Step | Hyp | Ref
| Expression |
1 | | df-ov 7271 |
. 2
⊢ (𝐴(cprob‘𝑃)𝐵) = ((cprob‘𝑃)‘〈𝐴, 𝐵〉) |
2 | | df-cndprob 32378 |
. . . . 5
⊢ cprob =
(𝑝 ∈ Prob ↦
(𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎 ∩ 𝑏)) / (𝑝‘𝑏)))) |
3 | | dmeq 5809 |
. . . . . 6
⊢ (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃) |
4 | | fveq1 6767 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → (𝑝‘(𝑎 ∩ 𝑏)) = (𝑃‘(𝑎 ∩ 𝑏))) |
5 | | fveq1 6767 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → (𝑝‘𝑏) = (𝑃‘𝑏)) |
6 | 4, 5 | oveq12d 7286 |
. . . . . 6
⊢ (𝑝 = 𝑃 → ((𝑝‘(𝑎 ∩ 𝑏)) / (𝑝‘𝑏)) = ((𝑃‘(𝑎 ∩ 𝑏)) / (𝑃‘𝑏))) |
7 | 3, 3, 6 | mpoeq123dv 7341 |
. . . . 5
⊢ (𝑝 = 𝑃 → (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎 ∩ 𝑏)) / (𝑝‘𝑏))) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝑏)) / (𝑃‘𝑏)))) |
8 | | id 22 |
. . . . 5
⊢ (𝑃 ∈ Prob → 𝑃 ∈ Prob) |
9 | | dmexg 7737 |
. . . . . 6
⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ V) |
10 | | mpoexga 7904 |
. . . . . 6
⊢ ((dom
𝑃 ∈ V ∧ dom 𝑃 ∈ V) → (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝑏)) / (𝑃‘𝑏))) ∈ V) |
11 | 9, 9, 10 | syl2anc 583 |
. . . . 5
⊢ (𝑃 ∈ Prob → (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝑏)) / (𝑃‘𝑏))) ∈ V) |
12 | 2, 7, 8, 11 | fvmptd3 6892 |
. . . 4
⊢ (𝑃 ∈ Prob →
(cprob‘𝑃) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝑏)) / (𝑃‘𝑏)))) |
13 | 12 | 3ad2ant1 1131 |
. . 3
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → (cprob‘𝑃) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝑏)) / (𝑃‘𝑏)))) |
14 | | simprl 767 |
. . . . . 6
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝑎 = 𝐴) |
15 | | simprr 769 |
. . . . . 6
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝑏 = 𝐵) |
16 | 14, 15 | ineq12d 4152 |
. . . . 5
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑎 ∩ 𝑏) = (𝐴 ∩ 𝐵)) |
17 | 16 | fveq2d 6772 |
. . . 4
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑃‘(𝑎 ∩ 𝑏)) = (𝑃‘(𝐴 ∩ 𝐵))) |
18 | 15 | fveq2d 6772 |
. . . 4
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑃‘𝑏) = (𝑃‘𝐵)) |
19 | 17, 18 | oveq12d 7286 |
. . 3
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → ((𝑃‘(𝑎 ∩ 𝑏)) / (𝑃‘𝑏)) = ((𝑃‘(𝐴 ∩ 𝐵)) / (𝑃‘𝐵))) |
20 | | simp2 1135 |
. . 3
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → 𝐴 ∈ dom 𝑃) |
21 | | simp3 1136 |
. . 3
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → 𝐵 ∈ dom 𝑃) |
22 | | ovexd 7303 |
. . 3
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → ((𝑃‘(𝐴 ∩ 𝐵)) / (𝑃‘𝐵)) ∈ V) |
23 | 13, 19, 20, 21, 22 | ovmpod 7416 |
. 2
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → (𝐴(cprob‘𝑃)𝐵) = ((𝑃‘(𝐴 ∩ 𝐵)) / (𝑃‘𝐵))) |
24 | 1, 23 | eqtr3id 2793 |
1
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → ((cprob‘𝑃)‘〈𝐴, 𝐵〉) = ((𝑃‘(𝐴 ∩ 𝐵)) / (𝑃‘𝐵))) |