Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cndprobval Structured version   Visualization version   GIF version

Theorem cndprobval 34518
Description: The value of the conditional probability , i.e. the probability for the event 𝐴, given 𝐵, under the probability law 𝑃. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
cndprobval ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((cprob‘𝑃)‘⟨𝐴, 𝐵⟩) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))

Proof of Theorem cndprobval
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7358 . 2 (𝐴(cprob‘𝑃)𝐵) = ((cprob‘𝑃)‘⟨𝐴, 𝐵⟩)
2 df-cndprob 34517 . . . . 5 cprob = (𝑝 ∈ Prob ↦ (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎𝑏)) / (𝑝𝑏))))
3 dmeq 5849 . . . . . 6 (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃)
4 fveq1 6830 . . . . . . 7 (𝑝 = 𝑃 → (𝑝‘(𝑎𝑏)) = (𝑃‘(𝑎𝑏)))
5 fveq1 6830 . . . . . . 7 (𝑝 = 𝑃 → (𝑝𝑏) = (𝑃𝑏))
64, 5oveq12d 7373 . . . . . 6 (𝑝 = 𝑃 → ((𝑝‘(𝑎𝑏)) / (𝑝𝑏)) = ((𝑃‘(𝑎𝑏)) / (𝑃𝑏)))
73, 3, 6mpoeq123dv 7430 . . . . 5 (𝑝 = 𝑃 → (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎𝑏)) / (𝑝𝑏))) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))))
8 id 22 . . . . 5 (𝑃 ∈ Prob → 𝑃 ∈ Prob)
9 dmexg 7840 . . . . . 6 (𝑃 ∈ Prob → dom 𝑃 ∈ V)
10 mpoexga 8018 . . . . . 6 ((dom 𝑃 ∈ V ∧ dom 𝑃 ∈ V) → (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))) ∈ V)
119, 9, 10syl2anc 584 . . . . 5 (𝑃 ∈ Prob → (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))) ∈ V)
122, 7, 8, 11fvmptd3 6961 . . . 4 (𝑃 ∈ Prob → (cprob‘𝑃) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))))
13123ad2ant1 1133 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → (cprob‘𝑃) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))))
14 simprl 770 . . . . . 6 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝑎 = 𝐴)
15 simprr 772 . . . . . 6 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝑏 = 𝐵)
1614, 15ineq12d 4170 . . . . 5 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑎𝑏) = (𝐴𝐵))
1716fveq2d 6835 . . . 4 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑃‘(𝑎𝑏)) = (𝑃‘(𝐴𝐵)))
1815fveq2d 6835 . . . 4 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑃𝑏) = (𝑃𝐵))
1917, 18oveq12d 7373 . . 3 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → ((𝑃‘(𝑎𝑏)) / (𝑃𝑏)) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))
20 simp2 1137 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → 𝐴 ∈ dom 𝑃)
21 simp3 1138 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → 𝐵 ∈ dom 𝑃)
22 ovexd 7390 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)) ∈ V)
2313, 19, 20, 21, 22ovmpod 7507 . 2 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → (𝐴(cprob‘𝑃)𝐵) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))
241, 23eqtr3id 2782 1 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((cprob‘𝑃)‘⟨𝐴, 𝐵⟩) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897  cop 4583  dom cdm 5621  cfv 6489  (class class class)co 7355  cmpo 7357   / cdiv 11785  Probcprb 34492  cprobccprob 34516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-cndprob 34517
This theorem is referenced by:  cndprobin  34519  cndprob01  34520  cndprobtot  34521  cndprobnul  34522  cndprobprob  34523
  Copyright terms: Public domain W3C validator