Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cndprobval Structured version   Visualization version   GIF version

Theorem cndprobval 32379
Description: The value of the conditional probability , i.e. the probability for the event 𝐴, given 𝐵, under the probability law 𝑃. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
cndprobval ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((cprob‘𝑃)‘⟨𝐴, 𝐵⟩) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))

Proof of Theorem cndprobval
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7271 . 2 (𝐴(cprob‘𝑃)𝐵) = ((cprob‘𝑃)‘⟨𝐴, 𝐵⟩)
2 df-cndprob 32378 . . . . 5 cprob = (𝑝 ∈ Prob ↦ (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎𝑏)) / (𝑝𝑏))))
3 dmeq 5809 . . . . . 6 (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃)
4 fveq1 6767 . . . . . . 7 (𝑝 = 𝑃 → (𝑝‘(𝑎𝑏)) = (𝑃‘(𝑎𝑏)))
5 fveq1 6767 . . . . . . 7 (𝑝 = 𝑃 → (𝑝𝑏) = (𝑃𝑏))
64, 5oveq12d 7286 . . . . . 6 (𝑝 = 𝑃 → ((𝑝‘(𝑎𝑏)) / (𝑝𝑏)) = ((𝑃‘(𝑎𝑏)) / (𝑃𝑏)))
73, 3, 6mpoeq123dv 7341 . . . . 5 (𝑝 = 𝑃 → (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎𝑏)) / (𝑝𝑏))) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))))
8 id 22 . . . . 5 (𝑃 ∈ Prob → 𝑃 ∈ Prob)
9 dmexg 7737 . . . . . 6 (𝑃 ∈ Prob → dom 𝑃 ∈ V)
10 mpoexga 7904 . . . . . 6 ((dom 𝑃 ∈ V ∧ dom 𝑃 ∈ V) → (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))) ∈ V)
119, 9, 10syl2anc 583 . . . . 5 (𝑃 ∈ Prob → (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))) ∈ V)
122, 7, 8, 11fvmptd3 6892 . . . 4 (𝑃 ∈ Prob → (cprob‘𝑃) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))))
13123ad2ant1 1131 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → (cprob‘𝑃) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎𝑏)) / (𝑃𝑏))))
14 simprl 767 . . . . . 6 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝑎 = 𝐴)
15 simprr 769 . . . . . 6 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝑏 = 𝐵)
1614, 15ineq12d 4152 . . . . 5 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑎𝑏) = (𝐴𝐵))
1716fveq2d 6772 . . . 4 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑃‘(𝑎𝑏)) = (𝑃‘(𝐴𝐵)))
1815fveq2d 6772 . . . 4 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑃𝑏) = (𝑃𝐵))
1917, 18oveq12d 7286 . . 3 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → ((𝑃‘(𝑎𝑏)) / (𝑃𝑏)) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))
20 simp2 1135 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → 𝐴 ∈ dom 𝑃)
21 simp3 1136 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → 𝐵 ∈ dom 𝑃)
22 ovexd 7303 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)) ∈ V)
2313, 19, 20, 21, 22ovmpod 7416 . 2 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → (𝐴(cprob‘𝑃)𝐵) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))
241, 23eqtr3id 2793 1 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((cprob‘𝑃)‘⟨𝐴, 𝐵⟩) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  Vcvv 3430  cin 3890  cop 4572  dom cdm 5588  cfv 6430  (class class class)co 7268  cmpo 7270   / cdiv 11615  Probcprb 32353  cprobccprob 32377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-cndprob 32378
This theorem is referenced by:  cndprobin  32380  cndprob01  32381  cndprobtot  32382  cndprobnul  32383  cndprobprob  32384
  Copyright terms: Public domain W3C validator