Home | Metamath
Proof Explorer Theorem List (p. 185 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mndmgm 18401 | A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) | ||
Theorem | mndcl 18402 | Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | ||
Theorem | mndass 18403 | A monoid operation is associative. (Contributed by NM, 14-Aug-2011.) (Proof shortened by AV, 8-Feb-2020.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
Theorem | mndid 18404* | A monoid has a two-sided identity element. (Contributed by NM, 16-Aug-2011.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → ∃𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)) | ||
Theorem | mndideu 18405* | The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by Mario Carneiro, 8-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → ∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)) | ||
Theorem | mnd32g 18406 | Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌)) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) | ||
Theorem | mnd12g 18407 | Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) ⇒ ⊢ (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) | ||
Theorem | mnd4g 18408 | Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌)) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) | ||
Theorem | mndidcl 18409 | The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) | ||
Theorem | mndbn0 18410 | The base set of a monoid is not empty. Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.) |
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → 𝐵 ≠ ∅) | ||
Theorem | hashfinmndnn 18411 | A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) | ||
Theorem | mndplusf 18412 | The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 3-Feb-2020.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⨣ = (+𝑓‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)⟶𝐵) | ||
Theorem | mndlrid 18413 | A monoid's identity element is a two-sided identity. (Contributed by NM, 18-Aug-2011.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) | ||
Theorem | mndlid 18414 | The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) | ||
Theorem | mndrid 18415 | The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) | ||
Theorem | ismndd 18416* | Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 0 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) ⇒ ⊢ (𝜑 → 𝐺 ∈ Mnd) | ||
Theorem | mndpfo 18417 | The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⨣ = (+𝑓‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)–onto→𝐵) | ||
Theorem | mndfo 18418 | The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.) (Proof shortened by AV, 23-Jan-2020.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto→𝐵) | ||
Theorem | mndpropd 18419* | If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)) | ||
Theorem | mndprop 18420 | If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) |
⊢ (Base‘𝐾) = (Base‘𝐿) & ⊢ (+g‘𝐾) = (+g‘𝐿) ⇒ ⊢ (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd) | ||
Theorem | issubmnd 18421* | Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆)) | ||
Theorem | ress0g 18422 | 0g is unaffected by restriction. This is a bit more generic than submnd0 18423. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 = (0g‘𝑆)) | ||
Theorem | submnd0 18423 | The zero of a submonoid is the same as the zero in the parent monoid. (Note that we must add the condition that the zero of the parent monoid is actually contained in the submonoid, because it is possible to have "subsets that are monoids" which are not submonoids because they have a different identity element. See, for example, smndex1mnd 18558 and smndex1n0mnd 18560). (Contributed by Mario Carneiro, 10-Jan-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 0 = (0g‘𝐻)) | ||
Theorem | mndinvmod 18424* | Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) | ||
Theorem | prdsplusgcl 18425 | Structure product pointwise sums are closed when the factors are monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 + 𝐺) ∈ 𝐵) | ||
Theorem | prdsidlem 18426* | Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) & ⊢ 0 = (0g ∘ 𝑅) ⇒ ⊢ (𝜑 → ( 0 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))) | ||
Theorem | prdsmndd 18427 | The product of a family of monoids is a monoid. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) ⇒ ⊢ (𝜑 → 𝑌 ∈ Mnd) | ||
Theorem | prds0g 18428 | Zero in a product of monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) ⇒ ⊢ (𝜑 → (0g ∘ 𝑅) = (0g‘𝑌)) | ||
Theorem | pwsmnd 18429 | The structure power of a monoid is a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Mnd) | ||
Theorem | pws0g 18430 | Zero in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g‘𝑌)) | ||
Theorem | imasmnd2 18431* | The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ + = (+g‘𝑅) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧)))) & ⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘(𝑥 + 0 )) = (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹‘ 0 ) = (0g‘𝑈))) | ||
Theorem | imasmnd 18432* | The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ + = (+g‘𝑅) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ Mnd) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹‘ 0 ) = (0g‘𝑈))) | ||
Theorem | imasmndf1 18433 | The image of a monoid under an injection is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ 𝑈 = (𝐹 “s 𝑅) & ⊢ 𝑉 = (Base‘𝑅) ⇒ ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Mnd) → 𝑈 ∈ Mnd) | ||
Theorem | xpsmnd 18434 | The binary product of monoids is a monoid. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) ⇒ ⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑇 ∈ Mnd) | ||
Theorem | mnd1 18435 | The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.) |
⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) | ||
Theorem | mnd1id 18436 | The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.) |
⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑀) = 𝐼) | ||
Syntax | cmhm 18437 | Hom-set generator class for monoids. |
class MndHom | ||
Syntax | csubmnd 18438 | Class function taking a monoid to its lattice of submonoids. |
class SubMnd | ||
Definition | df-mhm 18439* | A monoid homomorphism is a function on the base sets which preserves the binary operation and the identity. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) | ||
Definition | df-submnd 18440* | A submonoid is a subset of a monoid which contains the identity and is closed under the operation. Such subsets are themselves monoids with the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g‘𝑠) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡)}) | ||
Theorem | ismhm 18441* | Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝑌 = (0g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌))) | ||
Theorem | mhmrcl1 18442 | Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd) | ||
Theorem | mhmrcl2 18443 | Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd) | ||
Theorem | mhmf 18444 | A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵⟶𝐶) | ||
Theorem | mhmpropd 18445* | Monoid homomorphism depends only on the monoidal attributes of structures. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 7-Nov-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀)) | ||
Theorem | mhmlin 18446 | A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) | ||
Theorem | mhm0 18447 | A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ 0 = (0g‘𝑆) & ⊢ 𝑌 = (0g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘ 0 ) = 𝑌) | ||
Theorem | idmhm 18448 | The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀)) | ||
Theorem | mhmf1o 18449 | A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 MndHom 𝑅))) | ||
Theorem | submrcl 18450 | Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) | ||
Theorem | issubm 18451* | Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) | ||
Theorem | issubm2 18452 | Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ 𝐻 = (𝑀 ↾s 𝑆) ⇒ ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd))) | ||
Theorem | issubmndb 18453 | The submonoid predicate. Analogous to issubg 18764. (Contributed by AV, 1-Feb-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝐺) ↔ ((𝐺 ∈ Mnd ∧ (𝐺 ↾s 𝑆) ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆))) | ||
Theorem | issubmd 18454* | Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) → 𝜂) & ⊢ (𝑧 = 0 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝑥 → (𝜓 ↔ 𝜃)) & ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜏)) & ⊢ (𝑧 = (𝑥 + 𝑦) → (𝜓 ↔ 𝜂)) ⇒ ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMnd‘𝑀)) | ||
Theorem | mndissubm 18455 | If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. Analogous to grpissubg 18784. (Contributed by AV, 17-Feb-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (Base‘𝐻) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺))) | ||
Theorem | resmndismnd 18456 | If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the other monoid restricted to the base set of the monoid is a monoid. Analogous to resgrpisgrp 18785. (Contributed by AV, 17-Feb-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (Base‘𝐻) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝐺 ↾s 𝑆) ∈ Mnd)) | ||
Theorem | submss 18457 | Submonoids are subsets of the base set. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑆 ⊆ 𝐵) | ||
Theorem | submid 18458 | Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑀 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝑀)) | ||
Theorem | subm0cl 18459 | Submonoids contain zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ 0 = (0g‘𝑀) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 0 ∈ 𝑆) | ||
Theorem | submcl 18460 | Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | ||
Theorem | submmnd 18461 | Submonoids are themselves monoids under the given operation. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ 𝐻 = (𝑀 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝐻 ∈ Mnd) | ||
Theorem | submbas 18462 | The base set of a submonoid. (Contributed by Stefan O'Rear, 15-Jun-2015.) |
⊢ 𝐻 = (𝑀 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑆 = (Base‘𝐻)) | ||
Theorem | subm0 18463 | Submonoids have the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ 𝐻 = (𝑀 ↾s 𝑆) & ⊢ 0 = (0g‘𝑀) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 0 = (0g‘𝐻)) | ||
Theorem | subsubm 18464 | A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆))) | ||
Theorem | 0subm 18465 | The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.) |
⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) | ||
Theorem | insubm 18466 | The intersection of two submonoids is a submonoid. (Contributed by AV, 25-Feb-2024.) |
⊢ ((𝐴 ∈ (SubMnd‘𝑀) ∧ 𝐵 ∈ (SubMnd‘𝑀)) → (𝐴 ∩ 𝐵) ∈ (SubMnd‘𝑀)) | ||
Theorem | 0mhm 18467 | The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 0 = (0g‘𝑁) & ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁)) | ||
Theorem | resmhm 18468 | Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.) |
⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 MndHom 𝑇)) | ||
Theorem | resmhm2 18469 | One direction of resmhm2b 18470. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇)) | ||
Theorem | resmhm2b 18470 | Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈))) | ||
Theorem | mhmco 18471 | The composition of monoid homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 MndHom 𝑈)) | ||
Theorem | mhmima 18472 | The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMnd‘𝑁)) | ||
Theorem | mhmeql 18473 | The equalizer of two monoid homomorphisms is a submonoid. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubMnd‘𝑆)) | ||
Theorem | submacs 18474 | Submonoids are an algebraic closure system. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵)) | ||
Theorem | mndind 18475* | Induction in a monoid. In this theorem, 𝜓(𝑥) is the "generic" proposition to be be proved (the first four hypotheses tell its values at y, y+z, 0, A respectively). The two induction hypotheses mndind.i1 and mndind.i2 tell that it is true at 0, that if it is true at y then it is true at y+z (provided z is in 𝐺). The hypothesis mndind.k tells that 𝐺 is generating. (Contributed by SO, 14-Jul-2018.) |
⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 𝑧) → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 0 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ 0 = (0g‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐺 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 = ((mrCls‘(SubMnd‘𝑀))‘𝐺)) & ⊢ (𝜑 → 𝜏) & ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐺) ∧ 𝜒) → 𝜃) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | prdspjmhm 18476* | A projection from a product of monoids to one of the factors is a monoid homomorphism. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑋) & ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom (𝑅‘𝐴))) | ||
Theorem | pwspjmhm 18477* | A projection from a structure power of a monoid to the monoid itself is a monoid homomorphism. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom 𝑅)) | ||
Theorem | pwsdiagmhm 18478* | Diagonal monoid homomorphism into a structure power. (Contributed by Stefan O'Rear, 12-Mar-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 MndHom 𝑌)) | ||
Theorem | pwsco1mhm 18479* | Right composition with a function on the index sets yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐴) & ⊢ 𝑍 = (𝑅 ↑s 𝐵) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ (𝜑 → 𝑅 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 MndHom 𝑌)) | ||
Theorem | pwsco2mhm 18480* | Left composition with a monoid homomorphism yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐴) & ⊢ 𝑍 = (𝑆 ↑s 𝐴) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 MndHom 𝑆)) ⇒ ⊢ (𝜑 → (𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)) ∈ (𝑌 MndHom 𝑍)) | ||
One important use of words is as formal composites in cases where order is significant, using the general sum operator df-gsum 17162. If order is not significant, it is simpler to use families instead. | ||
Theorem | gsumvallem2 18481* | Lemma for properties of the set of identities of 𝐺. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⇒ ⊢ (𝐺 ∈ Mnd → 𝑂 = { 0 }) | ||
Theorem | gsumsubm 18482 | Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro, 19-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) | ||
Theorem | gsumz 18483* | Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) |
⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) | ||
Theorem | gsumwsubmcl 18484 | Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) |
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆) | ||
Theorem | gsumws1 18485 | A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) | ||
Theorem | gsumwcl 18486 | Closure of the composite of a word in a structure 𝐺. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵) | ||
Theorem | gsumsgrpccat 18487 | Homomorphic property of not empty composites of a group sum over a semigroup. Formerly part of proof for gsumccat 18489. (Contributed by AV, 26-Dec-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋))) | ||
Theorem | gsumccatOLD 18488 | Obsolete version of gsumccat 18489 as of 13-Jan-2024. Homomorphic property of composites. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋))) | ||
Theorem | gsumccat 18489 | Homomorphic property of composites. Second formula in [Lang] p. 4. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 26-Dec-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋))) | ||
Theorem | gsumws2 18490 | Valuation of a pair in a monoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → (𝐺 Σg 〈“𝑆𝑇”〉) = (𝑆 + 𝑇)) | ||
Theorem | gsumccatsn 18491 | Homomorphic property of composites with a singleton. (Contributed by AV, 20-Jan-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐺 Σg (𝑊 ++ 〈“𝑍”〉)) = ((𝐺 Σg 𝑊) + 𝑍)) | ||
Theorem | gsumspl 18492 | The primary purpose of the splice construction is to enable local rewrites. Thus, in any monoidal valuation, if a splice does not cause a local change it does not cause a global change. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝑆 ∈ Word 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (0...𝑇)) & ⊢ (𝜑 → 𝑇 ∈ (0...(♯‘𝑆))) & ⊢ (𝜑 → 𝑋 ∈ Word 𝐵) & ⊢ (𝜑 → 𝑌 ∈ Word 𝐵) & ⊢ (𝜑 → (𝑀 Σg 𝑋) = (𝑀 Σg 𝑌)) ⇒ ⊢ (𝜑 → (𝑀 Σg (𝑆 splice 〈𝐹, 𝑇, 𝑋〉)) = (𝑀 Σg (𝑆 splice 〈𝐹, 𝑇, 𝑌〉))) | ||
Theorem | gsumwmhm 18493 | Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻 ∘ 𝑊))) | ||
Theorem | gsumwspan 18494* | The submonoid generated by a set of elements is precisely the set of elements which can be expressed as finite products of the generator. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝐾 = (mrCls‘(SubMnd‘𝑀)) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵) → (𝐾‘𝐺) = ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))) | ||
Syntax | cfrmd 18495 | Extend class definition with the free monoid construction. |
class freeMnd | ||
Syntax | cvrmd 18496 | Extend class notation with free monoid injection. |
class varFMnd | ||
Definition | df-frmd 18497 | Define a free monoid over a set 𝑖 of generators, defined as the set of finite strings on 𝐼 with the operation of concatenation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ freeMnd = (𝑖 ∈ V ↦ {〈(Base‘ndx), Word 𝑖〉, 〈(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))〉}) | ||
Definition | df-vrmd 18498* | Define a free monoid over a set 𝑖 of generators, defined as the set of finite strings on 𝐼 with the operation of concatenation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ varFMnd = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉)) | ||
Theorem | frmdval 18499 | Value of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ (𝐼 ∈ 𝑉 → 𝐵 = Word 𝐼) & ⊢ + = ( ++ ↾ (𝐵 × 𝐵)) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑀 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉}) | ||
Theorem | frmdbas 18500 | The base set of a free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 = Word 𝐼) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |