| Step | Hyp | Ref
| Expression |
| 1 | | df-ov 7413 |
. 2
⊢ (𝐴(cprob‘𝑃)𝐵) = ((cprob‘𝑃)‘〈𝐴, 𝐵〉) |
| 2 | | df-cndprob 34469 |
. . . . 5
⊢ cprob =
(𝑝 ∈ Prob ↦
(𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎 ∩ 𝑏)) / (𝑝‘𝑏)))) |
| 3 | | dmeq 5888 |
. . . . . 6
⊢ (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃) |
| 4 | | fveq1 6880 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → (𝑝‘(𝑎 ∩ 𝑏)) = (𝑃‘(𝑎 ∩ 𝑏))) |
| 5 | | fveq1 6880 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → (𝑝‘𝑏) = (𝑃‘𝑏)) |
| 6 | 4, 5 | oveq12d 7428 |
. . . . . 6
⊢ (𝑝 = 𝑃 → ((𝑝‘(𝑎 ∩ 𝑏)) / (𝑝‘𝑏)) = ((𝑃‘(𝑎 ∩ 𝑏)) / (𝑃‘𝑏))) |
| 7 | 3, 3, 6 | mpoeq123dv 7487 |
. . . . 5
⊢ (𝑝 = 𝑃 → (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎 ∩ 𝑏)) / (𝑝‘𝑏))) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝑏)) / (𝑃‘𝑏)))) |
| 8 | | id 22 |
. . . . 5
⊢ (𝑃 ∈ Prob → 𝑃 ∈ Prob) |
| 9 | | dmexg 7902 |
. . . . . 6
⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ V) |
| 10 | | mpoexga 8081 |
. . . . . 6
⊢ ((dom
𝑃 ∈ V ∧ dom 𝑃 ∈ V) → (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝑏)) / (𝑃‘𝑏))) ∈ V) |
| 11 | 9, 9, 10 | syl2anc 584 |
. . . . 5
⊢ (𝑃 ∈ Prob → (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝑏)) / (𝑃‘𝑏))) ∈ V) |
| 12 | 2, 7, 8, 11 | fvmptd3 7014 |
. . . 4
⊢ (𝑃 ∈ Prob →
(cprob‘𝑃) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝑏)) / (𝑃‘𝑏)))) |
| 13 | 12 | 3ad2ant1 1133 |
. . 3
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → (cprob‘𝑃) = (𝑎 ∈ dom 𝑃, 𝑏 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝑏)) / (𝑃‘𝑏)))) |
| 14 | | simprl 770 |
. . . . . 6
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝑎 = 𝐴) |
| 15 | | simprr 772 |
. . . . . 6
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝑏 = 𝐵) |
| 16 | 14, 15 | ineq12d 4201 |
. . . . 5
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑎 ∩ 𝑏) = (𝐴 ∩ 𝐵)) |
| 17 | 16 | fveq2d 6885 |
. . . 4
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑃‘(𝑎 ∩ 𝑏)) = (𝑃‘(𝐴 ∩ 𝐵))) |
| 18 | 15 | fveq2d 6885 |
. . . 4
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑃‘𝑏) = (𝑃‘𝐵)) |
| 19 | 17, 18 | oveq12d 7428 |
. . 3
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → ((𝑃‘(𝑎 ∩ 𝑏)) / (𝑃‘𝑏)) = ((𝑃‘(𝐴 ∩ 𝐵)) / (𝑃‘𝐵))) |
| 20 | | simp2 1137 |
. . 3
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → 𝐴 ∈ dom 𝑃) |
| 21 | | simp3 1138 |
. . 3
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → 𝐵 ∈ dom 𝑃) |
| 22 | | ovexd 7445 |
. . 3
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → ((𝑃‘(𝐴 ∩ 𝐵)) / (𝑃‘𝐵)) ∈ V) |
| 23 | 13, 19, 20, 21, 22 | ovmpod 7564 |
. 2
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → (𝐴(cprob‘𝑃)𝐵) = ((𝑃‘(𝐴 ∩ 𝐵)) / (𝑃‘𝐵))) |
| 24 | 1, 23 | eqtr3id 2785 |
1
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → ((cprob‘𝑃)‘〈𝐴, 𝐵〉) = ((𝑃‘(𝐴 ∩ 𝐵)) / (𝑃‘𝐵))) |