![]() |
Metamath
Proof Explorer Theorem List (p. 335 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | qusima 33401* | The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) & ⊢ (𝜑 → 𝐻 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐸‘𝐻) = (𝐹 “ 𝐻)) | ||
Theorem | qusrn 33402* | The natural map from elements to their cosets is surjective. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑈 = (𝐵 / (𝐺 ~QG 𝑁)) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → ran 𝐹 = 𝑈) | ||
Theorem | nsgqus0 33403 | A normal subgroup 𝑁 is a member of all subgroups 𝐹 of the quotient group by 𝑁. In fact, it is the identity element of the quotient group. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) ⇒ ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ 𝐹) | ||
Theorem | nsgmgclem 33404* | Lemma for nsgmgc 33405. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) & ⊢ (𝜑 → 𝐹 ∈ (SubGrp‘𝑄)) ⇒ ⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺)) | ||
Theorem | nsgmgc 33405* | There is a monotone Galois connection between the lattice of subgroups of a group 𝐺 containing a normal subgroup 𝑁 and the lattice of subgroups of the quotient group 𝐺 / 𝑁. This is sometimes called the lattice theorem. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} & ⊢ 𝑇 = (SubGrp‘𝑄) & ⊢ 𝐽 = (𝑉MGalConn𝑊) & ⊢ 𝑉 = (toInc‘𝑆) & ⊢ 𝑊 = (toInc‘𝑇) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝐸𝐽𝐹) | ||
Theorem | nsgqusf1olem1 33406* | Lemma for nsgqusf1o 33409. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} & ⊢ 𝑇 = (SubGrp‘𝑄) & ⊢ ≤ = (le‘(toInc‘𝑆)) & ⊢ ≲ = (le‘(toInc‘𝑇)) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ 𝑇) | ||
Theorem | nsgqusf1olem2 33407* | Lemma for nsgqusf1o 33409. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} & ⊢ 𝑇 = (SubGrp‘𝑄) & ⊢ ≤ = (le‘(toInc‘𝑆)) & ⊢ ≲ = (le‘(toInc‘𝑇)) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → ran 𝐸 = 𝑇) | ||
Theorem | nsgqusf1olem3 33408* | Lemma for nsgqusf1o 33409. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} & ⊢ 𝑇 = (SubGrp‘𝑄) & ⊢ ≤ = (le‘(toInc‘𝑆)) & ⊢ ≲ = (le‘(toInc‘𝑇)) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → ran 𝐹 = 𝑆) | ||
Theorem | nsgqusf1o 33409* | The canonical projection homomorphism 𝐸 defines a bijective correspondence between the set 𝑆 of subgroups of 𝐺 containing a normal subgroup 𝑁 and the subgroups of the quotient group 𝐺 / 𝑁. This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} & ⊢ 𝑇 = (SubGrp‘𝑄) & ⊢ ≤ = (le‘(toInc‘𝑆)) & ⊢ ≲ = (le‘(toInc‘𝑇)) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝐸:𝑆–1-1-onto→𝑇) | ||
Theorem | lmhmqusker 33410* | A surjective module homomorphism 𝐹 from 𝐺 to 𝐻 induces an isomorphism 𝐽 from 𝑄 to 𝐻, where 𝑄 is the factor group of 𝐺 by 𝐹's kernel 𝐾. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 LMHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) ⇒ ⊢ (𝜑 → 𝐽 ∈ (𝑄 LMIso 𝐻)) | ||
Theorem | lmicqusker 33411 | The image 𝐻 of a module homomorphism 𝐹 is isomorphic with the quotient module 𝑄 over 𝐹's kernel 𝐾. This is part of what is sometimes called the first isomorphism theorem for modules. (Contributed by Thierry Arnoux, 10-Mar-2025.) |
⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 LMHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) ⇒ ⊢ (𝜑 → 𝑄 ≃𝑚 𝐻) | ||
Theorem | lidlmcld 33412 | An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐼) | ||
Theorem | intlidl 33413 | The intersection of a nonempty collection of ideals is an ideal. (Contributed by Thierry Arnoux, 8-Jun-2024.) |
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∩ 𝐶 ∈ (LIdeal‘𝑅)) | ||
Theorem | 0ringidl 33414 | The zero ideal is the only ideal of the trivial ring. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (LIdeal‘𝑅) = {{ 0 }}) | ||
Theorem | pidlnzb 33415 | A principal ideal is nonzero iff it is generated by a nonzero elements (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 ≠ 0 ↔ (𝐾‘{𝑋}) ≠ { 0 })) | ||
Theorem | lidlunitel 33416 | If an ideal 𝐼 contains a unit 𝐽, then it is the whole ring. (Contributed by Thierry Arnoux, 19-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ (𝜑 → 𝐽 ∈ 𝑈) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) ⇒ ⊢ (𝜑 → 𝐼 = 𝐵) | ||
Theorem | unitpidl1 33417 | The ideal 𝐼 generated by an element 𝑋 of an integral domain 𝑅 is the unit ideal 𝐵 iff 𝑋 is a ring unit. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝐼 = (𝐾‘{𝑋}) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ IDomn) ⇒ ⊢ (𝜑 → (𝐼 = 𝐵 ↔ 𝑋 ∈ 𝑈)) | ||
Theorem | rhmquskerlem 33418* | The mapping 𝐽 induced by a ring homomorphism 𝐹 from the quotient group 𝑄 over 𝐹's kernel 𝐾 is a ring homomorphism. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 RingHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) & ⊢ (𝜑 → 𝐺 ∈ CRing) ⇒ ⊢ (𝜑 → 𝐽 ∈ (𝑄 RingHom 𝐻)) | ||
Theorem | rhmqusker 33419* | A surjective ring homomorphism 𝐹 from 𝐺 to 𝐻 induces an isomorphism 𝐽 from 𝑄 to 𝐻, where 𝑄 is the factor group of 𝐺 by 𝐹's kernel 𝐾. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 RingHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) & ⊢ (𝜑 → 𝐺 ∈ CRing) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) ⇒ ⊢ (𝜑 → 𝐽 ∈ (𝑄 RingIso 𝐻)) | ||
Theorem | ricqusker 33420 | The image 𝐻 of a ring homomorphism 𝐹 is isomorphic with the quotient ring 𝑄 over 𝐹's kernel 𝐾. This a part of what is sometimes called the first isomorphism theorem for rings. (Contributed by Thierry Arnoux, 10-Mar-2025.) |
⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 RingHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) & ⊢ (𝜑 → 𝐺 ∈ CRing) ⇒ ⊢ (𝜑 → 𝑄 ≃𝑟 𝐻) | ||
Theorem | elrspunidl 33421* | Elementhood in the span of a union of ideals. (Contributed by Thierry Arnoux, 30-Jun-2024.) |
⊢ 𝑁 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑆 ⊆ (LIdeal‘𝑅)) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘∪ 𝑆) ↔ ∃𝑎 ∈ (𝐵 ↑m 𝑆)(𝑎 finSupp 0 ∧ 𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘 ∈ 𝑆 (𝑎‘𝑘) ∈ 𝑘))) | ||
Theorem | elrspunsn 33422* | Membership to the span of an ideal 𝑅 and a single element 𝑋. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑁 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ + = (+g‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝐼)) ⇒ ⊢ (𝜑 → (𝐴 ∈ (𝑁‘(𝐼 ∪ {𝑋})) ↔ ∃𝑟 ∈ 𝐵 ∃𝑖 ∈ 𝐼 𝐴 = ((𝑟 · 𝑋) + 𝑖))) | ||
Theorem | lidlincl 33423 | Ideals are closed under intersection. (Contributed by Thierry Arnoux, 5-Jul-2024.) |
⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐽 ∈ 𝑈) → (𝐼 ∩ 𝐽) ∈ 𝑈) | ||
Theorem | idlinsubrg 33424 | The intersection between an ideal and a subring is an ideal of the subring. (Contributed by Thierry Arnoux, 6-Jul-2024.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝑉 = (LIdeal‘𝑆) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼 ∈ 𝑈) → (𝐼 ∩ 𝐴) ∈ 𝑉) | ||
Theorem | rhmimaidl 33425 | The image of an ideal 𝐼 by a surjective ring homomorphism 𝐹 is an ideal. (Contributed by Thierry Arnoux, 6-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑇 = (LIdeal‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵 ∧ 𝐼 ∈ 𝑇) → (𝐹 “ 𝐼) ∈ 𝑈) | ||
Theorem | drngidl 33426 | A nonzero ring is a division ring if and only if its only left ideals are the zero ideal and the unit ideal. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{ 0 }, 𝐵})) | ||
Theorem | drngidlhash 33427 | A ring is a division ring if and only if it admits exactly two ideals. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑅 ∈ DivRing ↔ (♯‘𝑈) = 2)) | ||
Syntax | cprmidl 33428 | Extend class notation with the class of prime ideals. |
class PrmIdeal | ||
Definition | df-prmidl 33429* | Define the class of prime ideals of a ring 𝑅. A proper ideal 𝐼 of 𝑅 is prime if whenever 𝐴𝐵 ⊆ 𝐼 for ideals 𝐴 and 𝐵, either 𝐴 ⊆ 𝐼 or 𝐵 ⊆ 𝐼. The more familiar definition using elements rather than ideals is equivalent provided 𝑅 is commutative; see prmidl2 33434 and isprmidlc 33440. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Thierry Arnoux, 14-Jan-2024.) |
⊢ PrmIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) | ||
Theorem | prmidlval 33430* | The class of prime ideals of a ring 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (PrmIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) | ||
Theorem | isprmidl 33431* | The predicate "is a prime ideal". (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) | ||
Theorem | prmidlnr 33432 | A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ≠ 𝐵) | ||
Theorem | prmidl 33433* | The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥 · 𝑦) ∈ 𝑃) → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) | ||
Theorem | prmidl2 33434* | A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 38030 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅)) | ||
Theorem | idlmulssprm 33435 | Let 𝑃 be a prime ideal containing the product (𝐼 × 𝐽) of two ideals 𝐼 and 𝐽. Then 𝐼 ⊆ 𝑃 or 𝐽 ⊆ 𝑃. (Contributed by Thierry Arnoux, 13-Apr-2024.) |
⊢ × = (LSSum‘(mulGrp‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑃 ∈ (PrmIdeal‘𝑅)) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → (𝐼 × 𝐽) ⊆ 𝑃) ⇒ ⊢ (𝜑 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) | ||
Theorem | pridln1 33436 | A proper ideal cannot contain the ring unity. (Contributed by Thierry Arnoux, 9-Apr-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → ¬ 1 ∈ 𝐼) | ||
Theorem | prmidlidl 33437 | A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅)) | ||
Theorem | prmidlssidl 33438 | Prime ideals as a subset of ideals. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
⊢ (𝑅 ∈ Ring → (PrmIdeal‘𝑅) ⊆ (LIdeal‘𝑅)) | ||
Theorem | cringm4 33439 | Commutative/associative law for commutative ring. (Contributed by Thierry Arnoux, 14-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 · 𝑌) · (𝑍 · 𝑊)) = ((𝑋 · 𝑍) · (𝑌 · 𝑊))) | ||
Theorem | isprmidlc 33440* | The predicate "is prime ideal" for commutative rings. Alternate definition for commutative rings. See definition in [Lang] p. 92. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))))) | ||
Theorem | prmidlc 33441 | Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)) | ||
Theorem | 0ringprmidl 33442 | The trivial ring does not have any prime ideal. (Contributed by Thierry Arnoux, 30-Jun-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (PrmIdeal‘𝑅) = ∅) | ||
Theorem | prmidl0 33443 | The zero ideal of a commutative ring 𝑅 is a prime ideal if and only if 𝑅 is an integral domain. (Contributed by Thierry Arnoux, 30-Jun-2024.) |
⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ { 0 } ∈ (PrmIdeal‘𝑅)) ↔ 𝑅 ∈ IDomn) | ||
Theorem | rhmpreimaprmidl 33444 | The preimage of a prime ideal by a ring homomorphism is a prime ideal. (Contributed by Thierry Arnoux, 29-Jun-2024.) |
⊢ 𝑃 = (PrmIdeal‘𝑅) ⇒ ⊢ (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ∈ 𝑃) | ||
Theorem | qsidomlem1 33445 | If the quotient ring of a commutative ring relative to an ideal is an integral domain, that ideal must be prime. (Contributed by Thierry Arnoux, 16-Jan-2024.) |
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝐼 ∈ (PrmIdeal‘𝑅)) | ||
Theorem | qsidomlem2 33446 | A quotient by a prime ideal is an integral domain. (Contributed by Thierry Arnoux, 16-Jan-2024.) |
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ IDomn) | ||
Theorem | qsidom 33447 | An ideal 𝐼 in the commutative ring 𝑅 is prime if and only if the factor ring 𝑄 is an integral domain. (Contributed by Thierry Arnoux, 16-Jan-2024.) |
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑄 ∈ IDomn ↔ 𝐼 ∈ (PrmIdeal‘𝑅))) | ||
Theorem | qsnzr 33448 | A quotient of a non-zero ring by a proper ideal is a non-zero ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ (𝜑 → 𝐼 ≠ 𝐵) ⇒ ⊢ (𝜑 → 𝑄 ∈ NzRing) | ||
Theorem | ssdifidllem 33449* | Lemma for ssdifidl 33450: The set 𝑃 used in the proof of ssdifidl 33450 satisfies the condition of Zorn's Lemma. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → (𝑆 ∩ 𝐼) = ∅) & ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)} & ⊢ (𝜑 → 𝑍 ⊆ 𝑃) & ⊢ (𝜑 → 𝑍 ≠ ∅) & ⊢ (𝜑 → [⊊] Or 𝑍) ⇒ ⊢ (𝜑 → ∪ 𝑍 ∈ 𝑃) | ||
Theorem | ssdifidl 33450* | Let 𝑅 be a ring, and let 𝐼 be an ideal of 𝑅 disjoint with a set 𝑆. Then there exists an ideal 𝑖, maximal among the set 𝑃 of ideals containing 𝐼 and disjoint with 𝑆. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → (𝑆 ∩ 𝐼) = ∅) & ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)} ⇒ ⊢ (𝜑 → ∃𝑖 ∈ 𝑃 ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗) | ||
Theorem | ssdifidlprm 33451* | If the set 𝑆 of ssdifidl 33450 is multiplicatively closed, then the ideal 𝑖 is prime. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝑀)) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → (𝑆 ∩ 𝐼) = ∅) & ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)} ⇒ ⊢ (𝜑 → ∃𝑖 ∈ 𝑃 (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗)) | ||
Syntax | cmxidl 33452 | Extend class notation with the class of maximal ideals. |
class MaxIdeal | ||
Definition | df-mxidl 33453* | Define the class of maximal ideals of a ring 𝑅. A proper ideal is called maximal if it is maximal with respect to inclusion among proper ideals. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ MaxIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟))))}) | ||
Theorem | mxidlval 33454* | The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (MaxIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))}) | ||
Theorem | ismxidl 33455* | The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) | ||
Theorem | mxidlidl 33456 | A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅)) | ||
Theorem | mxidlnr 33457 | A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ 𝐵) | ||
Theorem | mxidlmax 33458 | A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵)) | ||
Theorem | mxidln1 33459 | One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ¬ 1 ∈ 𝑀) | ||
Theorem | mxidlnzr 33460 | A ring with a maximal ideal is a nonzero ring. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑅 ∈ NzRing) | ||
Theorem | mxidlmaxv 33461 | An ideal 𝐼 strictly containing a maximal ideal 𝑀 is the whole ring 𝐵. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝑀 ⊆ 𝐼) & ⊢ (𝜑 → 𝑋 ∈ (𝐼 ∖ 𝑀)) ⇒ ⊢ (𝜑 → 𝐼 = 𝐵) | ||
Theorem | crngmxidl 33462 | In a commutative ring, maximal ideals of the opposite ring coincide with maximal ideals. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝑀 = (MaxIdeal‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑀 = (MaxIdeal‘𝑂)) | ||
Theorem | mxidlprm 33463 | Every maximal ideal is prime. Statement in [Lang] p. 92. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ × = (LSSum‘(mulGrp‘𝑅)) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (PrmIdeal‘𝑅)) | ||
Theorem | mxidlirredi 33464 | In an integral domain, the generator of a maximal ideal is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑀 = (𝐾‘{𝑋}) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) ⇒ ⊢ (𝜑 → 𝑋 ∈ (Irred‘𝑅)) | ||
Theorem | mxidlirred 33465 | In a principal ideal domain, maximal ideals are exactly the ideals generated by irreducible elements. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑀 = (𝐾‘{𝑋}) & ⊢ (𝜑 → 𝑅 ∈ PID) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑀 ∈ (LIdeal‘𝑅)) ⇒ ⊢ (𝜑 → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ 𝑋 ∈ (Irred‘𝑅))) | ||
Theorem | ssmxidllem 33466* | The set 𝑃 used in the proof of ssmxidl 33467 satisfies the condition of Zorn's Lemma. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝐼 ≠ 𝐵) & ⊢ (𝜑 → 𝑍 ⊆ 𝑃) & ⊢ (𝜑 → 𝑍 ≠ ∅) & ⊢ (𝜑 → [⊊] Or 𝑍) ⇒ ⊢ (𝜑 → ∪ 𝑍 ∈ 𝑃) | ||
Theorem | ssmxidl 33467* | Let 𝑅 be a ring, and let 𝐼 be a proper ideal of 𝑅. Then there is a maximal ideal of 𝑅 containing 𝐼. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼 ⊆ 𝑚) | ||
Theorem | drnglidl1ne0 33468 | In a nonzero ring, the zero ideal is different of the unit ideal. (Contributed by Thierry Arnoux, 16-Mar-2025.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → 𝐵 ≠ { 0 }) | ||
Theorem | drng0mxidl 33469 | In a division ring, the zero ideal is a maximal ideal. (Contributed by Thierry Arnoux, 16-Mar-2025.) |
⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅)) | ||
Theorem | drngmxidl 33470 | The zero ideal is the only ideal of a division ring. (Contributed by Thierry Arnoux, 16-Mar-2025.) |
⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) = {{ 0 }}) | ||
Theorem | drngmxidlr 33471 | If a ring's only maximal ideal is the zero ideal, it is a division ring. See also drngmxidl 33470. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑀 = (MaxIdeal‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 = {{ 0 }}) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
Theorem | krull 33472* | Krull's theorem: Any nonzero ring has at least one maximal ideal. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
⊢ (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) | ||
Theorem | mxidlnzrb 33473* | A ring is nonzero if and only if it has maximal ideals. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))) | ||
Theorem | krullndrng 33474* | Krull's theorem for non-division-rings: Existence of a nonzero maximal ideal. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑚 ≠ { 0 }) | ||
Theorem | opprabs 33475 | The opposite ring of the opposite ring is the original ring. Note the conditions on this theorem, which makes it unpractical in case we only have e.g. 𝑅 ∈ Ring as a premise. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑅) & ⊢ (𝜑 → (.r‘ndx) ∈ dom 𝑅) & ⊢ (𝜑 → · Fn (𝐵 × 𝐵)) ⇒ ⊢ (𝜑 → 𝑅 = (oppr‘𝑂)) | ||
Theorem | oppreqg 33476 | Group coset equivalence relation for the opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼)) | ||
Theorem | opprnsg 33477 | Normal subgroups of the opposite ring are the same as the original normal subgroups. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (NrmSGrp‘𝑅) = (NrmSGrp‘𝑂) | ||
Theorem | opprlidlabs 33478 | The ideals of the opposite ring's opposite ring are the ideals of the original ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr‘𝑂))) | ||
Theorem | oppr2idl 33479 | Two sided ideal of the opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (2Ideal‘𝑅) = (2Ideal‘𝑂)) | ||
Theorem | opprmxidlabs 33480 | The maximal ideal of the opposite ring's opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) ⇒ ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘(oppr‘𝑂))) | ||
Theorem | opprqusbas 33481 | The base of the quotient of the opposite ring is the same as the base of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (Base‘(oppr‘𝑄)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) | ||
Theorem | opprqusplusg 33482 | The group operation of the quotient of the opposite ring is the same as the group operation of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) & ⊢ 𝐸 = (Base‘𝑄) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) ⇒ ⊢ (𝜑 → (𝑋(+g‘(oppr‘𝑄))𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌)) | ||
Theorem | opprqus0g 33483 | The group identity element of the quotient of the opposite ring is the same as the group identity element of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) ⇒ ⊢ (𝜑 → (0g‘(oppr‘𝑄)) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼)))) | ||
Theorem | opprqusmulr 33484 | The multiplication operation of the quotient of the opposite ring is the same as the multiplication operation of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐸 = (Base‘𝑄) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) ⇒ ⊢ (𝜑 → (𝑋(.r‘(oppr‘𝑄))𝑌) = (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌)) | ||
Theorem | opprqus1r 33485 | The ring unity of the quotient of the opposite ring is the same as the ring unity of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) ⇒ ⊢ (𝜑 → (1r‘(oppr‘𝑄)) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))) | ||
Theorem | opprqusdrng 33486 | The quotient of the opposite ring is a division ring iff the opposite of the quotient ring is. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) ⇒ ⊢ (𝜑 → ((oppr‘𝑄) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝐼)) ∈ DivRing)) | ||
Theorem | qsdrngilem 33487* | Lemma for qsdrngi 33488. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑂)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑀) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ (Base‘𝑄)(𝑣(.r‘𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r‘𝑄)) | ||
Theorem | qsdrngi 33488 | A quotient by a maximal left and maximal right ideal is a division ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑂)) ⇒ ⊢ (𝜑 → 𝑄 ∈ DivRing) | ||
Theorem | qsdrnglem2 33489 | Lemma for qsdrng 33490. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ (2Ideal‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ DivRing) & ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝑀 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 ∈ (𝐽 ∖ 𝑀)) ⇒ ⊢ (𝜑 → 𝐽 = 𝐵) | ||
Theorem | qsdrng 33490 | An ideal 𝑀 is both left and right maximal if and only if the factor ring 𝑄 is a division ring. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ (2Ideal‘𝑅)) ⇒ ⊢ (𝜑 → (𝑄 ∈ DivRing ↔ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂)))) | ||
Theorem | qsfld 33491 | An ideal 𝑀 in the commutative ring 𝑅 is maximal if and only if the factor ring 𝑄 is a field. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ (LIdeal‘𝑅)) ⇒ ⊢ (𝜑 → (𝑄 ∈ Field ↔ 𝑀 ∈ (MaxIdeal‘𝑅))) | ||
Theorem | mxidlprmALT 33492 | Every maximal ideal is prime - alternative proof. (Contributed by Thierry Arnoux, 15-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) ⇒ ⊢ (𝜑 → 𝑀 ∈ (PrmIdeal‘𝑅)) | ||
Syntax | cidlsrg 33493 | Extend class notation with the semiring of ideals of a ring. |
class IDLsrg | ||
Definition | df-idlsrg 33494* | Define a structure for the ideals of a ring. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ IDLsrg = (𝑟 ∈ V ↦ ⦋(LIdeal‘𝑟) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (LSSum‘𝑟)〉, 〈(.r‘ndx), (𝑖 ∈ 𝑏, 𝑗 ∈ 𝑏 ↦ ((RSpan‘𝑟)‘(𝑖(LSSum‘(mulGrp‘𝑟))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝑏 ↦ {𝑗 ∈ 𝑏 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑏 ∧ 𝑖 ⊆ 𝑗)}〉})) | ||
Theorem | idlsrgstr 33495 | A constructed semiring of ideals is a structure. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉}) ⇒ ⊢ 𝑊 Struct 〈1, ;10〉 | ||
Theorem | idlsrgval 33496* | Lemma for idlsrgbas 33497 through idlsrgtset 33501. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ ⊕ = (LSSum‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ⊗ = (LSSum‘𝐺) ⇒ ⊢ (𝑅 ∈ 𝑉 → (IDLsrg‘𝑅) = ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), ⊕ 〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖 ⊗ 𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉})) | ||
Theorem | idlsrgbas 33497 | Base of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐼 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐼 = (Base‘𝑆)) | ||
Theorem | idlsrgplusg 33498 | Additive operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ ⊕ = (LSSum‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → ⊕ = (+g‘𝑆)) | ||
Theorem | idlsrg0g 33499 | The zero ideal is the additive identity of the semiring of ideals. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → { 0 } = (0g‘𝑆)) | ||
Theorem | idlsrgmulr 33500* | Multiplicative operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ⊗ = (LSSum‘𝐺) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑖 ∈ 𝐵, 𝑗 ∈ 𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 ⊗ 𝑗))) = (.r‘𝑆)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |