Detailed syntax breakdown of Definition df-cndprob
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ccprob 34434 | . 2
class
cprob | 
| 2 |  | vp | . . 3
setvar 𝑝 | 
| 3 |  | cprb 34410 | . . 3
class
Prob | 
| 4 |  | va | . . . 4
setvar 𝑎 | 
| 5 |  | vb | . . . 4
setvar 𝑏 | 
| 6 | 2 | cv 1538 | . . . . 5
class 𝑝 | 
| 7 | 6 | cdm 5684 | . . . 4
class dom 𝑝 | 
| 8 | 4 | cv 1538 | . . . . . . 7
class 𝑎 | 
| 9 | 5 | cv 1538 | . . . . . . 7
class 𝑏 | 
| 10 | 8, 9 | cin 3949 | . . . . . 6
class (𝑎 ∩ 𝑏) | 
| 11 | 10, 6 | cfv 6560 | . . . . 5
class (𝑝‘(𝑎 ∩ 𝑏)) | 
| 12 | 9, 6 | cfv 6560 | . . . . 5
class (𝑝‘𝑏) | 
| 13 |  | cdiv 11921 | . . . . 5
class 
/ | 
| 14 | 11, 12, 13 | co 7432 | . . . 4
class ((𝑝‘(𝑎 ∩ 𝑏)) / (𝑝‘𝑏)) | 
| 15 | 4, 5, 7, 7, 14 | cmpo 7434 | . . 3
class (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎 ∩ 𝑏)) / (𝑝‘𝑏))) | 
| 16 | 2, 3, 15 | cmpt 5224 | . 2
class (𝑝 ∈ Prob ↦ (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎 ∩ 𝑏)) / (𝑝‘𝑏)))) | 
| 17 | 1, 16 | wceq 1539 | 1
wff cprob =
(𝑝 ∈ Prob ↦
(𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎 ∩ 𝑏)) / (𝑝‘𝑏)))) |