Detailed syntax breakdown of Definition df-conn
| Step | Hyp | Ref
| Expression |
| 1 | | cconn 23354 |
. 2
class
Conn |
| 2 | | vj |
. . . . . 6
setvar 𝑗 |
| 3 | 2 | cv 1539 |
. . . . 5
class 𝑗 |
| 4 | | ccld 22959 |
. . . . . 6
class
Clsd |
| 5 | 3, 4 | cfv 6536 |
. . . . 5
class
(Clsd‘𝑗) |
| 6 | 3, 5 | cin 3930 |
. . . 4
class (𝑗 ∩ (Clsd‘𝑗)) |
| 7 | | c0 4313 |
. . . . 5
class
∅ |
| 8 | 3 | cuni 4888 |
. . . . 5
class ∪ 𝑗 |
| 9 | 7, 8 | cpr 4608 |
. . . 4
class {∅,
∪ 𝑗} |
| 10 | 6, 9 | wceq 1540 |
. . 3
wff (𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗} |
| 11 | | ctop 22836 |
. . 3
class
Top |
| 12 | 10, 2, 11 | crab 3420 |
. 2
class {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗}} |
| 13 | 1, 12 | wceq 1540 |
1
wff Conn =
{𝑗 ∈ Top ∣
(𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗}} |