HomeHome Metamath Proof Explorer
Theorem List (p. 238 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 23701-23800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtmsxps 23701 Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))    &   (𝜑𝑀 ∈ (∞Met‘𝑋))    &   (𝜑𝑁 ∈ (∞Met‘𝑌))       (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
 
Theoremtmsxpsmopn 23702 Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))    &   (𝜑𝑀 ∈ (∞Met‘𝑋))    &   (𝜑𝑁 ∈ (∞Met‘𝑌))    &   𝐽 = (MetOpen‘𝑀)    &   𝐾 = (MetOpen‘𝑁)    &   𝐿 = (MetOpen‘𝑃)       (𝜑𝐿 = (𝐽 ×t 𝐾))
 
Theoremtmsxpsval 23703 Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))    &   (𝜑𝑀 ∈ (∞Met‘𝑋))    &   (𝜑𝑁 ∈ (∞Met‘𝑌))    &   (𝜑𝐴𝑋)    &   (𝜑𝐵𝑌)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑌)       (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
 
Theoremtmsxpsval2 23704 Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))    &   (𝜑𝑀 ∈ (∞Met‘𝑋))    &   (𝜑𝑁 ∈ (∞Met‘𝑌))    &   (𝜑𝐴𝑋)    &   (𝜑𝐵𝑌)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑌)       (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶)))
 
12.4.5  Continuity in metric spaces
 
Theoremmetcnp3 23705* Two ways to express that 𝐹 is continuous at 𝑃 for metric spaces. Proposition 14-4.2 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
 
Theoremmetcnp 23706* Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
 
Theoremmetcnp2 23707* Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. The distance arguments are swapped compared to metcnp 23706 (and Munkres' metcn 23708) for compatibility with df-lm 22389. Definition 1.3-3 of [Kreyszig] p. 20. (Contributed by NM, 4-Jun-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑤𝐶𝑃) < 𝑧 → ((𝐹𝑤)𝐷(𝐹𝑃)) < 𝑦))))
 
Theoremmetcn 23708* Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous. Theorem 10.1 of [Munkres] p. 127. The second biconditional argument says that for every positive "epsilon" 𝑦 there is a positive "delta" 𝑧 such that a distance less than delta in 𝐶 maps to a distance less than epsilon in 𝐷. (Contributed by NM, 15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹𝑥)𝐷(𝐹𝑤)) < 𝑦))))
 
Theoremmetcnpi 23709* Epsilon-delta property of a continuous metric space function, with function arguments as in metcnp 23706. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴))
 
Theoremmetcnpi2 23710* Epsilon-delta property of a continuous metric space function, with swapped distance function arguments as in metcnp2 23707. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))
 
Theoremmetcnpi3 23711* Epsilon-delta property of a metric space function continuous at 𝑃. A variation of metcnpi2 23710 with non-strict ordering. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
 
Theoremtxmetcnp 23712* Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)    &   𝐿 = (MetOpen‘𝐸)       (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
 
Theoremtxmetcn 23713* Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)    &   𝐿 = (MetOpen‘𝐸)       ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
 
12.4.6  The uniform structure generated by a metric
 
Theoremmetuval 23714* Value of the uniform structure generated by metric 𝐷. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
(𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))))
 
Theoremmetustel 23715* Define a filter base 𝐹 generated by a metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))       (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
 
Theoremmetustss 23716* Range of the elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))       ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
 
Theoremmetustrel 23717* Elements of the filter base generated by the metric 𝐷 are relations. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))       ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → Rel 𝐴)
 
Theoremmetustto 23718* Any two elements of the filter base generated by the metric 𝐷 can be compared, like for RR+ (i.e. it's totally ordered). (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))       ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵𝐵𝐴))
 
Theoremmetustid 23719* The identity diagonal is included in all elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))       ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ( I ↾ 𝑋) ⊆ 𝐴)
 
Theoremmetustsym 23720* Elements of the filter base generated by the metric 𝐷 are symmetric. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))       ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 = 𝐴)
 
Theoremmetustexhalf 23721* For any element 𝐴 of the filter base generated by the metric 𝐷, the half element (corresponding to half the distance) is also in this base. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))       (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
 
Theoremmetustfbas 23722* The filter base generated by a metric 𝐷. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))       ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
 
Theoremmetust 23723* The uniform structure generated by a metric 𝐷. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))       ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋))
 
Theoremcfilucfil 23724* Given a metric 𝐷 and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the filter bases which contain balls of any pre-chosen size. See iscfil 24438. (Contributed by Thierry Arnoux, 29-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))       ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
 
Theoremmetuust 23725 The uniform structure generated by metric 𝐷 is a uniform structure. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋))
 
Theoremcfilucfil2 23726* Given a metric 𝐷 and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the filter bases which contain balls of any pre-chosen size. See iscfil 24438. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐶 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
 
Theoremblval2 23727 The ball around a point 𝑃, alternative definition. (Contributed by Thierry Arnoux, 7-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = ((𝐷 “ (0[,)𝑅)) “ {𝑃}))
 
Theoremelbl4 23728 Membership in a ball, alternative definition. (Contributed by Thierry Arnoux, 26-Jan-2018.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))
 
Theoremmetuel 23729* Elementhood in the uniform structure generated by a metric 𝐷 (Contributed by Thierry Arnoux, 8-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉)))
 
Theoremmetuel2 23730* Elementhood in the uniform structure generated by a metric 𝐷 (Contributed by Thierry Arnoux, 24-Jan-2018.) (Revised by Thierry Arnoux, 11-Feb-2018.)
𝑈 = (metUnif‘𝐷)       ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉𝑈 ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦))))
 
Theoremmetustbl 23731* The "section" image of an entourage at a point 𝑃 always contains a ball (centered on this point). (Contributed by Thierry Arnoux, 8-Dec-2017.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑎 ∈ ran (ball‘𝐷)(𝑃𝑎𝑎 ⊆ (𝑉 “ {𝑃})))
 
Theorempsmetutop 23732 The topology induced by a uniform structure generated by a metric 𝐷 is generated by that metric's open balls. (Contributed by Thierry Arnoux, 6-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (topGen‘ran (ball‘𝐷)))
 
Theoremxmetutop 23733 The topology induced by a uniform structure generated by an extended metric 𝐷 is that metric's open sets. (Contributed by Thierry Arnoux, 11-Mar-2018.)
((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷))
 
Theoremxmsusp 23734 If the uniform set of a metric space is the uniform structure generated by its metric, then it is a uniform space. (Contributed by Thierry Arnoux, 14-Dec-2017.)
𝑋 = (Base‘𝐹)    &   𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋))    &   𝑈 = (UnifSt‘𝐹)       ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp)
 
Theoremrestmetu 23735 The uniform structure generated by the restriction of a metric is its trace. (Contributed by Thierry Arnoux, 18-Dec-2017.)
((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → ((metUnif‘𝐷) ↾t (𝐴 × 𝐴)) = (metUnif‘(𝐷 ↾ (𝐴 × 𝐴))))
 
Theoremmetucn 23736* Uniform continuity in metric spaces. Compare the order of the quantifiers with metcn 23708. (Contributed by Thierry Arnoux, 26-Jan-2018.) (Revised by Thierry Arnoux, 11-Feb-2018.)
𝑈 = (metUnif‘𝐶)    &   𝑉 = (metUnif‘𝐷)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝑌 ≠ ∅)    &   (𝜑𝐶 ∈ (PsMet‘𝑋))    &   (𝜑𝐷 ∈ (PsMet‘𝑌))       (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑))))
 
12.4.7  Examples of metric spaces
 
Theoremdscmet 23737* The discrete metric on any set 𝑋. Definition 1.1-8 of [Kreyszig] p. 8. (Contributed by FL, 12-Oct-2006.)
𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))       (𝑋𝑉𝐷 ∈ (Met‘𝑋))
 
Theoremdscopn 23738* The discrete metric generates the discrete topology. In particular, the discrete topology is metrizable. (Contributed by Mario Carneiro, 29-Jan-2014.)
𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))       (𝑋𝑉 → (MetOpen‘𝐷) = 𝒫 𝑋)
 
Theoremnrmmetd 23739* Show that a group norm generates a metric. Part of Definition 2.2-1 of [Kreyszig] p. 58. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝐺)    &    = (-g𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐹:𝑋⟶ℝ)    &   ((𝜑𝑥𝑋) → ((𝐹𝑥) = 0 ↔ 𝑥 = 0 ))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))       (𝜑 → (𝐹 ) ∈ (Met‘𝑋))
 
Theoremabvmet 23740 An absolute value 𝐹 generates a metric defined by 𝑑(𝑥, 𝑦) = 𝐹(𝑥𝑦), analogously to cnmet 23944. (In fact, the ring structure is not needed at all; the group properties abveq0 20095 and abvtri 20099, abvneg 20103 are sufficient.) (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝑅)    &   𝐴 = (AbsVal‘𝑅)    &    = (-g𝑅)       (𝐹𝐴 → (𝐹 ) ∈ (Met‘𝑋))
 
12.4.8  Normed algebraic structures

In the following, the norm of a normed algebraic structure (group, left module, vector space) is defined by the (given) distance function (the norm 𝑁 of an element is its distance 𝐷 from the zero element, see nmval 23754: (𝑁𝐴) = (𝐴𝐷 0 )). By this definition, the norm function 𝑁 is actually a norm (satisfying the properties: being a function into the reals; subadditivity/triangle inequality (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)); absolute homogeneity ( n(sx) = |s| n(x) ) [Remark: for group norms, some authors (e.g., Juris Steprans in "A characterization of free abelian groups") demand that n(sx) = |s| n(x) for all 𝑠 ∈ ℤ, whereas other authors (e.g., N. H. Bingham and A. J. Ostaszewski in "Normed versus topological groups: Dichotomy and duality") only require inversion symmetry, i.e., (𝑁‘( − 𝑥) = 𝑁𝑥). The definition df-ngp 23748 of a group norm follows the second aproach, see nminv 23786.] and positive definiteness/point-separation ((𝑁𝑥) = 0 ↔ 𝑥 = 0)) if the structure is a metric space with a right-translation-invariant metric (see nmf 23780, nmtri 23791, nmvs 23849 and nmeq0 23783). An alternate definition of a normed group (i.e., a group equipped with a norm) not using the properties of a metric space is given by Theorem tngngp3 23829. The norm can be expressed as the distance to zero (nmfval 23753), so in a structure with a zero (a "pointed set", for instance a monoid or a group), the norm can be expressed as the distance restricted to the elements of the base set to zero (nmfval0 23755).

Usually, however, the norm of a normed structure is given, and the corresponding metric ("induced metric") is defined as the distance function based on the norm (the distance 𝐷 between two elements is the norm 𝑁 of their difference, see ngpds 23769: (𝐴𝐷𝐵) = (𝑁‘(𝐴 𝐵))). The operation toNrmGrp does exactly this, i.e., it adds a distance function (and a topology) to a structure (which should be at least a group for the difference of two elements to make sense) corresponding to a given norm as explained above: (dist‘𝑇) = (𝑁 ), see also tngds 23820. By this, the enhanced structure becomes a normed structure if the induced metric is in fact a metric (see tngngp2 23825) or a norm (see tngngpd 23826). If the norm is derived from a given metric, as done with df-nm 23747, the induced metric is the original metric restricted to the base set: (dist‘𝑇) = ((dist‘𝐺) ↾ (𝑋 × 𝑋)), see nrmtngdist 23830, and the norm remains the same: (norm‘𝑇) = (norm‘𝐺), see nrmtngnrm 23831.

 
Syntaxcnm 23741 Norm of a normed ring.
class norm
 
Syntaxcngp 23742 The class of all normed groups.
class NrmGrp
 
Syntaxctng 23743 Make a normed group from a norm and a group.
class toNrmGrp
 
Syntaxcnrg 23744 Normed ring.
class NrmRing
 
Syntaxcnlm 23745 Normed module.
class NrmMod
 
Syntaxcnvc 23746 Normed vector space.
class NrmVec
 
Definitiondf-nm 23747* Define the norm on a group or ring (when it makes sense) in terms of the distance to zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
norm = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g𝑤))))
 
Definitiondf-ngp 23748 Define a normed group, which is a group with a right-translation-invariant metric. This is not a standard notion, but is helpful as the most general context in which a metric-like norm makes sense. (Contributed by Mario Carneiro, 2-Oct-2015.)
NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣ ((norm‘𝑔) ∘ (-g𝑔)) ⊆ (dist‘𝑔)}
 
Definitiondf-tng 23749* Define a function that fills in the topology and metric components of a structure given a group and a norm on it. (Contributed by Mario Carneiro, 2-Oct-2015.)
toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩))
 
Definitiondf-nrg 23750 A normed ring is a ring with an induced topology and metric such that the metric is translation-invariant and the norm (distance from 0) is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
NrmRing = {𝑤 ∈ NrmGrp ∣ (norm‘𝑤) ∈ (AbsVal‘𝑤)}
 
Definitiondf-nlm 23751* A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015.)
NrmMod = {𝑤 ∈ (NrmGrp ∩ LMod) ∣ [(Scalar‘𝑤) / 𝑓](𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)))}
 
Definitiondf-nvc 23752 A normed vector space is a normed module which is also a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.)
NrmVec = (NrmMod ∩ LVec)
 
Theoremnmfval 23753* The value of the norm function as the distance to zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑁 = (norm‘𝑊)    &   𝑋 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝐷 = (dist‘𝑊)       𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
 
Theoremnmval 23754 The value of the norm as the distance to zero. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑁 = (norm‘𝑊)    &   𝑋 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝐷 = (dist‘𝑊)       (𝐴𝑋 → (𝑁𝐴) = (𝐴𝐷 0 ))
 
Theoremnmfval0 23755* The value of the norm function on a structure containing a zero as the distance restricted to the elements of the base set to zero. Examples of structures containing a "zero" are groups (see nmfval2 23756 proved from this theorem and grpidcl 18616) or more generally monoids (see mndidcl 18409), or pointed sets). (Contributed by Mario Carneiro, 2-Oct-2015.) Extract this result from the proof of nmfval2 23756. (Revised by BJ, 27-Aug-2024.)
𝑁 = (norm‘𝑊)    &   𝑋 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝐷 = (dist‘𝑊)    &   𝐸 = (𝐷 ↾ (𝑋 × 𝑋))       ( 0𝑋𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
 
Theoremnmfval2 23756* The value of the norm function on a group as the distance restricted to the elements of the base set to zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑁 = (norm‘𝑊)    &   𝑋 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝐷 = (dist‘𝑊)    &   𝐸 = (𝐷 ↾ (𝑋 × 𝑋))       (𝑊 ∈ Grp → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
 
Theoremnmval2 23757 The value of the norm on a group as the distance restricted to the elements of the base set to zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑁 = (norm‘𝑊)    &   𝑋 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝐷 = (dist‘𝑊)    &   𝐸 = (𝐷 ↾ (𝑋 × 𝑋))       ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐸 0 ))
 
Theoremnmf2 23758 The norm on a metric group is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑁 = (norm‘𝑊)    &   𝑋 = (Base‘𝑊)    &   𝐷 = (dist‘𝑊)    &   𝐸 = (𝐷 ↾ (𝑋 × 𝑋))       ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)
 
Theoremnmpropd 23759 Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝜑 → (Base‘𝐾) = (Base‘𝐿))    &   (𝜑 → (+g𝐾) = (+g𝐿))    &   (𝜑 → (dist‘𝐾) = (dist‘𝐿))       (𝜑 → (norm‘𝐾) = (norm‘𝐿))
 
Theoremnmpropd2 23760* Strong property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐾 ∈ Grp)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))       (𝜑 → (norm‘𝐾) = (norm‘𝐿))
 
Theoremisngp 23761 The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑁 = (norm‘𝐺)    &    = (-g𝐺)    &   𝐷 = (dist‘𝐺)       (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))
 
Theoremisngp2 23762 The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑁 = (norm‘𝐺)    &    = (-g𝐺)    &   𝐷 = (dist‘𝐺)    &   𝑋 = (Base‘𝐺)    &   𝐸 = (𝐷 ↾ (𝑋 × 𝑋))       (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸))
 
Theoremisngp3 23763* The property of being a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝑁 = (norm‘𝐺)    &    = (-g𝐺)    &   𝐷 = (dist‘𝐺)    &   𝑋 = (Base‘𝐺)       (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
 
Theoremngpgrp 23764 A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.)
(𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
 
Theoremngpms 23765 A normed group is a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
(𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
 
Theoremngpxms 23766 A normed group is an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
(𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp)
 
Theoremngptps 23767 A normed group is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝐺 ∈ NrmGrp → 𝐺 ∈ TopSp)
 
Theoremngpmet 23768 The (induced) metric of a normed group is a metric. Part of Definition 2.2-1 of [Kreyszig] p. 58. (Contributed by NM, 4-Dec-2006.) (Revised by AV, 14-Oct-2021.)
𝑋 = (Base‘𝐺)    &   𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))       (𝐺 ∈ NrmGrp → 𝐷 ∈ (Met‘𝑋))
 
Theoremngpds 23769 Value of the distance function in terms of the norm of a normed group. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑁 = (norm‘𝐺)    &   𝑋 = (Base‘𝐺)    &    = (-g𝐺)    &   𝐷 = (dist‘𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 𝐵)))
 
Theoremngpdsr 23770 Value of the distance function in terms of the norm of a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑁 = (norm‘𝐺)    &   𝑋 = (Base‘𝐺)    &    = (-g𝐺)    &   𝐷 = (dist‘𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐵 𝐴)))
 
Theoremngpds2 23771 Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝐺)    &    0 = (0g𝐺)    &    = (-g𝐺)    &   𝐷 = (dist‘𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = ((𝐴 𝐵)𝐷 0 ))
 
Theoremngpds2r 23772 Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝐺)    &    0 = (0g𝐺)    &    = (-g𝐺)    &   𝐷 = (dist‘𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = ((𝐵 𝐴)𝐷 0 ))
 
Theoremngpds3 23773 Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝐺)    &    0 = (0g𝐺)    &    = (-g𝐺)    &   𝐷 = (dist‘𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = ( 0 𝐷(𝐴 𝐵)))
 
Theoremngpds3r 23774 Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝐺)    &    0 = (0g𝐺)    &    = (-g𝐺)    &   𝐷 = (dist‘𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = ( 0 𝐷(𝐵 𝐴)))
 
Theoremngprcan 23775 Cancel right addition inside a distance calculation. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐷 = (dist‘𝐺)       ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 + 𝐶)𝐷(𝐵 + 𝐶)) = (𝐴𝐷𝐵))
 
Theoremngplcan 23776 Cancel left addition inside a distance calculation. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐷 = (dist‘𝐺)       (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶 + 𝐴)𝐷(𝐶 + 𝐵)) = (𝐴𝐷𝐵))
 
Theoremisngp4 23777* Express the property of being a normed group purely in terms of right-translation invariance of the metric instead of using the definition of norm (which itself uses the metric). (Contributed by Mario Carneiro, 29-Oct-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐷 = (dist‘𝐺)       (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
 
Theoremngpinvds 23778 Two elements are the same distance apart as their inverses. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Base‘𝐺)    &   𝐼 = (invg𝐺)    &   𝐷 = (dist‘𝐺)       (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐼𝐴)𝐷(𝐼𝐵)) = (𝐴𝐷𝐵))
 
Theoremngpsubcan 23779 Cancel right subtraction inside a distance calculation. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Base‘𝐺)    &    = (-g𝐺)    &   𝐷 = (dist‘𝐺)       ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 𝐶)𝐷(𝐵 𝐶)) = (𝐴𝐷𝐵))
 
Theoremnmf 23780 The norm on a normed group is a function into the reals. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (norm‘𝐺)       (𝐺 ∈ NrmGrp → 𝑁:𝑋⟶ℝ)
 
Theoremnmcl 23781 The norm of a normed group is closed in the reals. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (norm‘𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
 
Theoremnmge0 23782 The norm of a normed group is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (norm‘𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))
 
Theoremnmeq0 23783 The identity is the only element of the group with zero norm. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (Revised by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (norm‘𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 0 ))
 
Theoremnmne0 23784 The norm of a nonzero element is nonzero. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (norm‘𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐴0 ) → (𝑁𝐴) ≠ 0)
 
Theoremnmrpcl 23785 The norm of a nonzero element is a positive real. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (norm‘𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐴0 ) → (𝑁𝐴) ∈ ℝ+)
 
Theoremnminv 23786 The norm of a negated element is the same as the norm of the original element. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (norm‘𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁‘(𝐼𝐴)) = (𝑁𝐴))
 
Theoremnmmtri 23787 The triangle inequality for the norm of a subtraction. (Contributed by NM, 27-Dec-2007.) (Revised by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (norm‘𝐺)    &    = (-g𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))
 
Theoremnmsub 23788 The norm of the difference between two elements. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (norm‘𝐺)    &    = (-g𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 𝐵)) = (𝑁‘(𝐵 𝐴)))
 
Theoremnmrtri 23789 Reverse triangle inequality for the norm of a subtraction. Problem 3 of [Kreyszig] p. 64. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (norm‘𝐺)    &    = (-g𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴 𝐵)))
 
Theoremnm2dif 23790 Inequality for the difference of norms. (Contributed by Mario Carneiro, 6-Oct-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (norm‘𝐺)    &    = (-g𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴 𝐵)))
 
Theoremnmtri 23791 The triangle inequality for the norm of a sum. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (norm‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + 𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))
 
Theoremnmtri2 23792 Triangle inequality for the norm of two subtractions. (Contributed by NM, 24-Feb-2008.) (Revised by AV, 8-Oct-2021.)
𝑋 = (Base‘𝐺)    &   𝑁 = (norm‘𝐺)    &    = (-g𝐺)       ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝑁‘(𝐴 𝐶)) ≤ ((𝑁‘(𝐴 𝐵)) + (𝑁‘(𝐵 𝐶))))
 
Theoremngpi 23793* The properties of a normed group, which is a group accompanied by a norm. (Contributed by AV, 7-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    = (-g𝑊)    &    0 = (0g𝑊)       (𝑊 ∈ NrmGrp → (𝑊 ∈ Grp ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
 
Theoremnm0 23794 Norm of the identity element. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝑁 = (norm‘𝐺)    &    0 = (0g𝐺)       (𝐺 ∈ NrmGrp → (𝑁0 ) = 0)
 
Theoremnmgt0 23795 The norm of a nonzero element is a positive real. (Contributed by NM, 20-Nov-2007.) (Revised by AV, 8-Oct-2021.)
𝑋 = (Base‘𝐺)    &   𝑁 = (norm‘𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝐴0 ↔ 0 < (𝑁𝐴)))
 
Theoremsgrim 23796 The induced metric on a subgroup is the induced metric on the parent group equipped with a norm. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 19-Oct-2021.)
𝑋 = (𝑇s 𝑈)    &   𝐷 = (dist‘𝑇)    &   𝐸 = (dist‘𝑋)       (𝑈𝑆𝐸 = 𝐷)
 
Theoremsgrimval 23797 The induced metric on a subgroup in terms of the induced metric on the parent normed group. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 19-Oct-2021.)
𝑋 = (𝑇s 𝑈)    &   𝐷 = (dist‘𝑇)    &   𝐸 = (dist‘𝑋)    &   𝑇 = (𝐺 toNrmGrp 𝑁)    &   𝑁 = (norm‘𝐺)    &   𝑆 = (SubGrp‘𝑇)       (((𝐺 ∈ NrmGrp ∧ 𝑈𝑆) ∧ (𝐴𝑈𝐵𝑈)) → (𝐴𝐸𝐵) = (𝐴𝐷𝐵))
 
Theoremsubgnm 23798 The norm in a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝐻 = (𝐺s 𝐴)    &   𝑁 = (norm‘𝐺)    &   𝑀 = (norm‘𝐻)       (𝐴 ∈ (SubGrp‘𝐺) → 𝑀 = (𝑁𝐴))
 
Theoremsubgnm2 23799 A substructure assigns the same values to the norms of elements of a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝐻 = (𝐺s 𝐴)    &   𝑁 = (norm‘𝐺)    &   𝑀 = (norm‘𝐻)       ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → (𝑀𝑋) = (𝑁𝑋))
 
Theoremsubgngp 23800 A normed group restricted to a subgroup is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝐻 = (𝐺s 𝐴)       ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ NrmGrp)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >