Home | Metamath
Proof Explorer Theorem List (p. 335 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | prv0 33401 | Every wff encoded as 𝑈 is true in an "empty model" (𝑀 = ∅). Since ⊧ is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of ⊧ should not be interpreted as the empty model, because ∃𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.) |
⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) | ||
Theorem | prv1n 33402 | No wff encoded as a Godel-set of membership is true in a model with only one element. (Contributed by AV, 19-Nov-2023.) |
⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉) → ¬ {𝑋}⊧(𝐼∈𝑔𝐽)) | ||
Syntax | cgon 33403 | The Godel-set of negation. (Note that this is not a wff.) |
class ¬𝑔𝑈 | ||
Syntax | cgoa 33404 | The Godel-set of conjunction. |
class ∧𝑔 | ||
Syntax | cgoi 33405 | The Godel-set of implication. |
class →𝑔 | ||
Syntax | cgoo 33406 | The Godel-set of disjunction. |
class ∨𝑔 | ||
Syntax | cgob 33407 | The Godel-set of equivalence. |
class ↔𝑔 | ||
Syntax | cgoq 33408 | The Godel-set of equality. |
class =𝑔 | ||
Syntax | cgox 33409 | The Godel-set of existential quantification. (Note that this is not a wff.) |
class ∃𝑔𝑁𝑈 | ||
Definition | df-gonot 33410 | Define the Godel-set of negation. Here the argument 𝑈 is also a Godel-set corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ¬𝑔𝑈 = (𝑈⊼𝑔𝑈) | ||
Definition | df-goan 33411* | Define the Godel-set of conjunction. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ∧𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ¬𝑔(𝑢⊼𝑔𝑣)) | ||
Definition | df-goim 33412* | Define the Godel-set of implication. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ →𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢⊼𝑔¬𝑔𝑣)) | ||
Definition | df-goor 33413* | Define the Godel-set of disjunction. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ∨𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (¬𝑔𝑢 →𝑔 𝑣)) | ||
Definition | df-gobi 33414* | Define the Godel-set of equivalence. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ↔𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔 𝑢))) | ||
Definition | df-goeq 33415* | Define the Godel-set of equality. Here the arguments 𝑥 = 〈𝑁, 𝑃〉 correspond to vN and vP , so (∅=𝑔1o) actually means v0 = v1 , not 0 = 1. Here we use the trick mentioned in ax-ext 2710 to introduce equality as a defined notion in terms of ∈𝑔. The expression suc (𝑢 ∪ 𝑣) = max (𝑢, 𝑣) + 1 here is a convenient way of getting a dummy variable distinct from 𝑢 and 𝑣. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ =𝑔 = (𝑢 ∈ ω, 𝑣 ∈ ω ↦ ⦋suc (𝑢 ∪ 𝑣) / 𝑤⦌∀𝑔𝑤((𝑤∈𝑔𝑢) ↔𝑔 (𝑤∈𝑔𝑣))) | ||
Definition | df-goex 33416 | Define the Godel-set of existential quantification. Here 𝑁 ∈ ω corresponds to vN , and 𝑈 represents another formula, and this expression is [∃𝑥𝜑] = ∃𝑔𝑁𝑈 where 𝑥 is the 𝑁-th variable, 𝑈 = [𝜑] is the code for 𝜑. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ∃𝑔𝑁𝑈 = ¬𝑔∀𝑔𝑁¬𝑔𝑈 | ||
Syntax | cgze 33417 | The Axiom of Extensionality. |
class AxExt | ||
Syntax | cgzr 33418 | The Axiom Scheme of Replacement. |
class AxRep | ||
Syntax | cgzp 33419 | The Axiom of Power Sets. |
class AxPow | ||
Syntax | cgzu 33420 | The Axiom of Unions. |
class AxUn | ||
Syntax | cgzg 33421 | The Axiom of Regularity. |
class AxReg | ||
Syntax | cgzi 33422 | The Axiom of Infinity. |
class AxInf | ||
Syntax | cgzf 33423 | The set of models of ZF. |
class ZF | ||
Definition | df-gzext 33424 | The Godel-set version of the Axiom of Extensionality. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ AxExt = (∀𝑔2o((2o∈𝑔∅) ↔𝑔 (2o∈𝑔1o)) →𝑔 (∅=𝑔1o)) | ||
Definition | df-gzrep 33425 | The Godel-set version of the Axiom Scheme of Replacement. Since this is a scheme and not a single axiom, it manifests as a function on wffs, each giving rise to a different axiom. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ AxRep = (𝑢 ∈ (Fmla‘ω) ↦ (∀𝑔3o∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔 (2o=𝑔1o)) →𝑔 ∀𝑔1o∀𝑔2o((2o∈𝑔1o) ↔𝑔 ∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)))) | ||
Definition | df-gzpow 33426 | The Godel-set version of the Axiom of Power Sets. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ AxPow = ∃𝑔1o∀𝑔2o(∀𝑔1o((1o∈𝑔2o) ↔𝑔 (1o∈𝑔∅)) →𝑔 (2o∈𝑔1o)) | ||
Definition | df-gzun 33427 | The Godel-set version of the Axiom of Unions. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ AxUn = ∃𝑔1o∀𝑔2o(∃𝑔1o((2o∈𝑔1o)∧𝑔(1o∈𝑔∅)) →𝑔 (2o∈𝑔1o)) | ||
Definition | df-gzreg 33428 | The Godel-set version of the Axiom of Regularity. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ AxReg = (∃𝑔1o(1o∈𝑔∅) →𝑔 ∃𝑔1o((1o∈𝑔∅)∧𝑔∀𝑔2o((2o∈𝑔1o) →𝑔 ¬𝑔(2o∈𝑔∅)))) | ||
Definition | df-gzinf 33429 | The Godel-set version of the Axiom of Infinity. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ AxInf = ∃𝑔1o((∅∈𝑔1o)∧𝑔∀𝑔2o((2o∈𝑔1o) →𝑔 ∃𝑔∅((2o∈𝑔∅)∧𝑔(∅∈𝑔1o)))) | ||
Definition | df-gzf 33430* | Define the class of all (transitive) models of ZF. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ZF = {𝑚 ∣ ((Tr 𝑚 ∧ 𝑚⊧AxExt ∧ 𝑚⊧AxPow) ∧ (𝑚⊧AxUn ∧ 𝑚⊧AxReg ∧ 𝑚⊧AxInf) ∧ ∀𝑢 ∈ (Fmla‘ω)𝑚⊧(AxRep‘𝑢))} | ||
This is a formalization of Appendix C of the Metamath book, which describes the mathematical representation of a formal system, of which set.mm (this file) is one. | ||
Syntax | cmcn 33431 | The set of constants. |
class mCN | ||
Syntax | cmvar 33432 | The set of variables. |
class mVR | ||
Syntax | cmty 33433 | The type function. |
class mType | ||
Syntax | cmvt 33434 | The set of variable typecodes. |
class mVT | ||
Syntax | cmtc 33435 | The set of typecodes. |
class mTC | ||
Syntax | cmax 33436 | The set of axioms. |
class mAx | ||
Syntax | cmrex 33437 | The set of raw expressions. |
class mREx | ||
Syntax | cmex 33438 | The set of expressions. |
class mEx | ||
Syntax | cmdv 33439 | The set of distinct variables. |
class mDV | ||
Syntax | cmvrs 33440 | The variables in an expression. |
class mVars | ||
Syntax | cmrsub 33441 | The set of raw substitutions. |
class mRSubst | ||
Syntax | cmsub 33442 | The set of substitutions. |
class mSubst | ||
Syntax | cmvh 33443 | The set of variable hypotheses. |
class mVH | ||
Syntax | cmpst 33444 | The set of pre-statements. |
class mPreSt | ||
Syntax | cmsr 33445 | The reduct of a pre-statement. |
class mStRed | ||
Syntax | cmsta 33446 | The set of statements. |
class mStat | ||
Syntax | cmfs 33447 | The set of formal systems. |
class mFS | ||
Syntax | cmcls 33448 | The closure of a set of statements. |
class mCls | ||
Syntax | cmpps 33449 | The set of provable pre-statements. |
class mPPSt | ||
Syntax | cmthm 33450 | The set of theorems. |
class mThm | ||
Definition | df-mcn 33451 | Define the set of constants in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mCN = Slot 1 | ||
Definition | df-mvar 33452 | Define the set of variables in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVR = Slot 2 | ||
Definition | df-mty 33453 | Define the type function in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mType = Slot 3 | ||
Definition | df-mtc 33454 | Define the set of typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mTC = Slot 4 | ||
Definition | df-mmax 33455 | Define the set of axioms in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mAx = Slot 5 | ||
Definition | df-mvt 33456 | Define the set of variable typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡)) | ||
Definition | df-mrex 33457 | Define the set of "raw expressions", which are expressions without a typecode attached. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mREx = (𝑡 ∈ V ↦ Word ((mCN‘𝑡) ∪ (mVR‘𝑡))) | ||
Definition | df-mex 33458 | Define the set of expressions, which are strings of constants and variables headed by a typecode constant. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡))) | ||
Definition | df-mdv 33459 | Define the set of distinct variable conditions, which are pairs of distinct variables. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) | ||
Definition | df-mvrs 33460* | Define the set of variables in an expression. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)))) | ||
Definition | df-mrsub 33461* | Define a substitution of raw expressions given a mapping from variables to expressions. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mRSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) | ||
Definition | df-msub 33462* | Define a substitution of expressions given a mapping from variables to expressions. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd ‘𝑒))〉))) | ||
Definition | df-mvh 33463* | Define the mapping from variables to their variable hypothesis. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ 〈((mType‘𝑡)‘𝑣), 〈“𝑣”〉〉)) | ||
Definition | df-mpst 33464* | Define the set of all pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mPreSt = (𝑡 ∈ V ↦ (({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) × (mEx‘𝑡))) | ||
Definition | df-msr 33465* | Define the reduct of a pre-statement. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mStRed = (𝑡 ∈ V ↦ (𝑠 ∈ (mPreSt‘𝑡) ↦ ⦋(2nd ‘(1st ‘𝑠)) / ℎ⦌⦋(2nd ‘𝑠) / 𝑎⦌〈((1st ‘(1st ‘𝑠)) ∩ ⦋∪ ((mVars‘𝑡) “ (ℎ ∪ {𝑎})) / 𝑧⦌(𝑧 × 𝑧)), ℎ, 𝑎〉)) | ||
Definition | df-msta 33466 | Define the set of all statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) | ||
Definition | df-mfs 33467* | Define the set of all formal systems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mFS = {𝑡 ∣ ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin))} | ||
Definition | df-mcls 33468* | Define the closure of a set of statements relative to a set of disjointness constraints. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ℎ ∈ 𝒫 (mEx‘𝑡) ↦ ∩ {𝑐 ∣ ((ℎ ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) | ||
Definition | df-mpps 33469* | Define the set of provable pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mPPSt = (𝑡 ∈ V ↦ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)ℎ))}) | ||
Definition | df-mthm 33470 | Define the set of theorems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mThm = (𝑡 ∈ V ↦ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡)))) | ||
Theorem | mvtval 33471 | The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ 𝑉 = ran 𝑌 | ||
Theorem | mrexval 33472 | The set of "raw expressions", which are expressions without a typecode, that is, just sequences of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑅 = Word (𝐶 ∪ 𝑉)) | ||
Theorem | mexval 33473 | The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ 𝐸 = (𝐾 × 𝑅) | ||
Theorem | mexval2 33474 | The set of expressions, which are pairs whose first element is a typecode, and whose second element is a list of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) ⇒ ⊢ 𝐸 = (𝐾 × Word (𝐶 ∪ 𝑉)) | ||
Theorem | mdvval 33475 | The set of disjoint variable conditions, which are pairs of distinct variables. (This definition differs from appendix C, which uses unordered pairs instead. We use ordered pairs, but all sets of disjoint variable conditions of interest will be symmetric, so it does not matter.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐷 = (mDV‘𝑇) ⇒ ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) | ||
Theorem | mvrsval 33476 | The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) | ||
Theorem | mvrsfpw 33477 | The set of variables in an expression is a finite subset of 𝑉. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) ∈ (𝒫 𝑉 ∩ Fin)) | ||
Theorem | mrsubffval 33478* | The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) | ||
Theorem | mrsubfval 33479* | The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)))) | ||
Theorem | mrsubval 33480* | The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) → ((𝑆‘𝐹)‘𝑋) = (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))) | ||
Theorem | mrsubcv 33481 | The value of a substituted singleton. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((𝑆‘𝐹)‘〈“𝑋”〉) = if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉)) | ||
Theorem | mrsubvr 33482 | The value of a substituted variable. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐴) → ((𝑆‘𝐹)‘〈“𝑋”〉) = (𝐹‘𝑋)) | ||
Theorem | mrsubff 33483 | A substitution is a function from 𝑅 to 𝑅. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) | ||
Theorem | mrsubrn 33484 | Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) | ||
Theorem | mrsubff1 33485 | When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝑅 ↑m 𝑅)) | ||
Theorem | mrsubff1o 33486 | When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) | ||
Theorem | mrsub0 33487 | The value of the substituted empty string. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅) | ||
Theorem | mrsubf 33488 | A substitution is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ (𝐹 ∈ ran 𝑆 → 𝐹:𝑅⟶𝑅) | ||
Theorem | mrsubccat 33489 | Substitution distributes over concatenation. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹‘𝑋) ++ (𝐹‘𝑌))) | ||
Theorem | mrsubcn 33490 | A substitution does not change the value of constant substrings. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉) | ||
Theorem | elmrsubrn 33491* | Characterization of the substitutions as functions from expressions to expressions that distribute under concatenation and map constants to themselves. (The constant part uses (𝐶 ∖ 𝑉) because we don't know that 𝐶 and 𝑉 are disjoint until we get to ismfs 33520.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝐹 ∈ ran 𝑆 ↔ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦))))) | ||
Theorem | mrsubco 33492 | The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → (𝐹 ∘ 𝐺) ∈ ran 𝑆) | ||
Theorem | mrsubvrs 33493* | The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝑅) → (ran (𝐹‘𝑋) ∩ 𝑉) = ∪ 𝑥 ∈ (ran 𝑋 ∩ 𝑉)(ran (𝐹‘〈“𝑥”〉) ∩ 𝑉)) | ||
Theorem | msubffval 33494* | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝑓)‘(2nd ‘𝑒))〉))) | ||
Theorem | msubfval 33495* | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉)) | ||
Theorem | msubval 33496 | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → ((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) | ||
Theorem | msubrsub 33497 | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (2nd ‘((𝑆‘𝐹)‘𝑋)) = ((𝑂‘𝐹)‘(2nd ‘𝑋))) | ||
Theorem | msubty 33498 | The type of a substituted expression is the same as the original type. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (1st ‘((𝑆‘𝐹)‘𝑋)) = (1st ‘𝑋)) | ||
Theorem | elmsubrn 33499* | Characterization of substitution in terms of raw substitution, without reference to the generating functions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) | ||
Theorem | msubrn 33500 | Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |