MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextval Structured version   Visualization version   GIF version

Theorem cnextval 24070
Description: The function applying continuous extension to a given function 𝑓. (Contributed by Thierry Arnoux, 1-Dec-2017.)
Assertion
Ref Expression
cnextval ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽CnExt𝐾) = (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
Distinct variable groups:   𝑥,𝑓,𝐽   𝑓,𝐾,𝑥

Proof of Theorem cnextval
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4917 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
21oveq2d 7448 . . 3 (𝑗 = 𝐽 → ( 𝑘pm 𝑗) = ( 𝑘pm 𝐽))
3 fveq2 6905 . . . . 5 (𝑗 = 𝐽 → (cls‘𝑗) = (cls‘𝐽))
43fveq1d 6907 . . . 4 (𝑗 = 𝐽 → ((cls‘𝑗)‘dom 𝑓) = ((cls‘𝐽)‘dom 𝑓))
5 fveq2 6905 . . . . . . . . 9 (𝑗 = 𝐽 → (nei‘𝑗) = (nei‘𝐽))
65fveq1d 6907 . . . . . . . 8 (𝑗 = 𝐽 → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥}))
76oveq1d 7447 . . . . . . 7 (𝑗 = 𝐽 → (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓) = (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))
87oveq2d 7448 . . . . . 6 (𝑗 = 𝐽 → (𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓)) = (𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓)))
98fveq1d 6907 . . . . 5 (𝑗 = 𝐽 → ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓) = ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))
109xpeq2d 5714 . . . 4 (𝑗 = 𝐽 → ({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = ({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))
114, 10iuneq12d 5020 . . 3 (𝑗 = 𝐽 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))
122, 11mpteq12dv 5232 . 2 (𝑗 = 𝐽 → (𝑓 ∈ ( 𝑘pm 𝑗) ↦ 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) = (𝑓 ∈ ( 𝑘pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
13 unieq 4917 . . . 4 (𝑘 = 𝐾 𝑘 = 𝐾)
1413oveq1d 7447 . . 3 (𝑘 = 𝐾 → ( 𝑘pm 𝐽) = ( 𝐾pm 𝐽))
15 oveq1 7439 . . . . . 6 (𝑘 = 𝐾 → (𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓)))
1615fveq1d 6907 . . . . 5 (𝑘 = 𝐾 → ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))
1716xpeq2d 5714 . . . 4 (𝑘 = 𝐾 → ({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))
1817iuneq2d 5021 . . 3 (𝑘 = 𝐾 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))
1914, 18mpteq12dv 5232 . 2 (𝑘 = 𝐾 → (𝑓 ∈ ( 𝑘pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) = (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
20 df-cnext 24069 . 2 CnExt = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ ( 𝑘pm 𝑗) ↦ 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
21 ovex 7465 . . 3 ( 𝐾pm 𝐽) ∈ V
2221mptex 7244 . 2 (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) ∈ V
2312, 19, 20, 22ovmpo 7594 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽CnExt𝐾) = (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {csn 4625   cuni 4906   ciun 4990  cmpt 5224   × cxp 5682  dom cdm 5684  cfv 6560  (class class class)co 7432  pm cpm 8868  t crest 17466  Topctop 22900  clsccl 23027  neicnei 23106   fLimf cflf 23944  CnExtccnext 24068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-cnext 24069
This theorem is referenced by:  cnextfval  24071
  Copyright terms: Public domain W3C validator