| Metamath
Proof Explorer Theorem List (p. 335 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | qsidom 33401 | An ideal 𝐼 in the commutative ring 𝑅 is prime if and only if the factor ring 𝑄 is an integral domain. (Contributed by Thierry Arnoux, 16-Jan-2024.) |
| ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑄 ∈ IDomn ↔ 𝐼 ∈ (PrmIdeal‘𝑅))) | ||
| Theorem | qsnzr 33402 | A quotient of a non-zero ring by a proper ideal is a non-zero ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ (𝜑 → 𝐼 ≠ 𝐵) ⇒ ⊢ (𝜑 → 𝑄 ∈ NzRing) | ||
| Theorem | ssdifidllem 33403* | Lemma for ssdifidl 33404: The set 𝑃 used in the proof of ssdifidl 33404 satisfies the condition of Zorn's Lemma. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → (𝑆 ∩ 𝐼) = ∅) & ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)} & ⊢ (𝜑 → 𝑍 ⊆ 𝑃) & ⊢ (𝜑 → 𝑍 ≠ ∅) & ⊢ (𝜑 → [⊊] Or 𝑍) ⇒ ⊢ (𝜑 → ∪ 𝑍 ∈ 𝑃) | ||
| Theorem | ssdifidl 33404* | Let 𝑅 be a ring, and let 𝐼 be an ideal of 𝑅 disjoint with a set 𝑆. Then there exists an ideal 𝑖, maximal among the set 𝑃 of ideals containing 𝐼 and disjoint with 𝑆. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → (𝑆 ∩ 𝐼) = ∅) & ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)} ⇒ ⊢ (𝜑 → ∃𝑖 ∈ 𝑃 ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗) | ||
| Theorem | ssdifidlprm 33405* | If the set 𝑆 of ssdifidl 33404 is multiplicatively closed, then the ideal 𝑖 is prime. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝑀)) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → (𝑆 ∩ 𝐼) = ∅) & ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)} ⇒ ⊢ (𝜑 → ∃𝑖 ∈ 𝑃 (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗)) | ||
| Syntax | cmxidl 33406 | Extend class notation with the class of maximal ideals. |
| class MaxIdeal | ||
| Definition | df-mxidl 33407* | Define the class of maximal ideals of a ring 𝑅. A proper ideal is called maximal if it is maximal with respect to inclusion among proper ideals. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
| ⊢ MaxIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟))))}) | ||
| Theorem | mxidlval 33408* | The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (MaxIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))}) | ||
| Theorem | ismxidl 33409* | The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) | ||
| Theorem | mxidlidl 33410 | A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅)) | ||
| Theorem | mxidlnr 33411 | A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ 𝐵) | ||
| Theorem | mxidlmax 33412 | A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵)) | ||
| Theorem | mxidln1 33413 | One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ¬ 1 ∈ 𝑀) | ||
| Theorem | mxidlnzr 33414 | A ring with a maximal ideal is a nonzero ring. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑅 ∈ NzRing) | ||
| Theorem | mxidlmaxv 33415 | An ideal 𝐼 strictly containing a maximal ideal 𝑀 is the whole ring 𝐵. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝑀 ⊆ 𝐼) & ⊢ (𝜑 → 𝑋 ∈ (𝐼 ∖ 𝑀)) ⇒ ⊢ (𝜑 → 𝐼 = 𝐵) | ||
| Theorem | crngmxidl 33416 | In a commutative ring, maximal ideals of the opposite ring coincide with maximal ideals. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
| ⊢ 𝑀 = (MaxIdeal‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑀 = (MaxIdeal‘𝑂)) | ||
| Theorem | mxidlprm 33417 | Every maximal ideal is prime. Statement in [Lang] p. 92. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
| ⊢ × = (LSSum‘(mulGrp‘𝑅)) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (PrmIdeal‘𝑅)) | ||
| Theorem | mxidlirredi 33418 | In an integral domain, the generator of a maximal ideal is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑀 = (𝐾‘{𝑋}) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) ⇒ ⊢ (𝜑 → 𝑋 ∈ (Irred‘𝑅)) | ||
| Theorem | mxidlirred 33419 | In a principal ideal domain, maximal ideals are exactly the ideals generated by irreducible elements. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑀 = (𝐾‘{𝑋}) & ⊢ (𝜑 → 𝑅 ∈ PID) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑀 ∈ (LIdeal‘𝑅)) ⇒ ⊢ (𝜑 → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ 𝑋 ∈ (Irred‘𝑅))) | ||
| Theorem | ssmxidllem 33420* | The set 𝑃 used in the proof of ssmxidl 33421 satisfies the condition of Zorn's Lemma. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝐼 ≠ 𝐵) & ⊢ (𝜑 → 𝑍 ⊆ 𝑃) & ⊢ (𝜑 → 𝑍 ≠ ∅) & ⊢ (𝜑 → [⊊] Or 𝑍) ⇒ ⊢ (𝜑 → ∪ 𝑍 ∈ 𝑃) | ||
| Theorem | ssmxidl 33421* | Let 𝑅 be a ring, and let 𝐼 be a proper ideal of 𝑅. Then there is a maximal ideal of 𝑅 containing 𝐼. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼 ⊆ 𝑚) | ||
| Theorem | drnglidl1ne0 33422 | In a nonzero ring, the zero ideal is different of the unit ideal. (Contributed by Thierry Arnoux, 16-Mar-2025.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → 𝐵 ≠ { 0 }) | ||
| Theorem | drng0mxidl 33423 | In a division ring, the zero ideal is a maximal ideal. (Contributed by Thierry Arnoux, 16-Mar-2025.) |
| ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅)) | ||
| Theorem | drngmxidl 33424 | The zero ideal is the only ideal of a division ring. (Contributed by Thierry Arnoux, 16-Mar-2025.) |
| ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) = {{ 0 }}) | ||
| Theorem | drngmxidlr 33425 | If a ring's only maximal ideal is the zero ideal, it is a division ring. See also drngmxidl 33424. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑀 = (MaxIdeal‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 = {{ 0 }}) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
| Theorem | krull 33426* | Krull's theorem: Any nonzero ring has at least one maximal ideal. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
| ⊢ (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) | ||
| Theorem | mxidlnzrb 33427* | A ring is nonzero if and only if it has maximal ideals. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
| ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))) | ||
| Theorem | krullndrng 33428* | Krull's theorem for non-division-rings: Existence of a nonzero maximal ideal. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑚 ≠ { 0 }) | ||
| Theorem | opprabs 33429 | The opposite ring of the opposite ring is the original ring. Note the conditions on this theorem, which makes it unpractical in case we only have e.g. 𝑅 ∈ Ring as a premise. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑅) & ⊢ (𝜑 → (.r‘ndx) ∈ dom 𝑅) & ⊢ (𝜑 → · Fn (𝐵 × 𝐵)) ⇒ ⊢ (𝜑 → 𝑅 = (oppr‘𝑂)) | ||
| Theorem | oppreqg 33430 | Group coset equivalence relation for the opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼)) | ||
| Theorem | opprnsg 33431 | Normal subgroups of the opposite ring are the same as the original normal subgroups. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (NrmSGrp‘𝑅) = (NrmSGrp‘𝑂) | ||
| Theorem | opprlidlabs 33432 | The ideals of the opposite ring's opposite ring are the ideals of the original ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr‘𝑂))) | ||
| Theorem | oppr2idl 33433 | Two sided ideal of the opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (2Ideal‘𝑅) = (2Ideal‘𝑂)) | ||
| Theorem | opprmxidlabs 33434 | The maximal ideal of the opposite ring's opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) ⇒ ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘(oppr‘𝑂))) | ||
| Theorem | opprqusbas 33435 | The base of the quotient of the opposite ring is the same as the base of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (Base‘(oppr‘𝑄)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) | ||
| Theorem | opprqusplusg 33436 | The group operation of the quotient of the opposite ring is the same as the group operation of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) & ⊢ 𝐸 = (Base‘𝑄) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) ⇒ ⊢ (𝜑 → (𝑋(+g‘(oppr‘𝑄))𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌)) | ||
| Theorem | opprqus0g 33437 | The group identity element of the quotient of the opposite ring is the same as the group identity element of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) ⇒ ⊢ (𝜑 → (0g‘(oppr‘𝑄)) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼)))) | ||
| Theorem | opprqusmulr 33438 | The multiplication operation of the quotient of the opposite ring is the same as the multiplication operation of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐸 = (Base‘𝑄) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) ⇒ ⊢ (𝜑 → (𝑋(.r‘(oppr‘𝑄))𝑌) = (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌)) | ||
| Theorem | opprqus1r 33439 | The ring unity of the quotient of the opposite ring is the same as the ring unity of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) ⇒ ⊢ (𝜑 → (1r‘(oppr‘𝑄)) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))) | ||
| Theorem | opprqusdrng 33440 | The quotient of the opposite ring is a division ring iff the opposite of the quotient ring is. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) ⇒ ⊢ (𝜑 → ((oppr‘𝑄) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝐼)) ∈ DivRing)) | ||
| Theorem | qsdrngilem 33441* | Lemma for qsdrngi 33442. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑂)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑀) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ (Base‘𝑄)(𝑣(.r‘𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r‘𝑄)) | ||
| Theorem | qsdrngi 33442 | A quotient by a maximal left and maximal right ideal is a division ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑂)) ⇒ ⊢ (𝜑 → 𝑄 ∈ DivRing) | ||
| Theorem | qsdrnglem2 33443 | Lemma for qsdrng 33444. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ (2Ideal‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ DivRing) & ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝑀 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 ∈ (𝐽 ∖ 𝑀)) ⇒ ⊢ (𝜑 → 𝐽 = 𝐵) | ||
| Theorem | qsdrng 33444 | An ideal 𝑀 is both left and right maximal if and only if the factor ring 𝑄 is a division ring. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ (2Ideal‘𝑅)) ⇒ ⊢ (𝜑 → (𝑄 ∈ DivRing ↔ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂)))) | ||
| Theorem | qsfld 33445 | An ideal 𝑀 in the commutative ring 𝑅 is maximal if and only if the factor ring 𝑄 is a field. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
| ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ (LIdeal‘𝑅)) ⇒ ⊢ (𝜑 → (𝑄 ∈ Field ↔ 𝑀 ∈ (MaxIdeal‘𝑅))) | ||
| Theorem | mxidlprmALT 33446 | Every maximal ideal is prime - alternative proof. (Contributed by Thierry Arnoux, 15-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) ⇒ ⊢ (𝜑 → 𝑀 ∈ (PrmIdeal‘𝑅)) | ||
| Syntax | cidlsrg 33447 | Extend class notation with the semiring of ideals of a ring. |
| class IDLsrg | ||
| Definition | df-idlsrg 33448* | Define a structure for the ideals of a ring. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
| ⊢ IDLsrg = (𝑟 ∈ V ↦ ⦋(LIdeal‘𝑟) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (LSSum‘𝑟)〉, 〈(.r‘ndx), (𝑖 ∈ 𝑏, 𝑗 ∈ 𝑏 ↦ ((RSpan‘𝑟)‘(𝑖(LSSum‘(mulGrp‘𝑟))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝑏 ↦ {𝑗 ∈ 𝑏 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑏 ∧ 𝑖 ⊆ 𝑗)}〉})) | ||
| Theorem | idlsrgstr 33449 | A constructed semiring of ideals is a structure. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉}) ⇒ ⊢ 𝑊 Struct 〈1, ;10〉 | ||
| Theorem | idlsrgval 33450* | Lemma for idlsrgbas 33451 through idlsrgtset 33455. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ ⊕ = (LSSum‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ⊗ = (LSSum‘𝐺) ⇒ ⊢ (𝑅 ∈ 𝑉 → (IDLsrg‘𝑅) = ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), ⊕ 〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖 ⊗ 𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉})) | ||
| Theorem | idlsrgbas 33451 | Base of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| ⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐼 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐼 = (Base‘𝑆)) | ||
| Theorem | idlsrgplusg 33452 | Additive operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| ⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ ⊕ = (LSSum‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → ⊕ = (+g‘𝑆)) | ||
| Theorem | idlsrg0g 33453 | The zero ideal is the additive identity of the semiring of ideals. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| ⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → { 0 } = (0g‘𝑆)) | ||
| Theorem | idlsrgmulr 33454* | Multiplicative operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| ⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ⊗ = (LSSum‘𝐺) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑖 ∈ 𝐵, 𝑗 ∈ 𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 ⊗ 𝑗))) = (.r‘𝑆)) | ||
| Theorem | idlsrgtset 33455* | Topology component of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| ⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 𝐽 = ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗}) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐽 = (TopSet‘𝑆)) | ||
| Theorem | idlsrgmulrval 33456 | Value of the ring multiplication for the ideals of a ring 𝑅. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| ⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ · = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) = ((RSpan‘𝑅)‘(𝐼 · 𝐽))) | ||
| Theorem | idlsrgmulrcl 33457 | Ideals of a ring 𝑅 are closed under multiplication. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| ⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ∈ 𝐵) | ||
| Theorem | idlsrgmulrss1 33458 | In a commutative ring, the product of two ideals is a subset of the first one. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| ⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐼) | ||
| Theorem | idlsrgmulrss2 33459 | The product of two ideals is a subset of the second one. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
| ⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐽) | ||
| Theorem | idlsrgmulrssin 33460 | In a commutative ring, the product of two ideals is a subset of their intersection. (Contributed by Thierry Arnoux, 17-Jun-2024.) |
| ⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ (𝐼 ∩ 𝐽)) | ||
| Theorem | idlsrgmnd 33461 | The ideals of a ring form a monoid. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| ⊢ 𝑆 = (IDLsrg‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑆 ∈ Mnd) | ||
| Theorem | idlsrgcmnd 33462 | The ideals of a ring form a commutative monoid. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| ⊢ 𝑆 = (IDLsrg‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑆 ∈ CMnd) | ||
| Theorem | rprmval 33463* | The prime elements of a ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))}) | ||
| Theorem | isrprm 33464* | Property for 𝑃 to be a prime element in the ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))))) | ||
| Theorem | rprmcl 33465 | A ring prime is an element of the base set. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) | ||
| Theorem | rprmdvds 33466 | If a ring prime 𝑄 divides a product 𝑋 · 𝑌, then it divides either 𝑋 or 𝑌. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∥ (𝑋 · 𝑌)) ⇒ ⊢ (𝜑 → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌)) | ||
| Theorem | rprmnz 33467 | A ring prime is nonzero. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝑄 ≠ 0 ) | ||
| Theorem | rprmnunit 33468 | A ring prime is not a unit. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) ⇒ ⊢ (𝜑 → ¬ 𝑄 ∈ 𝑈) | ||
| Theorem | rsprprmprmidl 33469 | In a commutative ring, ideals generated by prime elements are prime ideals. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑃 ∈ (RPrime‘𝑅)) ⇒ ⊢ (𝜑 → (𝐾‘{𝑃}) ∈ (PrmIdeal‘𝑅)) | ||
| Theorem | rsprprmprmidlb 33470 | In an integral domain, an ideal generated by a single element is a prime iff that element is prime. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑃 ↔ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅))) | ||
| Theorem | rprmndvdsr1 33471 | A ring prime element does not divide the ring multiplicative identity. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) ⇒ ⊢ (𝜑 → ¬ 𝑄 ∥ 1 ) | ||
| Theorem | rprmasso 33472 | In an integral domain, the associate of a prime is a prime. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∥ 𝑌) & ⊢ (𝜑 → 𝑌 ∥ 𝑋) ⇒ ⊢ (𝜑 → 𝑌 ∈ 𝑃) | ||
| Theorem | rprmasso2 33473 | In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∥ 𝑌) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝑌 ∥ 𝑋) | ||
| Theorem | rprmasso3 33474* | In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 27-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∥ 𝑌) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ 𝑈 (𝑡 · 𝑋) = 𝑌) | ||
| Theorem | unitmulrprm 33475 | A ring unit multiplied by a ring prime is a ring prime. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐼 · 𝑄) ∈ 𝑃) | ||
| Theorem | rprmndvdsru 33476 | A ring prime element does not divide any ring unit. (Contributed by Thierry Arnoux, 27-May-2025.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑇 ∈ 𝑈) ⇒ ⊢ (𝜑 → ¬ 𝑄 ∥ 𝑇) | ||
| Theorem | rprmirredlem 33477 | Lemma for rprmirred 33478. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑄 ≠ 0 ) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑈)) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 = (𝑋 · 𝑌)) & ⊢ (𝜑 → 𝑄 ∥ 𝑋) ⇒ ⊢ (𝜑 → 𝑌 ∈ 𝑈) | ||
| Theorem | rprmirred 33478 | In an integral domain, ring primes are irreducible. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ IDomn) ⇒ ⊢ (𝜑 → 𝑄 ∈ 𝐼) | ||
| Theorem | rprmirredb 33479 | In a principal ideal domain, the converse of rprmirred 33478 holds, i.e. irreducible elements are prime. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ PID) ⇒ ⊢ (𝜑 → 𝐼 = 𝑃) | ||
| Theorem | rprmdvdspow 33480 | If a prime element divides a ring "power", it divides the term. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ ↑ = (.g‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑄 ∥ (𝑁 ↑ 𝑋)) ⇒ ⊢ (𝜑 → 𝑄 ∥ 𝑋) | ||
| Theorem | rprmdvdsprod 33481* | If a prime element 𝑄 divides a product, then it divides one term. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 finSupp 1 ) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ (𝜑 → 𝑄 ∥ (𝑀 Σg 𝐹)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 ∥ (𝐹‘𝑥)) | ||
| Theorem | 1arithidomlem1 33482* | Lemma for 1arithidom 33484. (Contributed by Thierry Arnoux, 30-May-2025.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐽 = (0..^(♯‘𝐹)) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐹 ∈ Word 𝑃) & ⊢ (𝜑 → 𝐺 ∈ Word 𝑃) & ⊢ (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg 𝐺)) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘 ∈ 𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤∃𝑢 ∈ (𝑈 ↑m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢 ∘f · (𝐹 ∘ 𝑤))))) & ⊢ (𝜑 → 𝐻 ∈ Word 𝑃) & ⊢ (𝜑 → ∃𝑘 ∈ 𝑈 (𝑀 Σg (𝐹 ++ 〈“𝑄”〉)) = (𝑘 · (𝑀 Σg 𝐻))) & ⊢ (𝜑 → 𝐾 ∈ (0..^(♯‘𝐻))) & ⊢ (𝜑 → 𝑄(∥r‘𝑅)(𝐻‘𝐾)) & ⊢ (𝜑 → 𝑇 ∈ 𝑈) & ⊢ (𝜑 → (𝑇 · 𝑄) = (𝐻‘𝐾)) & ⊢ (𝜑 → 𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))) & ⊢ (𝜑 → (𝐻 ∘ 𝑆) = (((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) ++ 〈“(𝐻‘𝐾)”〉)) & ⊢ (𝜑 → 𝑁 ∈ 𝑈) & ⊢ (𝜑 → (𝑀 Σg (𝐹 ++ 〈“𝑄”〉)) = (𝑁 · (𝑀 Σg 𝐻))) ⇒ ⊢ (𝜑 → ∃𝑐∃𝑑 ∈ (𝑈 ↑m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑 ∘f · (𝐹 ∘ 𝑐)))) | ||
| Theorem | 1arithidomlem2 33483* | Lemma for 1arithidom 33484: induction step. (Contributed by Thierry Arnoux, 27-May-2025.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐽 = (0..^(♯‘𝐹)) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐹 ∈ Word 𝑃) & ⊢ (𝜑 → 𝐺 ∈ Word 𝑃) & ⊢ (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg 𝐺)) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘 ∈ 𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤∃𝑢 ∈ (𝑈 ↑m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢 ∘f · (𝐹 ∘ 𝑤))))) & ⊢ (𝜑 → 𝐻 ∈ Word 𝑃) & ⊢ (𝜑 → ∃𝑘 ∈ 𝑈 (𝑀 Σg (𝐹 ++ 〈“𝑄”〉)) = (𝑘 · (𝑀 Σg 𝐻))) & ⊢ (𝜑 → 𝐾 ∈ (0..^(♯‘𝐻))) & ⊢ (𝜑 → 𝑄(∥r‘𝑅)(𝐻‘𝐾)) & ⊢ (𝜑 → 𝑇 ∈ 𝑈) & ⊢ (𝜑 → (𝑇 · 𝑄) = (𝐻‘𝐾)) & ⊢ (𝜑 → 𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))) & ⊢ (𝜑 → (𝐻 ∘ 𝑆) = (((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) ++ 〈“(𝐻‘𝐾)”〉)) & ⊢ (𝜑 → 𝑁 ∈ 𝑈) & ⊢ (𝜑 → (𝑀 Σg (𝐹 ++ 〈“𝑄”〉)) = (𝑁 · (𝑀 Σg 𝐻))) & ⊢ (𝜑 → 𝐷 ∈ (𝑈 ↑m (0..^(♯‘𝐹)))) & ⊢ (𝜑 → 𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹))) & ⊢ (𝜑 → ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝐷 ∘f · (𝐹 ∘ 𝐶))) ⇒ ⊢ (𝜑 → (((𝐶 ++ 〈“(♯‘𝐹)”〉) ∘ ◡𝑆):(0..^(♯‘(𝐹 ++ 〈“𝑄”〉)))–1-1-onto→(0..^(♯‘(𝐹 ++ 〈“𝑄”〉))) ∧ 𝐻 = (((𝐷 ++ 〈“𝑇”〉) ∘ ◡𝑆) ∘f · ((𝐹 ++ 〈“𝑄”〉) ∘ ((𝐶 ++ 〈“(♯‘𝐹)”〉) ∘ ◡𝑆))))) | ||
| Theorem | 1arithidom 33484* | Uniqueness of prime factorizations in an integral domain 𝑅. Given two equal products 𝐹 and 𝐺 of prime elements, 𝐹 and 𝐺 are equal up to a renumbering 𝑤 and a multiplication by units 𝑢. See also 1arith 16857. Chapter VII, Paragraph 3, Section 3, Proposition 2 of [BourbakiCAlg2], p. 228. (Contributed by Thierry Arnoux, 27-May-2025.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐽 = (0..^(♯‘𝐹)) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐹 ∈ Word 𝑃) & ⊢ (𝜑 → 𝐺 ∈ Word 𝑃) & ⊢ (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg 𝐺)) ⇒ ⊢ (𝜑 → ∃𝑤∃𝑢 ∈ (𝑈 ↑m 𝐽)(𝑤:𝐽–1-1-onto→𝐽 ∧ 𝐺 = (𝑢 ∘f · (𝐹 ∘ 𝑤)))) | ||
| Syntax | cufd 33485 | Class of unique factorization domains. |
| class UFD | ||
| Definition | df-ufd 33486* | Define the class of unique factorization domains. A unique factorization domain (UFD for short), is an integral domain such that every nonzero prime ideal contains a prime element (this is a characterization due to Irving Kaplansky). A UFD is sometimes also called a "factorial ring" following the terminology of Bourbaki. (Contributed by Mario Carneiro, 17-Feb-2015.) Exclude the 0 prime ideal. (Revised by Thierry Arnoux, 9-May-2025.) Exclude the 0 ring. (Revised by Thierry Arnoux, 14-Jun-2025.) |
| ⊢ UFD = {𝑟 ∈ IDomn ∣ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g‘𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅} | ||
| Theorem | isufd 33487* | The property of being a Unique Factorization Domain. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| ⊢ 𝐼 = (PrmIdeal‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ (𝐼 ∖ {{ 0 }})(𝑖 ∩ 𝑃) ≠ ∅)) | ||
| Theorem | ufdprmidl 33488* | In a unique factorization domain 𝑅, a nonzero prime ideal 𝐽 contains a prime element 𝑝. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ 𝐼 = (PrmIdeal‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ UFD) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ (𝜑 → 𝐽 ≠ { 0 }) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝑃 𝑝 ∈ 𝐽) | ||
| Theorem | ufdidom 33489 | A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ UFD) ⇒ ⊢ (𝜑 → 𝑅 ∈ IDomn) | ||
| Theorem | pidufd 33490 | Every principal ideal domain is a unique factorization domain. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ PID) ⇒ ⊢ (𝜑 → 𝑅 ∈ UFD) | ||
| Theorem | 1arithufdlem1 33491* | Lemma for 1arithufd 33495. The set 𝑆 of elements which can be written as a product of primes is not empty. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ UFD) & ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) & ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} ⇒ ⊢ (𝜑 → 𝑆 ≠ ∅) | ||
| Theorem | 1arithufdlem2 33492* | Lemma for 1arithufd 33495. The set 𝑆 of elements which can be written as a product of primes is multiplicatively closed. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ UFD) & ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) & ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝑆) | ||
| Theorem | 1arithufdlem3 33493* | Lemma for 1arithufd 33495. If a product (𝑌 · 𝑋) can be written as a product of primes, with 𝑋 non-unit, nonzero, so can 𝑋. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ UFD) & ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) & ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑌 · 𝑋) ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑆) | ||
| Theorem | 1arithufdlem4 33494* | Lemma for 1arithufd 33495. Nonzero ring, non-field case. Those trivial cases are handled in the final proof. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ UFD) & ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) & ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑆) | ||
| Theorem | 1arithufd 33495* | Existence of a factorization into irreducible elements in a unique factorization domain. Any non-zero, non-unit element 𝑋 of a UFD 𝑅 can be written as a product of primes 𝑓. As shown in 1arithidom 33484, that factorization is unique, up to the order of the factors and multiplication by units. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ UFD) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)) | ||
| Theorem | dfufd2lem 33496 | Lemma for dfufd2 33497. (Contributed by Thierry Arnoux, 6-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐼 ∈ (PrmIdeal‘𝑅)) & ⊢ (𝜑 → 𝐹 ∈ Word 𝑃) & ⊢ (𝜑 → (𝑀 Σg 𝐹) ∈ 𝐼) & ⊢ (𝜑 → (𝑀 Σg 𝐹) ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐼 ∩ 𝑃) ≠ ∅) | ||
| Theorem | dfufd2 33497* | Alternative definition of unique factorization domain (UFD). This is often the textbook definition. Chapter VII, Paragraph 3, Section 3, Proposition 2 of [BourbakiCAlg2], p. 228. (Contributed by Thierry Arnoux, 6-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))) | ||
| Theorem | zringidom 33498 | The ring of integers is an integral domain. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ ℤring ∈ IDomn | ||
| Theorem | zringpid 33499 | The ring of integers is a principal ideal domain. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ ℤring ∈ PID | ||
| Theorem | dfprm3 33500 | The (positive) prime elements of the integer ring are the prime numbers. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ ℙ = (ℕ ∩ (RPrime‘ℤring)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |