Home | Metamath
Proof Explorer Theorem List (p. 335 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mpstssv 33401 | A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ 𝑃 ⊆ ((V × V) × V) | ||
Theorem | mpst123 33402 | Decompose a pre-statement into a triple of values. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑃 → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) | ||
Theorem | mpstrcl 33403 | The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) | ||
Theorem | msrf 33404 | The reduct of a pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) ⇒ ⊢ 𝑅:𝑃⟶𝑃 | ||
Theorem | msrrcl 33405 | If 𝑋 and 𝑌 have the same reduct, then one is a pre-statement iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) ⇒ ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃)) | ||
Theorem | mstaval 33406 | Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ 𝑆 = ran 𝑅 | ||
Theorem | msrid 33407 | The reduct of a statement is itself. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑆 → (𝑅‘𝑋) = 𝑋) | ||
Theorem | msrfo 33408 | The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ 𝑅:𝑃–onto→𝑆 | ||
Theorem | mstapst 33409 | A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ 𝑆 ⊆ 𝑃 | ||
Theorem | elmsta 33410 | Property of being a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑍 = ∪ (𝑉 “ (𝐻 ∪ {𝐴})) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 ↔ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍))) | ||
Theorem | ismfs 33411* | A formal system is a tuple 〈mCN, mVR, mType, mVT, mTC, mAx〉 such that: mCN and mVR are disjoint; mType is a function from mVR to mVT; mVT is a subset of mTC; mAx is a set of statements; and for each variable typecode, there are infinitely many variables of that type. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) & ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝑇 ∈ mFS ↔ (((𝐶 ∩ 𝑉) = ∅ ∧ 𝑌:𝑉⟶𝐾) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin)))) | ||
Theorem | mfsdisj 33412 | The constants and variables of a formal system are disjoint. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → (𝐶 ∩ 𝑉) = ∅) | ||
Theorem | mtyf2 33413 | The type function maps variables to typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐾) | ||
Theorem | mtyf 33414 | The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) | ||
Theorem | mvtss 33415 | The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝐾 = (mTC‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐹 ⊆ 𝐾) | ||
Theorem | maxsta 33416 | An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) | ||
Theorem | mvtinf 33417 | Each variable typecode has infinitely many variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ ((𝑇 ∈ mFS ∧ 𝑋 ∈ 𝐹) → ¬ (◡𝑌 “ {𝑋}) ∈ Fin) | ||
Theorem | msubff1 33418 | When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝐸 ↑m 𝐸)) | ||
Theorem | msubff1o 33419 | When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) | ||
Theorem | mvhf 33420 | The function mapping variables to variable expressions is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) | ||
Theorem | mvhf1 33421 | The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐻:𝑉–1-1→𝐸) | ||
Theorem | msubvrs 33422* | The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ ((𝑇 ∈ mFS ∧ 𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝐸) → (𝑉‘(𝐹‘𝑋)) = ∪ 𝑥 ∈ (𝑉‘𝑋)(𝑉‘(𝐹‘(𝐻‘𝑥)))) | ||
Theorem | mclsrcl 33423 | Reverse closure for the closure function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ (𝐴 ∈ (𝐾𝐶𝐵) → (𝑇 ∈ V ∧ 𝐾 ⊆ 𝐷 ∧ 𝐵 ⊆ 𝐸)) | ||
Theorem | mclsssvlem 33424* | Lemma for mclsssv 33426. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) ⇒ ⊢ (𝜑 → ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ 𝐸) | ||
Theorem | mclsval 33425* | The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) ⇒ ⊢ (𝜑 → (𝐾𝐶𝐵) = ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) | ||
Theorem | mclsssv 33426 | The closure of a set of expressions is a set of expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) ⇒ ⊢ (𝜑 → (𝐾𝐶𝐵) ⊆ 𝐸) | ||
Theorem | ssmclslem 33427 | Lemma for ssmcls 33429. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐾𝐶𝐵)) | ||
Theorem | vhmcls 33428 | All variable hypotheses are in the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐻‘𝑋) ∈ (𝐾𝐶𝐵)) | ||
Theorem | ssmcls 33429 | The original expressions are also in the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) ⇒ ⊢ (𝜑 → 𝐵 ⊆ (𝐾𝐶𝐵)) | ||
Theorem | ss2mcls 33430 | The closure is monotonic under subsets of the original set of expressions and the set of disjoint variable conditions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ (𝜑 → 𝑋 ⊆ 𝐾) & ⊢ (𝜑 → 𝑌 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐶𝑌) ⊆ (𝐾𝐶𝐵)) | ||
Theorem | mclsax 33431* | The closure is closed under axiom application. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝐿 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) & ⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐴) & ⊢ (𝜑 → 𝑆 ∈ ran 𝐿) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ (𝑥𝑀𝑦 ∧ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))))) → 𝑎𝐾𝑏) ⇒ ⊢ (𝜑 → (𝑆‘𝑃) ∈ (𝐾𝐶𝐵)) | ||
Theorem | mclsind 33432* | Induction theorem for closure: any other set 𝑄 closed under the axioms and the hypotheses contains all the elements of the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝐿 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) & ⊢ (𝜑 → 𝐵 ⊆ 𝑄) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐻‘𝑣) ∈ 𝑄) & ⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑄) ⇒ ⊢ (𝜑 → (𝐾𝐶𝐵) ⊆ 𝑄) | ||
Theorem | mppspstlem 33433* | Lemma for mppspst 33436. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} ⊆ 𝑃 | ||
Theorem | mppsval 33434* | Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ 𝐽 = {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} | ||
Theorem | elmpps 33435 | Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝐽 ↔ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐴 ∈ (𝐷𝐶𝐻))) | ||
Theorem | mppspst 33436 | A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) ⇒ ⊢ 𝐽 ⊆ 𝑃 | ||
Theorem | mthmval 33437 | A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. Unlike the difference between pre-statement and statement, this application of the reduct is not necessarily trivial: there are theorems that are not themselves provable but are provable once enough "dummy variables" are introduced. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) | ||
Theorem | elmthm 33438* | A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) | ||
Theorem | mthmi 33439 | A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑅‘𝑋) = (𝑅‘𝑌)) → 𝑌 ∈ 𝑈) | ||
Theorem | mthmsta 33440 | A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑈 = (mThm‘𝑇) & ⊢ 𝑆 = (mPreSt‘𝑇) ⇒ ⊢ 𝑈 ⊆ 𝑆 | ||
Theorem | mppsthm 33441 | A provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ 𝐽 ⊆ 𝑈 | ||
Theorem | mthmblem 33442 | Lemma for mthmb 33443. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑈 → 𝑌 ∈ 𝑈)) | ||
Theorem | mthmb 33443 | If two statements have the same reduct then one is a theorem iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈)) | ||
Theorem | mthmpps 33444 | Given a theorem, there is an explicitly definable witnessing provable pre-statement for the provability of the theorem. (However, this pre-statement requires infinitely many disjoint variable conditions, which is sometimes inconvenient.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) & ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑍 = ∪ (𝑉 “ (𝐻 ∪ {𝐴})) & ⊢ 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ⇒ ⊢ (𝑇 ∈ mFS → (〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈 ↔ (〈𝑀, 𝐻, 𝐴〉 ∈ 𝐽 ∧ (𝑅‘〈𝑀, 𝐻, 𝐴〉) = (𝑅‘〈𝐶, 𝐻, 𝐴〉)))) | ||
Theorem | mclsppslem 33445* | The closure is closed under application of provable pre-statements. (Compare mclsax 33431.) This theorem is what justifies the treatment of theorems as "equivalent" to axioms once they have been proven: the composition of one theorem in the proof of another yields a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐿 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) & ⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐽) & ⊢ (𝜑 → 𝑆 ∈ ran 𝐿) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ (𝑥𝑀𝑦 ∧ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))))) → 𝑎𝐾𝑏) & ⊢ (𝜑 → 〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇)) & ⊢ (𝜑 → 𝑠 ∈ ran 𝐿) & ⊢ (𝜑 → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) & ⊢ (𝜑 → ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) ⇒ ⊢ (𝜑 → (𝑠‘𝑝) ∈ (◡𝑆 “ (𝐾𝐶𝐵))) | ||
Theorem | mclspps 33446* | The closure is closed under application of provable pre-statements. (Compare mclsax 33431.) This theorem is what justifies the treatment of theorems as "equivalent" to axioms once they have been proven: the composition of one theorem in the proof of another yields a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐿 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) & ⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐽) & ⊢ (𝜑 → 𝑆 ∈ ran 𝐿) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ (𝑥𝑀𝑦 ∧ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))))) → 𝑎𝐾𝑏) ⇒ ⊢ (𝜑 → (𝑆‘𝑃) ∈ (𝐾𝐶𝐵)) | ||
Syntax | cm0s 33447 | Mapping expressions to statements. |
class m0St | ||
Syntax | cmsa 33448 | The set of syntax axioms. |
class mSA | ||
Syntax | cmwgfs 33449 | The set of weakly grammatical formal systems. |
class mWGFS | ||
Syntax | cmsy 33450 | The syntax typecode function. |
class mSyn | ||
Syntax | cmesy 33451 | The syntax typecode function for expressions. |
class mESyn | ||
Syntax | cmgfs 33452 | The set of grammatical formal systems. |
class mGFS | ||
Syntax | cmtree 33453 | The set of proof trees. |
class mTree | ||
Syntax | cmst 33454 | The set of syntax trees. |
class mST | ||
Syntax | cmsax 33455 | The indexing set for a syntax axiom. |
class mSAX | ||
Syntax | cmufs 33456 | The set of unambiguous formal sytems. |
class mUFS | ||
Definition | df-m0s 33457 | Define a function mapping expressions to statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ m0St = (𝑎 ∈ V ↦ 〈∅, ∅, 𝑎〉) | ||
Definition | df-msa 33458* | Define the set of syntax axioms. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mSA = (𝑡 ∈ V ↦ {𝑎 ∈ (mEx‘𝑡) ∣ ((m0St‘𝑎) ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡) ∧ Fun (◡(2nd ‘𝑎) ↾ (mVR‘𝑡)))}) | ||
Definition | df-mwgfs 33459* | Define the set of weakly grammatical formal systems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mWGFS = {𝑡 ∈ mFS ∣ ∀𝑑∀ℎ∀𝑎((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))} | ||
Definition | df-msyn 33460 | Define the syntax typecode function. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mSyn = Slot 6 | ||
Definition | df-mesyn 33461* | Define the syntax typecode function for expressions. (Contributed by Mario Carneiro, 12-Jun-2023.) |
⊢ mESyn = (𝑡 ∈ V ↦ (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒))) | ||
Definition | df-mgfs 33462* | Define the set of grammatical formal systems. (Contributed by Mario Carneiro, 12-Jun-2023.) |
⊢ mGFS = {𝑡 ∈ mWGFS ∣ ((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)))} | ||
Definition | df-mtree 33463* | Define the set of proof trees. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mTree = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ℎ ∈ 𝒫 (mEx‘𝑡) ↦ ∩ {𝑟 ∣ (∀𝑒 ∈ ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪ ((mVars‘𝑡) “ (𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)))})) | ||
Definition | df-mst 33464 | Define the function mapping syntax expressions to syntax trees. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mST = (𝑡 ∈ V ↦ ((∅(mTree‘𝑡)∅) ↾ ((mEx‘𝑡) ↾ (mVT‘𝑡)))) | ||
Definition | df-msax 33465* | Define the indexing set for a syntax axiom's representation in a tree. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mSAX = (𝑡 ∈ V ↦ (𝑝 ∈ (mSA‘𝑡) ↦ ((mVH‘𝑡) “ ((mVars‘𝑡)‘𝑝)))) | ||
Definition | df-mufs 33466 | Define the set of unambiguous formal systems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mUFS = {𝑡 ∈ mGFS ∣ Fun (mST‘𝑡)} | ||
Syntax | cmuv 33467 | The universe of a model. |
class mUV | ||
Syntax | cmvl 33468 | The set of valuations. |
class mVL | ||
Syntax | cmvsb 33469 | Substitution for a valuation. |
class mVSubst | ||
Syntax | cmfsh 33470 | The freshness relation of a model. |
class mFresh | ||
Syntax | cmfr 33471 | The set of freshness relations. |
class mFRel | ||
Syntax | cmevl 33472 | The evaluation function of a model. |
class mEval | ||
Syntax | cmdl 33473 | The set of models. |
class mMdl | ||
Syntax | cusyn 33474 | The syntax function applied to elements of the model. |
class mUSyn | ||
Syntax | cgmdl 33475 | The set of models in a grammatical formal system. |
class mGMdl | ||
Syntax | cmitp 33476 | The interpretation function of the model. |
class mItp | ||
Syntax | cmfitp 33477 | The evaluation function derived from the interpretation. |
class mFromItp | ||
Definition | df-muv 33478 | Define the universe of a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mUV = Slot 7 | ||
Definition | df-mfsh 33479 | Define the freshness relation of a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mFresh = Slot ;19 | ||
Definition | df-mevl 33480 | Define the evaluation function of a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mEval = Slot ;20 | ||
Definition | df-mvl 33481* | Define the set of valuations. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVL = (𝑡 ∈ V ↦ X𝑣 ∈ (mVR‘𝑡)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑣)})) | ||
Definition | df-mvsb 33482* | Define substitution applied to a valuation. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVSubst = (𝑡 ∈ V ↦ {〈〈𝑠, 𝑚〉, 𝑥〉 ∣ ((𝑠 ∈ ran (mSubst‘𝑡) ∧ 𝑚 ∈ (mVL‘𝑡)) ∧ ∀𝑣 ∈ (mVR‘𝑡)𝑚dom (mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)) ∧ 𝑥 = (𝑣 ∈ (mVR‘𝑡) ↦ (𝑚(mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)))))}) | ||
Definition | df-mfrel 33483* | Define the set of freshness relations. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mFRel = (𝑡 ∈ V ↦ {𝑟 ∈ 𝒫 ((mUV‘𝑡) × (mUV‘𝑡)) ∣ (◡𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))}) | ||
Definition | df-mdl 33484* | Define the set of models of a formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mMdl = {𝑡 ∈ mFS ∣ [(mUV‘𝑡) / 𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})))))} | ||
Definition | df-musyn 33485* | Define the syntax typecode function for the model universe. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mUSyn = (𝑡 ∈ V ↦ (𝑣 ∈ (mUV‘𝑡) ↦ 〈((mSyn‘𝑡)‘(1st ‘𝑣)), (2nd ‘𝑣)〉)) | ||
Definition | df-gmdl 33486* | Define the set of models of a grammatical formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mGMdl = {𝑡 ∈ (mGFS ∩ mMdl) ∣ (∀𝑐 ∈ (mTC‘𝑡)((mUV‘𝑡) “ {𝑐}) ⊆ ((mUV‘𝑡) “ {((mSyn‘𝑡)‘𝑐)}) ∧ ∀𝑣 ∈ (mUV‘𝑐)∀𝑤 ∈ (mUV‘𝑐)(𝑣(mFresh‘𝑡)𝑤 ↔ 𝑣(mFresh‘𝑡)((mUSyn‘𝑡)‘𝑤)) ∧ ∀𝑚 ∈ (mVL‘𝑡)∀𝑒 ∈ (mEx‘𝑡)((mEval‘𝑡) “ {〈𝑚, 𝑒〉}) = (((mEval‘𝑡) “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st ‘𝑒)})))} | ||
Definition | df-mitp 33487* | Define the interpretation function for a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mItp = (𝑡 ∈ V ↦ (𝑎 ∈ (mSA‘𝑡) ↦ (𝑔 ∈ X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)}) ↦ (℩𝑥∃𝑚 ∈ (mVL‘𝑡)(𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) ∧ 𝑥 = (𝑚(mEval‘𝑡)𝑎)))))) | ||
Definition | df-mfitp 33488* | Define a function that produces the evaluation function, given the interpretation function for a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mFromItp = (𝑡 ∈ V ↦ (𝑓 ∈ X𝑎 ∈ (mSA‘𝑡)(((mUV‘𝑡) “ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) ↦ (℩𝑛 ∈ ((mUV‘𝑡) ↑pm ((mVL‘𝑡) × (mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st ‘𝑒)})))))) | ||
Syntax | citr 33489 | Integral subring of a ring. |
class IntgRing | ||
Syntax | ccpms 33490 | Completion of a metric space. |
class cplMetSp | ||
Syntax | chlb 33491 | Embeddings for a direct limit. |
class HomLimB | ||
Syntax | chlim 33492 | Direct limit structure. |
class HomLim | ||
Syntax | cpfl 33493 | Polynomial extension field. |
class polyFld | ||
Syntax | csf1 33494 | Splitting field for a single polynomial (auxiliary). |
class splitFld1 | ||
Syntax | csf 33495 | Splitting field for a finite set of polynomials. |
class splitFld | ||
Syntax | cpsl 33496 | Splitting field for a sequence of polynomials. |
class polySplitLim | ||
Definition | df-irng 33497* | Define the subring of elements of 𝑟 integral over 𝑠 in a ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ IntgRing = (𝑟 ∈ V, 𝑠 ∈ V ↦ ∪ 𝑓 ∈ (Monic1p‘(𝑟 ↾s 𝑠))(◡𝑓 “ {(0g‘𝑟)})) | ||
Definition | df-cplmet 33498* | A function which completes the given metric space. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ cplMetSp = (𝑤 ∈ V ↦ ⦋((𝑤 ↑s ℕ) ↾s (Cau‘(dist‘𝑤))) / 𝑟⦌⦋(Base‘𝑟) / 𝑣⦌⦋{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑔‘𝑗)(ball‘(dist‘𝑤))𝑥))} / 𝑒⦌((𝑟 /s 𝑒) sSet {〈(dist‘ndx), {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝑣 ∃𝑞 ∈ 𝑣 ((𝑥 = [𝑝]𝑒 ∧ 𝑦 = [𝑞]𝑒) ∧ (𝑝 ∘f (dist‘𝑟)𝑞) ⇝ 𝑧)}〉})) | ||
Definition | df-homlimb 33499* | The input to this function is a sequence (on ℕ) of homomorphisms 𝐹(𝑛):𝑅(𝑛)⟶𝑅(𝑛 + 1). The resulting structure is the direct limit of the direct system so defined. This function returns the pair 〈𝑆, 𝐺〉 where 𝑆 is the terminal object and 𝐺 is a sequence of functions such that 𝐺(𝑛):𝑅(𝑛)⟶𝑆 and 𝐺(𝑛) = 𝐹(𝑛) ∘ 𝐺(𝑛 + 1). (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ HomLimB = (𝑓 ∈ V ↦ ⦋∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) / 𝑣⦌⦋∩ {𝑠 ∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd ‘𝑥))〉) ⊆ 𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉) | ||
Definition | df-homlim 33500* | The input to this function is a sequence (on ℕ) of structures 𝑅(𝑛) and homomorphisms 𝐹(𝑛):𝑅(𝑛)⟶𝑅(𝑛 + 1). The resulting structure is the direct limit of the direct system so defined, and maintains any structures that were present in the original objects. TODO: generalize to directed sets? (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ HomLim = (𝑟 ∈ V, 𝑓 ∈ V ↦ ⦋( HomLimB ‘𝑓) / 𝑒⦌⦋(1st ‘𝑒) / 𝑣⦌⦋(2nd ‘𝑒) / 𝑔⦌({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔‘𝑛), 𝑦 ∈ dom (𝑔‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, ((𝑔‘𝑛)‘(𝑥(+g‘(𝑟‘𝑛))𝑦))〉)〉, 〈(.r‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔‘𝑛), 𝑦 ∈ dom (𝑔‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, ((𝑔‘𝑛)‘(𝑥(.r‘(𝑟‘𝑛))𝑦))〉)〉} ∪ {〈(TopOpen‘ndx), {𝑠 ∈ 𝒫 𝑣 ∣ ∀𝑛 ∈ ℕ (◡(𝑔‘𝑛) “ 𝑠) ∈ (TopOpen‘(𝑟‘𝑛))}〉, 〈(dist‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom ((𝑔‘𝑛)‘𝑛), 𝑦 ∈ dom ((𝑔‘𝑛)‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, (𝑥(dist‘(𝑟‘𝑛))𝑦)〉)〉, 〈(le‘ndx), ∪ 𝑛 ∈ ℕ (◡(𝑔‘𝑛) ∘ ((le‘(𝑟‘𝑛)) ∘ (𝑔‘𝑛)))〉})) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |