MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextval Structured version   Visualization version   GIF version

Theorem cnextval 23974
Description: The function applying continuous extension to a given function 𝑓. (Contributed by Thierry Arnoux, 1-Dec-2017.)
Assertion
Ref Expression
cnextval ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽CnExt𝐾) = (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
Distinct variable groups:   𝑥,𝑓,𝐽   𝑓,𝐾,𝑥

Proof of Theorem cnextval
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4870 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
21oveq2d 7362 . . 3 (𝑗 = 𝐽 → ( 𝑘pm 𝑗) = ( 𝑘pm 𝐽))
3 fveq2 6822 . . . . 5 (𝑗 = 𝐽 → (cls‘𝑗) = (cls‘𝐽))
43fveq1d 6824 . . . 4 (𝑗 = 𝐽 → ((cls‘𝑗)‘dom 𝑓) = ((cls‘𝐽)‘dom 𝑓))
5 fveq2 6822 . . . . . . . . 9 (𝑗 = 𝐽 → (nei‘𝑗) = (nei‘𝐽))
65fveq1d 6824 . . . . . . . 8 (𝑗 = 𝐽 → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥}))
76oveq1d 7361 . . . . . . 7 (𝑗 = 𝐽 → (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓) = (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))
87oveq2d 7362 . . . . . 6 (𝑗 = 𝐽 → (𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓)) = (𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓)))
98fveq1d 6824 . . . . 5 (𝑗 = 𝐽 → ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓) = ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))
109xpeq2d 5646 . . . 4 (𝑗 = 𝐽 → ({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = ({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))
114, 10iuneq12d 4971 . . 3 (𝑗 = 𝐽 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))
122, 11mpteq12dv 5178 . 2 (𝑗 = 𝐽 → (𝑓 ∈ ( 𝑘pm 𝑗) ↦ 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) = (𝑓 ∈ ( 𝑘pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
13 unieq 4870 . . . 4 (𝑘 = 𝐾 𝑘 = 𝐾)
1413oveq1d 7361 . . 3 (𝑘 = 𝐾 → ( 𝑘pm 𝐽) = ( 𝐾pm 𝐽))
15 oveq1 7353 . . . . . 6 (𝑘 = 𝐾 → (𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓)))
1615fveq1d 6824 . . . . 5 (𝑘 = 𝐾 → ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))
1716xpeq2d 5646 . . . 4 (𝑘 = 𝐾 → ({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))
1817iuneq2d 4972 . . 3 (𝑘 = 𝐾 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))
1914, 18mpteq12dv 5178 . 2 (𝑘 = 𝐾 → (𝑓 ∈ ( 𝑘pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) = (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
20 df-cnext 23973 . 2 CnExt = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ ( 𝑘pm 𝑗) ↦ 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
21 ovex 7379 . . 3 ( 𝐾pm 𝐽) ∈ V
2221mptex 7157 . 2 (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) ∈ V
2312, 19, 20, 22ovmpo 7506 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽CnExt𝐾) = (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {csn 4576   cuni 4859   ciun 4941  cmpt 5172   × cxp 5614  dom cdm 5616  cfv 6481  (class class class)co 7346  pm cpm 8751  t crest 17321  Topctop 22806  clsccl 22931  neicnei 23010   fLimf cflf 23848  CnExtccnext 23972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-cnext 23973
This theorem is referenced by:  cnextfval  23975
  Copyright terms: Public domain W3C validator