| Step | Hyp | Ref
| Expression |
| 1 | | unieq 4917 |
. . . 4
⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪
𝐽) |
| 2 | 1 | oveq2d 7448 |
. . 3
⊢ (𝑗 = 𝐽 → (∪ 𝑘 ↑pm ∪ 𝑗) =
(∪ 𝑘 ↑pm ∪ 𝐽)) |
| 3 | | fveq2 6905 |
. . . . 5
⊢ (𝑗 = 𝐽 → (cls‘𝑗) = (cls‘𝐽)) |
| 4 | 3 | fveq1d 6907 |
. . . 4
⊢ (𝑗 = 𝐽 → ((cls‘𝑗)‘dom 𝑓) = ((cls‘𝐽)‘dom 𝑓)) |
| 5 | | fveq2 6905 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (nei‘𝑗) = (nei‘𝐽)) |
| 6 | 5 | fveq1d 6907 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥})) |
| 7 | 6 | oveq1d 7447 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓) = (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓)) |
| 8 | 7 | oveq2d 7448 |
. . . . . 6
⊢ (𝑗 = 𝐽 → (𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓)) = (𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))) |
| 9 | 8 | fveq1d 6907 |
. . . . 5
⊢ (𝑗 = 𝐽 → ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓) = ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) |
| 10 | 9 | xpeq2d 5714 |
. . . 4
⊢ (𝑗 = 𝐽 → ({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = ({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) |
| 11 | 4, 10 | iuneq12d 5020 |
. . 3
⊢ (𝑗 = 𝐽 → ∪
𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = ∪
𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) |
| 12 | 2, 11 | mpteq12dv 5232 |
. 2
⊢ (𝑗 = 𝐽 → (𝑓 ∈ (∪ 𝑘 ↑pm ∪ 𝑗)
↦ ∪ 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) = (𝑓 ∈ (∪ 𝑘 ↑pm ∪ 𝐽)
↦ ∪ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))) |
| 13 | | unieq 4917 |
. . . 4
⊢ (𝑘 = 𝐾 → ∪ 𝑘 = ∪
𝐾) |
| 14 | 13 | oveq1d 7447 |
. . 3
⊢ (𝑘 = 𝐾 → (∪ 𝑘 ↑pm ∪ 𝐽) =
(∪ 𝐾 ↑pm ∪ 𝐽)) |
| 15 | | oveq1 7439 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))) |
| 16 | 15 | fveq1d 6907 |
. . . . 5
⊢ (𝑘 = 𝐾 → ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) |
| 17 | 16 | xpeq2d 5714 |
. . . 4
⊢ (𝑘 = 𝐾 → ({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) |
| 18 | 17 | iuneq2d 5021 |
. . 3
⊢ (𝑘 = 𝐾 → ∪
𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = ∪
𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) |
| 19 | 14, 18 | mpteq12dv 5232 |
. 2
⊢ (𝑘 = 𝐾 → (𝑓 ∈ (∪ 𝑘 ↑pm ∪ 𝐽)
↦ ∪ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) = (𝑓 ∈ (∪ 𝐾 ↑pm ∪ 𝐽)
↦ ∪ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))) |
| 20 | | df-cnext 24069 |
. 2
⊢ CnExt =
(𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ (∪ 𝑘
↑pm ∪ 𝑗) ↦ ∪
𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))) |
| 21 | | ovex 7465 |
. . 3
⊢ (∪ 𝐾
↑pm ∪ 𝐽) ∈ V |
| 22 | 21 | mptex 7244 |
. 2
⊢ (𝑓 ∈ (∪ 𝐾
↑pm ∪ 𝐽) ↦ ∪ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) ∈ V |
| 23 | 12, 19, 20, 22 | ovmpo 7594 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽CnExt𝐾) = (𝑓 ∈ (∪ 𝐾 ↑pm ∪ 𝐽)
↦ ∪ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))) |