Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cndprobval Structured version   Visualization version   GIF version

Theorem cndprobval 32112
Description: The value of the conditional probability , i.e. the probability for the event 𝐴, given 𝐵, under the probability law 𝑃. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
cndprobval ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((cprob‘𝑃)‘⟨𝐴, 𝐵⟩) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))

Proof of Theorem cndprobval
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7216 . 2 (𝐴(cprob‘𝑃)𝐵) = ((cprob‘𝑃)‘⟨𝐴, 𝐵⟩)
2 df-cndprob 32111 . . . . 5 cprob = (𝑝 ∈ Prob ↦ (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎𝑏)) / (𝑝𝑏))))
3 dmeq 5772 . . . . . 6 (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃)
4 fveq1 6716 . . . . . . 7 (𝑝 = 𝑃 → (𝑝‘(𝑎𝑏)) = (𝑃‘(𝑎𝑏)))
5 fveq1 6716 . . . . . . 7 (𝑝 = 𝑃 → (𝑝𝑏) = (𝑃𝑏))
64, 5oveq12d 7231 . . . . . 6 (𝑝 = 𝑃 → ((𝑝‘(𝑎𝑏)) / (𝑝𝑏)) = ((𝑃‘(𝑎𝑏)) / (𝑃𝑏)))
73, 3, 6mpoeq123dv 7286 . . . . 5 (𝑝 = 𝑃 → (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎𝑏)) / (𝑝𝑏))) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))))
8 id 22 . . . . 5 (𝑃 ∈ Prob → 𝑃 ∈ Prob)
9 dmexg 7681 . . . . . 6 (𝑃 ∈ Prob → dom 𝑃 ∈ V)
10 mpoexga 7848 . . . . . 6 ((dom 𝑃 ∈ V ∧ dom 𝑃 ∈ V) → (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))) ∈ V)
119, 9, 10syl2anc 587 . . . . 5 (𝑃 ∈ Prob → (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))) ∈ V)
122, 7, 8, 11fvmptd3 6841 . . . 4 (𝑃 ∈ Prob → (cprob‘𝑃) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))))
13123ad2ant1 1135 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → (cprob‘𝑃) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))))
14 simprl 771 . . . . . 6 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝑎 = 𝐴)
15 simprr 773 . . . . . 6 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝑏 = 𝐵)
1614, 15ineq12d 4128 . . . . 5 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑎𝑏) = (𝐴𝐵))
1716fveq2d 6721 . . . 4 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑃‘(𝑎𝑏)) = (𝑃‘(𝐴𝐵)))
1815fveq2d 6721 . . . 4 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑃𝑏) = (𝑃𝐵))
1917, 18oveq12d 7231 . . 3 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → ((𝑃‘(𝑎𝑏)) / (𝑃𝑏)) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))
20 simp2 1139 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → 𝐴 ∈ dom 𝑃)
21 simp3 1140 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → 𝐵 ∈ dom 𝑃)
22 ovexd 7248 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)) ∈ V)
2313, 19, 20, 21, 22ovmpod 7361 . 2 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → (𝐴(cprob‘𝑃)𝐵) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))
241, 23eqtr3id 2792 1 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((cprob‘𝑃)‘⟨𝐴, 𝐵⟩) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  Vcvv 3408  cin 3865  cop 4547  dom cdm 5551  cfv 6380  (class class class)co 7213  cmpo 7215   / cdiv 11489  Probcprb 32086  cprobccprob 32110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-cndprob 32111
This theorem is referenced by:  cndprobin  32113  cndprob01  32114  cndprobtot  32115  cndprobnul  32116  cndprobprob  32117
  Copyright terms: Public domain W3C validator