, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.)
𝐹 = (mrClsβ€˜πΆ)    β‡’   ((𝐢 ∈ (ACSβ€˜π‘‹) ∧ π‘Œ βŠ† 𝒫 𝑋 ∧ (toIncβ€˜π‘Œ) ∈ Dirset) β†’ (πΉβ€˜βˆͺ π‘Œ) = βˆͺ (𝐹 β€œ π‘Œ))
 
Theoremacsficl 18499 A closure in an algebraic closure system is the union of the closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
𝐹 = (mrClsβ€˜πΆ)    β‡’   ((𝐢 ∈ (ACSβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) β†’ (πΉβ€˜π‘†) = βˆͺ (𝐹 β€œ (𝒫 𝑆 ∩ Fin)))
 
Theoremisacs5 18500* A closure system is algebraic iff the closure of a generating set is the union of the closures of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
𝐹 = (mrClsβ€˜πΆ)    β‡’   (𝐢 ∈ (ACSβ€˜π‘‹) ↔ (𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘  ∈ 𝒫 𝑋(πΉβ€˜π‘ ) = βˆͺ (𝐹 β€œ (𝒫 𝑠 ∩ Fin))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47842
  Copyright terms: Public domain < Previous  Next >