Users' Mathboxes Mathbox for Adrian Ducourtial < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cloneop Structured version   Visualization version   GIF version

Definition df-cloneop 34984
Description: Define the function that sends a set to the class of clone-theoretic operations on the set. For convenience, we take an operation on 𝑎 to be a function on finite sequences of elements of 𝑎 (rather than tuples) with values in 𝑎. Following line 6 of [Szendrei] p. 11, the arity 𝑛 of an operation (here, the length of the sequences at which the operation is defined) is always finite and non-zero, whence 𝑛 is taken to be a non-zero finite ordinal. (Contributed by Adrian Ducourtial, 3-Apr-2025.)
Assertion
Ref Expression
df-cloneop CloneOp = (𝑎 ∈ V ↦ {𝑥 ∣ ∃𝑛 ∈ (ω ∖ 1o)𝑥 ∈ (𝑎m (𝑎m 𝑛))})
Distinct variable group:   𝑛,𝑎,𝑥

Detailed syntax breakdown of Definition df-cloneop
StepHypRef Expression
1 ccloneop 34983 . 2 class CloneOp
2 va . . 3 setvar 𝑎
3 cvv 3473 . . 3 class V
4 vx . . . . . . 7 setvar 𝑥
54cv 1539 . . . . . 6 class 𝑥
62cv 1539 . . . . . . 7 class 𝑎
7 vn . . . . . . . . 9 setvar 𝑛
87cv 1539 . . . . . . . 8 class 𝑛
9 cmap 8826 . . . . . . . 8 class m
106, 8, 9co 7412 . . . . . . 7 class (𝑎m 𝑛)
116, 10, 9co 7412 . . . . . 6 class (𝑎m (𝑎m 𝑛))
125, 11wcel 2105 . . . . 5 wff 𝑥 ∈ (𝑎m (𝑎m 𝑛))
13 com 7859 . . . . . 6 class ω
14 c1o 8465 . . . . . 6 class 1o
1513, 14cdif 3945 . . . . 5 class (ω ∖ 1o)
1612, 7, 15wrex 3069 . . . 4 wff 𝑛 ∈ (ω ∖ 1o)𝑥 ∈ (𝑎m (𝑎m 𝑛))
1716, 4cab 2708 . . 3 class {𝑥 ∣ ∃𝑛 ∈ (ω ∖ 1o)𝑥 ∈ (𝑎m (𝑎m 𝑛))}
182, 3, 17cmpt 5231 . 2 class (𝑎 ∈ V ↦ {𝑥 ∣ ∃𝑛 ∈ (ω ∖ 1o)𝑥 ∈ (𝑎m (𝑎m 𝑛))})
191, 18wceq 1540 1 wff CloneOp = (𝑎 ∈ V ↦ {𝑥 ∣ ∃𝑛 ∈ (ω ∖ 1o)𝑥 ∈ (𝑎m (𝑎m 𝑛))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator