Detailed syntax breakdown of Definition df-cnext
| Step | Hyp | Ref
| Expression |
| 1 | | ccnext 24067 |
. 2
class
CnExt |
| 2 | | vj |
. . 3
setvar 𝑗 |
| 3 | | vk |
. . 3
setvar 𝑘 |
| 4 | | ctop 22899 |
. . 3
class
Top |
| 5 | | vf |
. . . 4
setvar 𝑓 |
| 6 | 3 | cv 1539 |
. . . . . 6
class 𝑘 |
| 7 | 6 | cuni 4907 |
. . . . 5
class ∪ 𝑘 |
| 8 | 2 | cv 1539 |
. . . . . 6
class 𝑗 |
| 9 | 8 | cuni 4907 |
. . . . 5
class ∪ 𝑗 |
| 10 | | cpm 8867 |
. . . . 5
class
↑pm |
| 11 | 7, 9, 10 | co 7431 |
. . . 4
class (∪ 𝑘
↑pm ∪ 𝑗) |
| 12 | | vx |
. . . . 5
setvar 𝑥 |
| 13 | 5 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 14 | 13 | cdm 5685 |
. . . . . 6
class dom 𝑓 |
| 15 | | ccl 23026 |
. . . . . . 7
class
cls |
| 16 | 8, 15 | cfv 6561 |
. . . . . 6
class
(cls‘𝑗) |
| 17 | 14, 16 | cfv 6561 |
. . . . 5
class
((cls‘𝑗)‘dom 𝑓) |
| 18 | 12 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 19 | 18 | csn 4626 |
. . . . . 6
class {𝑥} |
| 20 | | cnei 23105 |
. . . . . . . . . . 11
class
nei |
| 21 | 8, 20 | cfv 6561 |
. . . . . . . . . 10
class
(nei‘𝑗) |
| 22 | 19, 21 | cfv 6561 |
. . . . . . . . 9
class
((nei‘𝑗)‘{𝑥}) |
| 23 | | crest 17465 |
. . . . . . . . 9
class
↾t |
| 24 | 22, 14, 23 | co 7431 |
. . . . . . . 8
class
(((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓) |
| 25 | | cflf 23943 |
. . . . . . . 8
class
fLimf |
| 26 | 6, 24, 25 | co 7431 |
. . . . . . 7
class (𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓)) |
| 27 | 13, 26 | cfv 6561 |
. . . . . 6
class ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓) |
| 28 | 19, 27 | cxp 5683 |
. . . . 5
class ({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) |
| 29 | 12, 17, 28 | ciun 4991 |
. . . 4
class ∪ 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) |
| 30 | 5, 11, 29 | cmpt 5225 |
. . 3
class (𝑓 ∈ (∪ 𝑘
↑pm ∪ 𝑗) ↦ ∪
𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) |
| 31 | 2, 3, 4, 4, 30 | cmpo 7433 |
. 2
class (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ (∪ 𝑘 ↑pm ∪ 𝑗)
↦ ∪ 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))) |
| 32 | 1, 31 | wceq 1540 |
1
wff CnExt =
(𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ (∪ 𝑘
↑pm ∪ 𝑗) ↦ ∪
𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))) |