Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cndprobval Structured version   Visualization version   GIF version

Theorem cndprobval 34424
Description: The value of the conditional probability , i.e. the probability for the event 𝐴, given 𝐵, under the probability law 𝑃. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
cndprobval ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((cprob‘𝑃)‘⟨𝐴, 𝐵⟩) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))

Proof of Theorem cndprobval
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7390 . 2 (𝐴(cprob‘𝑃)𝐵) = ((cprob‘𝑃)‘⟨𝐴, 𝐵⟩)
2 df-cndprob 34423 . . . . 5 cprob = (𝑝 ∈ Prob ↦ (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎𝑏)) / (𝑝𝑏))))
3 dmeq 5867 . . . . . 6 (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃)
4 fveq1 6857 . . . . . . 7 (𝑝 = 𝑃 → (𝑝‘(𝑎𝑏)) = (𝑃‘(𝑎𝑏)))
5 fveq1 6857 . . . . . . 7 (𝑝 = 𝑃 → (𝑝𝑏) = (𝑃𝑏))
64, 5oveq12d 7405 . . . . . 6 (𝑝 = 𝑃 → ((𝑝‘(𝑎𝑏)) / (𝑝𝑏)) = ((𝑃‘(𝑎𝑏)) / (𝑃𝑏)))
73, 3, 6mpoeq123dv 7464 . . . . 5 (𝑝 = 𝑃 → (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎𝑏)) / (𝑝𝑏))) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))))
8 id 22 . . . . 5 (𝑃 ∈ Prob → 𝑃 ∈ Prob)
9 dmexg 7877 . . . . . 6 (𝑃 ∈ Prob → dom 𝑃 ∈ V)
10 mpoexga 8056 . . . . . 6 ((dom 𝑃 ∈ V ∧ dom 𝑃 ∈ V) → (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))) ∈ V)
119, 9, 10syl2anc 584 . . . . 5 (𝑃 ∈ Prob → (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))) ∈ V)
122, 7, 8, 11fvmptd3 6991 . . . 4 (𝑃 ∈ Prob → (cprob‘𝑃) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))))
13123ad2ant1 1133 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → (cprob‘𝑃) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))))
14 simprl 770 . . . . . 6 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝑎 = 𝐴)
15 simprr 772 . . . . . 6 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝑏 = 𝐵)
1614, 15ineq12d 4184 . . . . 5 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑎𝑏) = (𝐴𝐵))
1716fveq2d 6862 . . . 4 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑃‘(𝑎𝑏)) = (𝑃‘(𝐴𝐵)))
1815fveq2d 6862 . . . 4 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑃𝑏) = (𝑃𝐵))
1917, 18oveq12d 7405 . . 3 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → ((𝑃‘(𝑎𝑏)) / (𝑃𝑏)) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))
20 simp2 1137 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → 𝐴 ∈ dom 𝑃)
21 simp3 1138 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → 𝐵 ∈ dom 𝑃)
22 ovexd 7422 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)) ∈ V)
2313, 19, 20, 21, 22ovmpod 7541 . 2 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → (𝐴(cprob‘𝑃)𝐵) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))
241, 23eqtr3id 2778 1 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((cprob‘𝑃)‘⟨𝐴, 𝐵⟩) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  cop 4595  dom cdm 5638  cfv 6511  (class class class)co 7387  cmpo 7389   / cdiv 11835  Probcprb 34398  cprobccprob 34422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-cndprob 34423
This theorem is referenced by:  cndprobin  34425  cndprob01  34426  cndprobtot  34427  cndprobnul  34428  cndprobprob  34429
  Copyright terms: Public domain W3C validator