![]() |
Metamath
Proof Explorer Theorem List (p. 238 of 481) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30604) |
![]() (30605-32127) |
![]() (32128-48014) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | filfinnfr 23701 | No filter containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin) → ∩ 𝐹 ≠ ∅) | ||
Theorem | fgcl 23702 | A generated filter is a filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) | ||
Theorem | fgabs 23703 | Absorption law for filter generation. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌 ⊆ 𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹)) | ||
Theorem | neifil 23704 | The neighborhoods of a nonempty set is a filter. Example 2 of [BourbakiTop1] p. I.36. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → ((nei‘𝐽)‘𝑆) ∈ (Fil‘𝑋)) | ||
Theorem | filunibas 23705 | Recover the base set from a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) | ||
Theorem | filunirn 23706 | Two ways to express a filter on an unspecified base. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
⊢ (𝐹 ∈ ∪ ran Fil ↔ 𝐹 ∈ (Fil‘∪ 𝐹)) | ||
Theorem | filconn 23707 | A filter gives rise to a connected topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈ Conn) | ||
Theorem | fbasrn 23708* | Given a filter on a domain, produce a filter on the range. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝐶 = ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) ⇒ ⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐶 ∈ (fBas‘𝑌)) | ||
Theorem | filuni 23709* | The union of a nonempty set of filters with a common base and closed under pairwise union is a filter. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → ∪ 𝐹 ∈ (Fil‘𝑋)) | ||
Theorem | trfil1 23710 | Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 = ∪ (𝐿 ↾t 𝐴)) | ||
Theorem | trfil2 23711* | Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ 𝐿 (𝑣 ∩ 𝐴) ≠ ∅)) | ||
Theorem | trfil3 23712 | Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) | ||
Theorem | trfilss 23713 | If 𝐴 is a member of the filter, then the filter truncated to 𝐴 is a subset of the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ⊆ 𝐹) | ||
Theorem | fgtr 23714 | If 𝐴 is a member of the filter, then truncating 𝐹 to 𝐴 and regenerating the behavior outside 𝐴 using filGen recovers the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑋filGen(𝐹 ↾t 𝐴)) = 𝐹) | ||
Theorem | trfg 23715 | The trace operation and the filGen operation are inverses to one another in some sense, with filGen growing the base set and ↾t shrinking it. See fgtr 23714 for the converse cancellation law. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = 𝐹) | ||
Theorem | trnei 23716 | The trace, over a set 𝐴, of the filter of the neighborhoods of a point 𝑃 is a filter iff 𝑃 belongs to the closure of 𝐴. (This is trfil2 23711 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴))) | ||
Theorem | cfinfil 23717* | Relative complements of the finite parts of an infinite set is a filter. When 𝐴 = ℕ the set of the relative complements is called Frechet's filter and is used to define the concept of limit of a sequence. (Contributed by FL, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∖ 𝑥) ∈ Fin} ∈ (Fil‘𝑋)) | ||
Theorem | csdfil 23718* | The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ≺ 𝑋} ∈ (Fil‘𝑋)) | ||
Theorem | supfil 23719* | The supersets of a nonempty set which are also subsets of a given base set form a filter. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥} ∈ (Fil‘𝐴)) | ||
Theorem | zfbas 23720 | The set of upper sets of integers is a filter base on ℤ, which corresponds to convergence of sequences on ℤ. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ ran ℤ≥ ∈ (fBas‘ℤ) | ||
Theorem | uzrest 23721 | The restriction of the set of upper sets of integers to an upper set of integers is the set of upper sets of integers based at a point above the cutoff. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (ran ℤ≥ ↾t 𝑍) = (ℤ≥ “ 𝑍)) | ||
Theorem | uzfbas 23722 | The set of upper sets of integers based at a point in a fixed upper integer set like ℕ is a filter base on ℕ, which corresponds to convergence of sequences on ℕ. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (ℤ≥ “ 𝑍) ∈ (fBas‘𝑍)) | ||
Syntax | cufil 23723 | Extend class notation with the ultrafilters-on-a-set function. |
class UFil | ||
Syntax | cufl 23724 | Extend class notation with the ultrafilter lemma. |
class UFL | ||
Definition | df-ufil 23725* | Define the set of ultrafilters on a set. An ultrafilter is a filter that gives a definite result for every subset. (Contributed by Jeff Hankins, 30-Nov-2009.) |
⊢ UFil = (𝑔 ∈ V ↦ {𝑓 ∈ (Fil‘𝑔) ∣ ∀𝑥 ∈ 𝒫 𝑔(𝑥 ∈ 𝑓 ∨ (𝑔 ∖ 𝑥) ∈ 𝑓)}) | ||
Definition | df-ufl 23726* | Define the class of base sets for which the ultrafilter lemma filssufil 23736 holds. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ UFL = {𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔} | ||
Theorem | isufil 23727* | The property of being an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) |
⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) | ||
Theorem | ufilfil 23728 | An ultrafilter is a filter. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) |
⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | ||
Theorem | ufilss 23729 | For any subset of the base set of an ultrafilter, either the set is in the ultrafilter or the complement is. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) |
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹)) | ||
Theorem | ufilb 23730 | The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013.) (Revised by Mario Carneiro, 29-Jul-2015.) |
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) | ||
Theorem | ufilmax 23731 | Any filter finer than an ultrafilter is actually equal to it. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) |
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → 𝐹 = 𝐺) | ||
Theorem | isufil2 23732* | The maximal property of an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑓 → 𝐹 = 𝑓))) | ||
Theorem | ufprim 23733 | An ultrafilter is a prime filter. (Contributed by Jeff Hankins, 1-Jan-2010.) (Revised by Mario Carneiro, 2-Aug-2015.) |
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹) ↔ (𝐴 ∪ 𝐵) ∈ 𝐹)) | ||
Theorem | trufil 23734 | Conditions for the trace of an ultrafilter 𝐿 to be an ultrafilter. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (UFil‘𝐴) ↔ 𝐴 ∈ 𝐿)) | ||
Theorem | filssufilg 23735* | A filter is contained in some ultrafilter. This version of filssufil 23736 contains the choice as a hypothesis (in the assumption that 𝒫 𝒫 𝑋 is well-orderable). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) | ||
Theorem | filssufil 23736* | A filter is contained in some ultrafilter. (Requires the Axiom of Choice, via numth3 10471.) (Contributed by Jeff Hankins, 2-Dec-2009.) (Revised by Stefan O'Rear, 29-Jul-2015.) |
⊢ (𝐹 ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) | ||
Theorem | isufl 23737* | Define the (strong) ultrafilter lemma, parameterized over base sets. A set 𝑋 satisfies the ultrafilter lemma if every filter on 𝑋 is a subset of some ultrafilter. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) | ||
Theorem | ufli 23738* | Property of a set that satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝑋 ∈ UFL ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) | ||
Theorem | numufl 23739 | Consequence of filssufilg 23735: a set whose double powerset is well-orderable satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ UFL) | ||
Theorem | fiufl 23740 | A finite set satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝑋 ∈ Fin → 𝑋 ∈ UFL) | ||
Theorem | acufl 23741 | The axiom of choice implies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (CHOICE → UFL = V) | ||
Theorem | ssufl 23742 | If 𝑌 is a subset of 𝑋 and filters extend to ultrafilters in 𝑋, then they still do in 𝑌. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ UFL) | ||
Theorem | ufileu 23743* | If the ultrafilter containing a given filter is unique, the filter is an ultrafilter. (Contributed by Jeff Hankins, 3-Dec-2009.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∈ (UFil‘𝑋) ↔ ∃!𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓)) | ||
Theorem | filufint 23744* | A filter is equal to the intersection of the ultrafilters containing it. (Contributed by Jeff Hankins, 1-Jan-2010.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ (𝐹 ∈ (Fil‘𝑋) → ∩ {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹 ⊆ 𝑓} = 𝐹) | ||
Theorem | uffix 23745* | Lemma for fixufil 23746 and uffixfr 23747. (Contributed by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} = (𝑋filGen{{𝐴}}))) | ||
Theorem | fixufil 23746* | The condition describing a fixed ultrafilter always produces an ultrafilter. (Contributed by Jeff Hankins, 9-Dec-2009.) (Revised by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 29-Jul-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ∈ (UFil‘𝑋)) | ||
Theorem | uffixfr 23747* | An ultrafilter is either fixed or free. A fixed ultrafilter is called principal (generated by a single element 𝐴), and a free ultrafilter is called nonprincipal (having empty intersection). Note that examples of free ultrafilters cannot be defined in ZFC without some form of global choice. (Contributed by Jeff Hankins, 4-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐴 ∈ ∩ 𝐹 ↔ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥})) | ||
Theorem | uffix2 23748* | A classification of fixed ultrafilters. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ (𝐹 ∈ (UFil‘𝑋) → (∩ 𝐹 ≠ ∅ ↔ ∃𝑥 ∈ 𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦})) | ||
Theorem | uffixsn 23749 | The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ∈ 𝐹) | ||
Theorem | ufildom1 23750 | An ultrafilter is generated by at most one element (because free ultrafilters have no generators and fixed ultrafilters have exactly one). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ≼ 1o) | ||
Theorem | uffinfix 23751* | An ultrafilter containing a finite element is fixed. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin) → ∃𝑥 ∈ 𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦}) | ||
Theorem | cfinufil 23752* | An ultrafilter is free iff it contains the Fréchet filter cfinfil 23717 as a subset. (Contributed by NM, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
⊢ (𝐹 ∈ (UFil‘𝑋) → (∩ 𝐹 = ∅ ↔ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ Fin} ⊆ 𝐹)) | ||
Theorem | ufinffr 23753* | An infinite subset is contained in a free ultrafilter. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Mario Carneiro, 4-Dec-2013.) |
⊢ ((𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴) → ∃𝑓 ∈ (UFil‘𝑋)(𝐴 ∈ 𝑓 ∧ ∩ 𝑓 = ∅)) | ||
Theorem | ufilen 23754* | Any infinite set has an ultrafilter on it whose elements are of the same cardinality as the set. Any such ultrafilter is necessarily free. (Contributed by Jeff Hankins, 7-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.) |
⊢ (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥 ∈ 𝑓 𝑥 ≈ 𝑋) | ||
Theorem | ufildr 23755 | An ultrafilter gives rise to a connected door topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.) |
⊢ 𝐽 = (𝐹 ∪ {∅}) ⇒ ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 ∪ (Clsd‘𝐽)) = 𝒫 𝑋) | ||
Theorem | fin1aufil 23756 | There are no definable free ultrafilters in ZFC. However, there are free ultrafilters in some choice-denying constructions. Here we show that given an amorphous set (a.k.a. a Ia-finite I-infinite set) 𝑋, the set of infinite subsets of 𝑋 is a free ultrafilter on 𝑋. (Contributed by Mario Carneiro, 20-May-2015.) |
⊢ 𝐹 = (𝒫 𝑋 ∖ Fin) ⇒ ⊢ (𝑋 ∈ (FinIa ∖ Fin) → (𝐹 ∈ (UFil‘𝑋) ∧ ∩ 𝐹 = ∅)) | ||
Syntax | cfm 23757 | Extend class definition to include the neighborhood filter mapping function. |
class FilMap | ||
Syntax | cflim 23758 | Extend class notation with a function returning the limit of a filter. |
class fLim | ||
Syntax | cflf 23759 | Extend class definition to include the function for filter-based function limits. |
class fLimf | ||
Syntax | cfcls 23760 | Extend class definition to include the cluster point function on filters. |
class fClus | ||
Syntax | cfcf 23761 | Extend class definition to include the function for cluster points of a function. |
class fClusf | ||
Definition | df-fm 23762* | Define a function that takes a filter to a neighborhood filter of the range. (Since we now allow filter bases to have support smaller than the base set, the function has to come first to ensure that curryings are sets.) (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 20-Jul-2015.) |
⊢ FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡 ∈ 𝑦 ↦ (𝑓 “ 𝑡))))) | ||
Definition | df-flim 23763* | Define a function (indexed by a topology 𝑗) whose value is the limits of a filter 𝑓. (Contributed by Jeff Hankins, 4-Sep-2009.) |
⊢ fLim = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil ↦ {𝑥 ∈ ∪ 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)}) | ||
Definition | df-flf 23764* | Define a function that gives the limits of a function 𝑓 in the filter sense. (Contributed by Jeff Hankins, 14-Oct-2009.) |
⊢ fLimf = (𝑥 ∈ Top, 𝑦 ∈ ∪ ran Fil ↦ (𝑓 ∈ (∪ 𝑥 ↑m ∪ 𝑦) ↦ (𝑥 fLim ((∪ 𝑥 FilMap 𝑓)‘𝑦)))) | ||
Definition | df-fcls 23765* | Define a function that takes a filter in a topology to its set of cluster points. (Contributed by Jeff Hankins, 10-Nov-2009.) |
⊢ fClus = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil ↦ if(∪ 𝑗 = ∪ 𝑓, ∩ 𝑥 ∈ 𝑓 ((cls‘𝑗)‘𝑥), ∅)) | ||
Definition | df-fcf 23766* | Define a function that gives the cluster points of a function. (Contributed by Jeff Hankins, 24-Nov-2009.) |
⊢ fClusf = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil ↦ (𝑔 ∈ (∪ 𝑗 ↑m ∪ 𝑓) ↦ (𝑗 fClus ((∪ 𝑗 FilMap 𝑔)‘𝑓)))) | ||
Theorem | fmval 23767* | Introduce a function that takes a function from a filtered domain to a set and produces a filter which consists of supersets of images of filter elements. The functions which are dealt with by this function are similar to nets in topology. For example, suppose we have a sequence filtered by the filter generated by its tails under the usual positive integer ordering. Then the elements of this filter are precisely the supersets of tails of this sequence. Under this definition, it is not too difficult to see that the limit of a function in the filter sense captures the notion of convergence of a sequence. As a result, the notion of a filter generalizes many ideas associated with sequences, and this function is one way to make that relationship precise in Metamath. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) | ||
Theorem | fmfil 23768 | A mapping filter is a filter. (Contributed by Jeff Hankins, 18-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) ∈ (Fil‘𝑋)) | ||
Theorem | fmf 23769 | Pushing-forward via a function induces a mapping on filters. (Contributed by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋)) | ||
Theorem | fmss 23770 | A finer filter produces a finer image filter. (Contributed by Jeff Hankins, 16-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐵 ⊆ 𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ ((𝑋 FilMap 𝐹)‘𝐶)) | ||
Theorem | elfm 23771* | An element of a mapping filter. (Contributed by Jeff Hankins, 8-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑥) ⊆ 𝐴))) | ||
Theorem | elfm2 23772* | An element of a mapping filter. (Contributed by Jeff Hankins, 26-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝐿 = (𝑌filGen𝐵) ⇒ ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ 𝐴))) | ||
Theorem | fmfg 23773 | The image filter of a filter base is the same as the image filter of its generated filter. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝐿 = (𝑌filGen𝐵) ⇒ ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑋 FilMap 𝐹)‘𝐿)) | ||
Theorem | elfm3 23774* | An alternate formulation of elementhood in a mapping filter that requires 𝐹 to be onto. (Contributed by Jeff Hankins, 1-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝐿 = (𝑌filGen𝐵) ⇒ ⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥 ∈ 𝐿 𝐴 = (𝐹 “ 𝑥))) | ||
Theorem | imaelfm 23775 | An image of a filter element is in the image filter. (Contributed by Jeff Hankins, 5-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝐿 = (𝑌filGen𝐵) ⇒ ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → (𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) | ||
Theorem | rnelfmlem 23776* | Lemma for rnelfm 23777. (Contributed by Jeff Hankins, 14-Nov-2009.) |
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) | ||
Theorem | rnelfm 23777 | A condition for a filter to be an image filter for a given function. (Contributed by Jeff Hankins, 14-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ran 𝐹 ∈ 𝐿)) | ||
Theorem | fmfnfmlem1 23778* | Lemma for fmfnfm 23782. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) & ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) ⇒ ⊢ (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) | ||
Theorem | fmfnfmlem2 23779* | Lemma for fmfnfm 23782. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) & ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) | ||
Theorem | fmfnfmlem3 23780* | Lemma for fmfnfm 23782. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) & ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) ⇒ ⊢ (𝜑 → (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) = ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) | ||
Theorem | fmfnfmlem4 23781* | Lemma for fmfnfm 23782. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) & ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) ⇒ ⊢ (𝜑 → (𝑡 ∈ 𝐿 ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡))) | ||
Theorem | fmfnfm 23782* | A filter finer than an image filter is an image filter of the same function. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) & ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ (Fil‘𝑌)(𝐵 ⊆ 𝑓 ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘𝑓))) | ||
Theorem | fmufil 23783 | An image filter of an ultrafilter is an ultrafilter. (Contributed by Jeff Hankins, 11-Dec-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋)) | ||
Theorem | fmid 23784 | The filter map applied to the identity. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Mario Carneiro, 27-Aug-2015.) |
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹) | ||
Theorem | fmco 23785 | Composition of image filters. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐺:𝑍⟶𝑌)) → ((𝑋 FilMap (𝐹 ∘ 𝐺))‘𝐵) = ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵))) | ||
Theorem | ufldom 23786 | The ultrafilter lemma property is a cardinal invariant, so since it transfers to subsets it also transfers over set dominance. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ≼ 𝑋) → 𝑌 ∈ UFL) | ||
Theorem | flimval 23787* | The set of limit points of a filter. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) | ||
Theorem | elflim2 23788 | The predicate "is a limit point of a filter." (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) | ||
Theorem | flimtop 23789 | Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | ||
Theorem | flimneiss 23790 | A filter contains the neighborhood filter as a subfilter. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) | ||
Theorem | flimnei 23791 | A filter contains all of the neighborhoods of its limit points. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 9-Apr-2015.) |
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑁 ∈ 𝐹) | ||
Theorem | flimelbas 23792 | A limit point of a filter belongs to its base set. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 9-Apr-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ 𝑋) | ||
Theorem | flimfil 23793 | Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘𝑋)) | ||
Theorem | flimtopon 23794 | Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) | ||
Theorem | elflim 23795 | The predicate "is a limit point of a filter." (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 23-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) | ||
Theorem | flimss2 23796 | A limit point of a filter is a limit point of a finer filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) → (𝐽 fLim 𝐺) ⊆ (𝐽 fLim 𝐹)) | ||
Theorem | flimss1 23797 | A limit point of a filter is a limit point in a coarser topology. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐾 fLim 𝐹) ⊆ (𝐽 fLim 𝐹)) | ||
Theorem | neiflim 23798 | A point is a limit point of its neighborhood filter. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))) | ||
Theorem | flimopn 23799* | The condition for being a limit point of a filter still holds if one only considers open neighborhoods. (Contributed by Jeff Hankins, 4-Sep-2009.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹)))) | ||
Theorem | fbflim 23800* | A condition for a filter to converge to a point involving one of its bases. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝐹 = (𝑋filGen𝐵) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |