| Metamath
Proof Explorer Theorem List (p. 238 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | xkocnv 23701* | The inverse of the "currying" function 𝐹 is the uncurrying function. (Contributed by Mario Carneiro, 13-Apr-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ 𝐹 = (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↦ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))) & ⊢ (𝜑 → 𝐽 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → 𝐿 ∈ Top) ⇒ ⊢ (𝜑 → ◡𝐹 = (𝑔 ∈ (𝐽 Cn (𝐿 ↑ko 𝐾)) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) | ||
| Theorem | xkohmeo 23702* | The Exponential Law for topological spaces. The "currying" function 𝐹 is a homeomorphism on function spaces when 𝐽 and 𝐾 are exponentiable spaces (by xkococn 23547, it is sufficient to assume that 𝐽, 𝐾 are locally compact to ensure exponentiability). (Contributed by Mario Carneiro, 13-Apr-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ 𝐹 = (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↦ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))) & ⊢ (𝜑 → 𝐽 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → 𝐿 ∈ Top) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐿 ↑ko (𝐽 ×t 𝐾))Homeo((𝐿 ↑ko 𝐾) ↑ko 𝐽))) | ||
| Theorem | qtopf1 23703 | If a quotient map is injective, then it is a homeomorphism. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑋–1-1→𝑌) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐽Homeo(𝐽 qTop 𝐹))) | ||
| Theorem | qtophmeo 23704* | If two functions on a base topology 𝐽 make the same identifications in order to create quotient spaces 𝐽 qTop 𝐹 and 𝐽 qTop 𝐺, then not only are 𝐽 qTop 𝐹 and 𝐽 qTop 𝐺 homeomorphic, but there is a unique homeomorphism that makes the diagram commute. (Contributed by Mario Carneiro, 24-Mar-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺:𝑋–onto→𝑌) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐺‘𝑥) = (𝐺‘𝑦))) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺))𝐺 = (𝑓 ∘ 𝐹)) | ||
| Theorem | t0kq 23705* | A topological space is T0 iff the quotient map is a homeomorphism onto the space's Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽)))) | ||
| Theorem | kqhmph 23706 | A topological space is T0 iff it is homeomorphic to its Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽)) | ||
| Theorem | ist1-5lem 23707 | Lemma for ist1-5 23709 and similar theorems. If 𝐴 is a topological property which implies T0, such as T1 or T2, the property can be "decomposed" into T0 and a non-T0 version of property 𝐴 (which is defined as stating that the Kolmogorov quotient of the space has property 𝐴). For example, if 𝐴 is T1, then the theorem states that a space is T1 iff it is T0 and its Kolmogorov quotient is T1 (we call this property R0). (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Kol2) & ⊢ (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ 𝐴 → (KQ‘𝐽) ∈ 𝐴)) & ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴 → 𝐽 ∈ 𝐴)) ⇒ ⊢ (𝐽 ∈ 𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴)) | ||
| Theorem | t1r0 23708 | A T1 space is R0. That is, the Kolmogorov quotient of a T1 space is also T1 (because they are homeomorphic). (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre) | ||
| Theorem | ist1-5 23709 | A topological space is T1 iff it is both T0 and R0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Fre)) | ||
| Theorem | ishaus3 23710 | A topological space is Hausdorff iff it is both T0 and R1 (where R1 means that any two topologically distinct points are separated by neighborhoods). (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) | ||
| Theorem | nrmreg 23711 | A normal T1 space is regular Hausdorff. In other words, a T4 space is T3 . One can get away with slightly weaker assumptions; see nrmr0reg 23636. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg) | ||
| Theorem | reghaus 23712 | A regular T0 space is Hausdorff. In other words, a T3 space is T2 . A regular Hausdorff or T0 space is also known as a T3 space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) | ||
| Theorem | nrmhaus 23713 | A T1 normal space is Hausdorff. A Hausdorff or T1 normal space is also known as a T4 space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) | ||
| Theorem | elmptrab 23714* | Membership in a one-parameter class of sets. (Contributed by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) & ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) & ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓)) | ||
| Theorem | elmptrab2 23715* | Membership in a one-parameter class of sets, indexed by arbitrary base sets. (Contributed by Stefan O'Rear, 28-Jul-2015.) (Revised by AV, 26-Mar-2021.) |
| ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) & ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) & ⊢ 𝐵 ∈ V & ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ 𝑊) ⇒ ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) | ||
| Theorem | isfbas 23716* | The predicate "𝐹 is a filter base." Note that some authors require filter bases to be closed under pairwise intersections, but that is not necessary under our definition. One advantage of this definition is that tails in a directed set form a filter base under our meaning. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
| ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | ||
| Theorem | fbasne0 23717 | There are no empty filter bases. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
| ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐹 ≠ ∅) | ||
| Theorem | 0nelfb 23718 | No filter base contains the empty set. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
| ⊢ (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹) | ||
| Theorem | fbsspw 23719 | A filter base on a set is a subset of the power set. (Contributed by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐹 ⊆ 𝒫 𝐵) | ||
| Theorem | fbelss 23720 | An element of the filter base is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑋 ∈ 𝐹) → 𝑋 ⊆ 𝐵) | ||
| Theorem | fbdmn0 23721 | The domain of a filter base is nonempty. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐵 ≠ ∅) | ||
| Theorem | isfbas2 23722* | The predicate "𝐹 is a filter base." (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))))) | ||
| Theorem | fbasssin 23723* | A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Jeff Hankins, 1-Dec-2010.) |
| ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) | ||
| Theorem | fbssfi 23724* | A filter base contains subsets of its finite intersections. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴) | ||
| Theorem | fbssint 23725* | A filter base contains subsets of its finite intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) | ||
| Theorem | fbncp 23726 | A filter base does not contain complements of its elements. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝐵 ∖ 𝐴) ∈ 𝐹) | ||
| Theorem | fbun 23727* | A necessary and sufficient condition for the union of two filter bases to also be a filter base. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) | ||
| Theorem | fbfinnfr 23728 | No filter base containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin) → ∩ 𝐹 ≠ ∅) | ||
| Theorem | opnfbas 23729* | The collection of open supersets of a nonempty set in a topology is a neighborhoods of the set, one of the motivations for the filter concept. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → {𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∈ (fBas‘𝑋)) | ||
| Theorem | trfbas2 23730 | Conditions for the trace of a filter base 𝐹 to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹 ↾t 𝐴))) | ||
| Theorem | trfbas 23731* | Conditions for the trace of a filter base 𝐹 to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) | ||
| Syntax | cfil 23732 | Extend class notation with the set of filters on a set. |
| class Fil | ||
| Definition | df-fil 23733* | The set of filters on a set. Definition 1 (axioms FI, FIIa, FIIb, FIII) of [BourbakiTop1] p. I.36. Filters are used to define the concept of limit in the general case. They are a generalization of the idea of neighborhoods. Suppose you are in ℝ. With neighborhoods you can express the idea of a variable that tends to a specific number but you can't express the idea of a variable that tends to infinity. Filters relax the "axioms" of neighborhoods and then succeed in expressing the idea of something that tends to infinity. Filters were invented by Cartan in 1937 and made famous by Bourbaki in his treatise. A notion similar to the notion of filter is the concept of net invented by Moore and Smith in 1922. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓)}) | ||
| Theorem | isfil 23734* | The predicate "is a filter." (Contributed by FL, 20-Jul-2007.) (Revised by Mario Carneiro, 28-Jul-2015.) |
| ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | ||
| Theorem | filfbas 23735 | A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
| ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | ||
| Theorem | 0nelfil 23736 | The empty set doesn't belong to a filter. (Contributed by FL, 20-Jul-2007.) (Revised by Mario Carneiro, 28-Jul-2015.) |
| ⊢ (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹) | ||
| Theorem | fileln0 23737 | An element of a filter is nonempty. (Contributed by FL, 24-May-2011.) (Revised by Mario Carneiro, 28-Jul-2015.) |
| ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ≠ ∅) | ||
| Theorem | filsspw 23738 | A filter is a subset of the power set of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) | ||
| Theorem | filelss 23739 | An element of a filter is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) | ||
| Theorem | filss 23740 | A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝐹) | ||
| Theorem | filin 23741 | A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ∩ 𝐵) ∈ 𝐹) | ||
| Theorem | filtop 23742 | The underlying set belongs to the filter. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) | ||
| Theorem | isfil2 23743* | Derive the standard axioms of a filter. (Contributed by Mario Carneiro, 27-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ ((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹) ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝑥 ∩ 𝑦) ∈ 𝐹)) | ||
| Theorem | isfildlem 23744* | Lemma for isfild 23745. (Contributed by Mario Carneiro, 1-Dec-2013.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐹 ↔ (𝑥 ⊆ 𝐴 ∧ 𝜓))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐵 ∈ 𝐹 ↔ (𝐵 ⊆ 𝐴 ∧ [𝐵 / 𝑥]𝜓))) | ||
| Theorem | isfild 23745* | Sufficient condition for a set of the form {𝑥 ∈ 𝒫 𝐴 ∣ 𝜑} to be a filter. (Contributed by Mario Carneiro, 1-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) (Revised by AV, 10-Apr-2024.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐹 ↔ (𝑥 ⊆ 𝐴 ∧ 𝜓))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) & ⊢ (𝜑 → ¬ [∅ / 𝑥]𝜓) & ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦) → ([𝑧 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜓)) & ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴) → (([𝑦 / 𝑥]𝜓 ∧ [𝑧 / 𝑥]𝜓) → [(𝑦 ∩ 𝑧) / 𝑥]𝜓)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (Fil‘𝐴)) | ||
| Theorem | filfi 23746 | A filter is closed under taking intersections. (Contributed by Mario Carneiro, 27-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹) | ||
| Theorem | filinn0 23747 | The intersection of two elements of a filter can't be empty. (Contributed by FL, 16-Sep-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ∩ 𝐵) ≠ ∅) | ||
| Theorem | filintn0 23748 | A filter has the finite intersection property. Remark below Definition 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 20-Sep-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ⊆ 𝐹 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ≠ ∅) | ||
| Theorem | filn0 23749 | The empty set is not a filter. Remark below Definition 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 30-Oct-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) | ||
| Theorem | infil 23750 | The intersection of two filters is a filter. Use fiint 9277 to extend this property to the intersection of a finite set of filters. Paragraph 3 of [BourbakiTop1] p. I.36. (Contributed by FL, 17-Sep-2007.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹 ∩ 𝐺) ∈ (Fil‘𝑋)) | ||
| Theorem | snfil 23751 | A singleton is a filter. Example 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 16-Sep-2007.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅) → {𝐴} ∈ (Fil‘𝐴)) | ||
| Theorem | fbasweak 23752 | A filter base on any set is also a filter base on any larger set. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝑌)) | ||
| Theorem | snfbas 23753 | Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) | ||
| Theorem | fsubbas 23754 | A condition for a set to generate a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → ((fi‘𝐴) ∈ (fBas‘𝑋) ↔ (𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴)))) | ||
| Theorem | fbasfip 23755 | A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹)) | ||
| Theorem | fbunfip 23756* | A helpful lemma for showing that certain sets generate filters. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ 𝐺)) ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 (𝑥 ∩ 𝑦) ≠ ∅)) | ||
| Theorem | fgval 23757* | The filter generating class gives a filter for every filter base. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) | ||
| Theorem | elfg 23758* | A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴))) | ||
| Theorem | ssfg 23759 | A filter base is a subset of its generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) | ||
| Theorem | fgss 23760 | A bigger base generates a bigger filter. (Contributed by NM, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺)) | ||
| Theorem | fgss2 23761* | A condition for a filter to be finer than another involving their filter bases. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) ↔ ∀𝑥 ∈ 𝐹 ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥)) | ||
| Theorem | fgfil 23762 | A filter generates itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) | ||
| Theorem | elfilss 23763* | An element belongs to a filter iff any element below it does. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐹 ↔ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴)) | ||
| Theorem | filfinnfr 23764 | No filter containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin) → ∩ 𝐹 ≠ ∅) | ||
| Theorem | fgcl 23765 | A generated filter is a filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) | ||
| Theorem | fgabs 23766 | Absorption law for filter generation. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌 ⊆ 𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹)) | ||
| Theorem | neifil 23767 | The neighborhoods of a nonempty set is a filter. Example 2 of [BourbakiTop1] p. I.36. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → ((nei‘𝐽)‘𝑆) ∈ (Fil‘𝑋)) | ||
| Theorem | filunibas 23768 | Recover the base set from a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) | ||
| Theorem | filunirn 23769 | Two ways to express a filter on an unspecified base. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ (𝐹 ∈ ∪ ran Fil ↔ 𝐹 ∈ (Fil‘∪ 𝐹)) | ||
| Theorem | filconn 23770 | A filter gives rise to a connected topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈ Conn) | ||
| Theorem | fbasrn 23771* | Given a filter on a domain, produce a filter on the range. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
| ⊢ 𝐶 = ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) ⇒ ⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐶 ∈ (fBas‘𝑌)) | ||
| Theorem | filuni 23772* | The union of a nonempty set of filters with a common base and closed under pairwise union is a filter. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → ∪ 𝐹 ∈ (Fil‘𝑋)) | ||
| Theorem | trfil1 23773 | Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 = ∪ (𝐿 ↾t 𝐴)) | ||
| Theorem | trfil2 23774* | Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ 𝐿 (𝑣 ∩ 𝐴) ≠ ∅)) | ||
| Theorem | trfil3 23775 | Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) | ||
| Theorem | trfilss 23776 | If 𝐴 is a member of the filter, then the filter truncated to 𝐴 is a subset of the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ⊆ 𝐹) | ||
| Theorem | fgtr 23777 | If 𝐴 is a member of the filter, then truncating 𝐹 to 𝐴 and regenerating the behavior outside 𝐴 using filGen recovers the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑋filGen(𝐹 ↾t 𝐴)) = 𝐹) | ||
| Theorem | trfg 23778 | The trace operation and the filGen operation are inverses to one another in some sense, with filGen growing the base set and ↾t shrinking it. See fgtr 23777 for the converse cancellation law. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = 𝐹) | ||
| Theorem | trnei 23779 | The trace, over a set 𝐴, of the filter of the neighborhoods of a point 𝑃 is a filter iff 𝑃 belongs to the closure of 𝐴. (This is trfil2 23774 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴))) | ||
| Theorem | cfinfil 23780* | Relative complements of the finite parts of an infinite set is a filter. When 𝐴 = ℕ the set of the relative complements is called Frechet's filter and is used to define the concept of limit of a sequence. (Contributed by FL, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∖ 𝑥) ∈ Fin} ∈ (Fil‘𝑋)) | ||
| Theorem | csdfil 23781* | The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ≺ 𝑋} ∈ (Fil‘𝑋)) | ||
| Theorem | supfil 23782* | The supersets of a nonempty set which are also subsets of a given base set form a filter. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥} ∈ (Fil‘𝐴)) | ||
| Theorem | zfbas 23783 | The set of upper sets of integers is a filter base on ℤ, which corresponds to convergence of sequences on ℤ. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ ran ℤ≥ ∈ (fBas‘ℤ) | ||
| Theorem | uzrest 23784 | The restriction of the set of upper sets of integers to an upper set of integers is the set of upper sets of integers based at a point above the cutoff. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (ran ℤ≥ ↾t 𝑍) = (ℤ≥ “ 𝑍)) | ||
| Theorem | uzfbas 23785 | The set of upper sets of integers based at a point in a fixed upper integer set like ℕ is a filter base on ℕ, which corresponds to convergence of sequences on ℕ. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (ℤ≥ “ 𝑍) ∈ (fBas‘𝑍)) | ||
| Syntax | cufil 23786 | Extend class notation with the ultrafilters-on-a-set function. |
| class UFil | ||
| Syntax | cufl 23787 | Extend class notation with the ultrafilter lemma. |
| class UFL | ||
| Definition | df-ufil 23788* | Define the set of ultrafilters on a set. An ultrafilter is a filter that gives a definite result for every subset. (Contributed by Jeff Hankins, 30-Nov-2009.) |
| ⊢ UFil = (𝑔 ∈ V ↦ {𝑓 ∈ (Fil‘𝑔) ∣ ∀𝑥 ∈ 𝒫 𝑔(𝑥 ∈ 𝑓 ∨ (𝑔 ∖ 𝑥) ∈ 𝑓)}) | ||
| Definition | df-ufl 23789* | Define the class of base sets for which the ultrafilter lemma filssufil 23799 holds. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ UFL = {𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔} | ||
| Theorem | isufil 23790* | The property of being an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) |
| ⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) | ||
| Theorem | ufilfil 23791 | An ultrafilter is a filter. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) |
| ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | ||
| Theorem | ufilss 23792 | For any subset of the base set of an ultrafilter, either the set is in the ultrafilter or the complement is. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) |
| ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹)) | ||
| Theorem | ufilb 23793 | The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013.) (Revised by Mario Carneiro, 29-Jul-2015.) |
| ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) | ||
| Theorem | ufilmax 23794 | Any filter finer than an ultrafilter is actually equal to it. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) |
| ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → 𝐹 = 𝐺) | ||
| Theorem | isufil2 23795* | The maximal property of an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑓 → 𝐹 = 𝑓))) | ||
| Theorem | ufprim 23796 | An ultrafilter is a prime filter. (Contributed by Jeff Hankins, 1-Jan-2010.) (Revised by Mario Carneiro, 2-Aug-2015.) |
| ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹) ↔ (𝐴 ∪ 𝐵) ∈ 𝐹)) | ||
| Theorem | trufil 23797 | Conditions for the trace of an ultrafilter 𝐿 to be an ultrafilter. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (UFil‘𝐴) ↔ 𝐴 ∈ 𝐿)) | ||
| Theorem | filssufilg 23798* | A filter is contained in some ultrafilter. This version of filssufil 23799 contains the choice as a hypothesis (in the assumption that 𝒫 𝒫 𝑋 is well-orderable). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) | ||
| Theorem | filssufil 23799* | A filter is contained in some ultrafilter. (Requires the Axiom of Choice, via numth3 10423.) (Contributed by Jeff Hankins, 2-Dec-2009.) (Revised by Stefan O'Rear, 29-Jul-2015.) |
| ⊢ (𝐹 ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) | ||
| Theorem | isufl 23800* | Define the (strong) ultrafilter lemma, parameterized over base sets. A set 𝑋 satisfies the ultrafilter lemma if every filter on 𝑋 is a subset of some ultrafilter. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |