Home | Metamath
Proof Explorer Theorem List (p. 232 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cnfcf 23101* | Continuity of a function in terms of cluster points of a function. (Contributed by Jeff Hankins, 28-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))) | ||
Theorem | flfcntr 23102 | A continuous function's value is always in the trace of its filter limit. (Contributed by Thierry Arnoux, 30-Aug-2020.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) | ||
Theorem | alexsublem 23103* | Lemma for alexsub 23104. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝜑 → 𝑋 ∈ UFL) & ⊢ (𝜑 → 𝑋 = ∪ 𝐵) & ⊢ (𝜑 → 𝐽 = (topGen‘(fi‘𝐵))) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) & ⊢ (𝜑 → 𝐹 ∈ (UFil‘𝑋)) & ⊢ (𝜑 → (𝐽 fLim 𝐹) = ∅) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | alexsub 23104* | The Alexander Subbase Theorem: If 𝐵 is a subbase for the topology 𝐽, and any cover taken from 𝐵 has a finite subcover, then the generated topology is compact. This proof uses the ultrafilter lemma; see alexsubALT 23110 for a proof using Zorn's lemma. (Contributed by Jeff Hankins, 24-Jan-2010.) (Revised by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝜑 → 𝑋 ∈ UFL) & ⊢ (𝜑 → 𝑋 = ∪ 𝐵) & ⊢ (𝜑 → 𝐽 = (topGen‘(fi‘𝐵))) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) ⇒ ⊢ (𝜑 → 𝐽 ∈ Comp) | ||
Theorem | alexsubb 23105* | Biconditional form of the Alexander Subbase Theorem alexsub 23104. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ ((𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵) → ((topGen‘(fi‘𝐵)) ∈ Comp ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦))) | ||
Theorem | alexsubALTlem1 23106* | Lemma for alexsubALT 23110. A compact space has a subbase such that every cover taken from it has a finite subcover. (Contributed by Jeff Hankins, 27-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) | ||
Theorem | alexsubALTlem2 23107* | Lemma for alexsubALT 23110. Every subset of a base which has no finite subcover is a subset of a maximal such collection. (Contributed by Jeff Hankins, 27-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪ 𝑏) → ∃𝑢 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣) | ||
Theorem | alexsubALTlem3 23108* | Lemma for alexsubALT 23110. If a point is covered by a collection taken from the base with no finite subcover, a set from the subbase can be added that covers the point so that the resulting collection has no finite subcover. (Contributed by Jeff Hankins, 28-Jan-2010.) (Revised by Mario Carneiro, 14-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) | ||
Theorem | alexsubALTlem4 23109* | Lemma for alexsubALT 23110. If any cover taken from a subbase has a finite subcover, any cover taken from the corresponding base has a finite subcover. (Contributed by Jeff Hankins, 28-Jan-2010.) (Revised by Mario Carneiro, 14-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → ∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) | ||
Theorem | alexsubALT 23110* | The Alexander Subbase Theorem: a space is compact iff it has a subbase such that any cover taken from the subbase has a finite subcover. (Contributed by Jeff Hankins, 24-Jan-2010.) (Revised by Mario Carneiro, 11-Feb-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Comp ↔ ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) | ||
Theorem | ptcmplem1 23111* | Lemma for ptcmp 23117. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Comp) & ⊢ (𝜑 → 𝑋 ∈ (UFL ∩ dom card)) ⇒ ⊢ (𝜑 → (𝑋 = ∪ (ran 𝑆 ∪ {𝑋}) ∧ (∏t‘𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))) | ||
Theorem | ptcmplem2 23112* | Lemma for ptcmp 23117. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Comp) & ⊢ (𝜑 → 𝑋 ∈ (UFL ∩ dom card)) & ⊢ (𝜑 → 𝑈 ⊆ ran 𝑆) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) ⇒ ⊢ (𝜑 → ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪ (𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ∈ dom card) | ||
Theorem | ptcmplem3 23113* | Lemma for ptcmp 23117. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Comp) & ⊢ (𝜑 → 𝑋 ∈ (UFL ∩ dom card)) & ⊢ (𝜑 → 𝑈 ⊆ ran 𝑆) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) & ⊢ 𝐾 = {𝑢 ∈ (𝐹‘𝑘) ∣ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝑈} ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) | ||
Theorem | ptcmplem4 23114* | Lemma for ptcmp 23117. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Comp) & ⊢ (𝜑 → 𝑋 ∈ (UFL ∩ dom card)) & ⊢ (𝜑 → 𝑈 ⊆ ran 𝑆) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) & ⊢ 𝐾 = {𝑢 ∈ (𝐹‘𝑘) ∣ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝑈} ⇒ ⊢ ¬ 𝜑 | ||
Theorem | ptcmplem5 23115* | Lemma for ptcmp 23117. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Comp) & ⊢ (𝜑 → 𝑋 ∈ (UFL ∩ dom card)) ⇒ ⊢ (𝜑 → (∏t‘𝐹) ∈ Comp) | ||
Theorem | ptcmpg 23116 | Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if 𝒫 𝒫 𝑋 is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp 23117). (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝐽 = (∏t‘𝐹) & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp) | ||
Theorem | ptcmp 23117 | Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) | ||
Syntax | ccnext 23118 | Extend class notation with the continuous extension operation. |
class CnExt | ||
Definition | df-cnext 23119* | Define the continuous extension of a given function. (Contributed by Thierry Arnoux, 1-Dec-2017.) |
⊢ CnExt = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ (∪ 𝑘 ↑pm ∪ 𝑗) ↦ ∪ 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))) | ||
Theorem | cnextval 23120* | The function applying continuous extension to a given function 𝑓. (Contributed by Thierry Arnoux, 1-Dec-2017.) |
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽CnExt𝐾) = (𝑓 ∈ (∪ 𝐾 ↑pm ∪ 𝐽) ↦ ∪ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))) | ||
Theorem | cnextfval 23121* | The continuous extension of a given function 𝐹. (Contributed by Thierry Arnoux, 1-Dec-2017.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) → ((𝐽CnExt𝐾)‘𝐹) = ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) | ||
Theorem | cnextrel 23122 | In the general case, a continuous extension is a relation. (Contributed by Thierry Arnoux, 20-Dec-2017.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹)) | ||
Theorem | cnextfun 23123 | If the target space is Hausdorff, a continuous extension is a function. (Contributed by Thierry Arnoux, 20-Dec-2017.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹)) | ||
Theorem | cnextfvval 23124* | The value of the continuous extension of a given function 𝐹 at a point 𝑋. (Contributed by Thierry Arnoux, 21-Dec-2017.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) | ||
Theorem | cnextf 23125* | Extension by continuity. The extension by continuity is a function. (Contributed by Thierry Arnoux, 25-Dec-2017.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) ⇒ ⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶⟶𝐵) | ||
Theorem | cnextcn 23126* | Extension by continuity. Theorem 1 of [BourbakiTop1] p. I.57. Given a topology 𝐽 on 𝐶, a subset 𝐴 dense in 𝐶, this states a condition for 𝐹 from 𝐴 to a regular space 𝐾 to be extensible by continuity. (Contributed by Thierry Arnoux, 1-Jan-2018.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) & ⊢ (𝜑 → 𝐾 ∈ Reg) ⇒ ⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | cnextfres1 23127* | 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) & ⊢ (𝜑 → 𝐾 ∈ Reg) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) ⇒ ⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) = 𝐹) | ||
Theorem | cnextfres 23128 | 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 29-Aug-2020.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋)) | ||
Syntax | ctmd 23129 | Extend class notation with the class of all topological monoids. |
class TopMnd | ||
Syntax | ctgp 23130 | Extend class notation with the class of all topological groups. |
class TopGrp | ||
Definition | df-tmd 23131* | Define the class of all topological monoids. A topological monoid is a monoid whose operation is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpen‘𝑓) / 𝑗](+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)} | ||
Definition | df-tgp 23132* | Define the class of all topological groups. A topological group is a group whose operation and inverse function are continuous. (Contributed by FL, 18-Apr-2010.) |
⊢ TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗)} | ||
Theorem | istmd 23133 | The predicate "is a topological monoid". (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐹 = (+𝑓‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) | ||
Theorem | tmdmnd 23134 | A topological monoid is a monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd) | ||
Theorem | tmdtps 23135 | A topological monoid is a topological space. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) | ||
Theorem | istgp 23136 | The predicate "is a topological group". Definition 1 of [BourbakiTop1] p. III.1. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) | ||
Theorem | tgpgrp 23137 | A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | ||
Theorem | tgptmd 23138 | A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | ||
Theorem | tgptps 23139 | A topological group is a topological space. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) | ||
Theorem | tmdtopon 23140 | The topology of a topological monoid. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋)) | ||
Theorem | tgptopon 23141 | The topology of a topological group. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) | ||
Theorem | tmdcn 23142 | In a topological monoid, the operation 𝐹 representing the functionalization of the operator slot +g is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐹 = (+𝑓‘𝐺) ⇒ ⊢ (𝐺 ∈ TopMnd → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
Theorem | tgpcn 23143 | In a topological group, the operation 𝐹 representing the functionalization of the operator slot +g is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐹 = (+𝑓‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
Theorem | tgpinv 23144 | In a topological group, the inverse function is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by FL, 27-Jun-2014.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽)) | ||
Theorem | grpinvhmeo 23145 | The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽Homeo𝐽)) | ||
Theorem | cnmpt1plusg 23146* | Continuity of the group sum; analogue of cnmpt12f 22725 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽)) | ||
Theorem | cnmpt2plusg 23147* | Continuity of the group sum; analogue of cnmpt22f 22734 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 + 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | ||
Theorem | tmdcn2 23148* | Write out the definition of continuity of +g explicitly. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀𝑥 ∈ 𝑢 ∀𝑦 ∈ 𝑣 (𝑥 + 𝑦) ∈ 𝑈)) | ||
Theorem | tgpsubcn 23149 | In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
Theorem | istgp2 23150 | A group with a topology is a topological group iff the subtraction operation is continuous. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) | ||
Theorem | tmdmulg 23151* | In a topological monoid, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) | ||
Theorem | tgpmulg 23152* | In a topological group, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) | ||
Theorem | tgpmulg2 23153 | In a topological monoid, the group multiple function is jointly continuous (although this is not saying much as one of the factors is discrete). Use zdis 23885 to write the left topology as a subset of the complex numbers. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → · ∈ ((𝒫 ℤ ×t 𝐽) Cn 𝐽)) | ||
Theorem | tmdgsum 23154* | In a topological monoid, the group sum operation is a continuous function from the function space to the base topology. This theorem is not true when 𝐴 is infinite, because in this case for any basic open set of the domain one of the factors will be the whole space, so by varying the value of the functions to sum at this index, one can achieve any desired sum. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑥 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((𝐽 ↑ko 𝒫 𝐴) Cn 𝐽)) | ||
Theorem | tmdgsum2 23155* | For any neighborhood 𝑈 of 𝑛𝑋, there is a neighborhood 𝑢 of 𝑋 such that any sum of 𝑛 elements in 𝑢 sums to an element of 𝑈. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ((♯‘𝐴) · 𝑋) ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) | ||
Theorem | oppgtmd 23156 | The opposite of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd) | ||
Theorem | oppgtgp 23157 | The opposite of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝑂 ∈ TopGrp) | ||
Theorem | distgp 23158 | Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp) | ||
Theorem | indistgp 23159 | Any group equipped with the indiscrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ TopGrp) | ||
Theorem | efmndtmd 23160 | The monoid of endofunctions on a set 𝐴 is a topological monoid. Formerly part of proof for symgtgp 23165. (Contributed by AV, 23-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ TopMnd) | ||
Theorem | tmdlactcn 23161* | The left group action of element 𝐴 in a topological monoid 𝐺 is a continuous function. (Contributed by FL, 18-Mar-2008.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽)) | ||
Theorem | tgplacthmeo 23162* | The left group action of element 𝐴 in a topological group 𝐺 is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽Homeo𝐽)) | ||
Theorem | submtmd 23163 | A submonoid of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopMnd) | ||
Theorem | subgtgp 23164 | A subgroup of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopGrp) | ||
Theorem | symgtgp 23165 | The symmetric group is a topological group. (Contributed by Mario Carneiro, 2-Sep-2015.) (Proof shortened by AV, 30-Mar-2024.) |
⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ TopGrp) | ||
Theorem | subgntr 23166 | A subgroup of a topological group with nonempty interior is open. Alternatively, dual to clssubg 23168, the interior of a subgroup is either a subgroup, or empty. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ∈ 𝐽) | ||
Theorem | opnsubg 23167 | An open subgroup of a topological group is also closed. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ (Clsd‘𝐽)) | ||
Theorem | clssubg 23168 | The closure of a subgroup in a topological group is a subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺)) | ||
Theorem | clsnsg 23169 | The closure of a normal subgroup is a normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺)) | ||
Theorem | cldsubg 23170 | A subgroup of finite index is closed iff it is open. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑅 = (𝐺 ~QG 𝑆) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ 𝐽)) | ||
Theorem | tgpconncompeqg 23171* | The connected component containing 𝐴 is the left coset of the identity component containing 𝐴. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} & ⊢ ∼ = (𝐺 ~QG 𝑆) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) | ||
Theorem | tgpconncomp 23172* | The identity component, the connected component containing the identity element, is a closed (conncompcld 22493) normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ (𝐺 ∈ TopGrp → 𝑆 ∈ (NrmSGrp‘𝐺)) | ||
Theorem | tgpconncompss 23173* | The identity component is a subset of any open subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑆 ⊆ 𝑇) | ||
Theorem | ghmcnp 23174 | A group homomorphism on topological groups is continuous everywhere if it is continuous at any point. (Contributed by Mario Carneiro, 21-Oct-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴 ∈ 𝑋 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))) | ||
Theorem | snclseqg 23175 | The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑆) & ⊢ 𝑆 = ((cls‘𝐽)‘{ 0 }) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ((cls‘𝐽)‘{𝐴})) | ||
Theorem | tgphaus 23176 | A topological group is Hausdorff iff the identity subgroup is closed. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ { 0 } ∈ (Clsd‘𝐽))) | ||
Theorem | tgpt1 23177 | Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) | ||
Theorem | tgpt0 23178 | Hausdorff and T0 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) | ||
Theorem | qustgpopn 23179* | A quotient map in a topological group is an open map. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (𝐹 “ 𝑆) ∈ 𝐾) | ||
Theorem | qustgplem 23180* | Lemma for qustgp 23181. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) & ⊢ − = (𝑧 ∈ 𝑋, 𝑤 ∈ 𝑋 ↦ [(𝑧(-g‘𝐺)𝑤)](𝐺 ~QG 𝑌)) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp) | ||
Theorem | qustgp 23181 | The quotient of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp) | ||
Theorem | qustgphaus 23182 | The quotient of a topological group by a closed normal subgroup is a Hausdorff topological group. In particular, the quotient by the closure of the identity is a Hausdorff topological group, isomorphic to both the Kolmogorov quotient and the Hausdorff quotient operations on topological spaces (because T0 and Hausdorff coincide for topological groups). (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 ∈ Haus) | ||
Theorem | prdstmdd 23183 | The product of a family of topological monoids is a topological monoid. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶TopMnd) ⇒ ⊢ (𝜑 → 𝑌 ∈ TopMnd) | ||
Theorem | prdstgpd 23184 | The product of a family of topological groups is a topological group. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶TopGrp) ⇒ ⊢ (𝜑 → 𝑌 ∈ TopGrp) | ||
Syntax | ctsu 23185 | Extend class notation to include infinite group sums in a topological group. |
class tsums | ||
Definition | df-tsms 23186* | Define the set of limit points of an infinite group sum for the topological group 𝐺. If 𝐺 is Hausdorff, then there will be at most one element in this set and ∪ (𝑊 tsums 𝐹) selects this unique element if it exists. (𝑊 tsums 𝐹) ≈ 1o is a way to say that the sum exists and is unique. Note that unlike Σ (df-sum 15326) and Σg (df-gsum 17070), this does not return the sum itself, but rather the set of all such sums, which is usually either empty or a singleton. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ tsums = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋(𝒫 dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))))) | ||
Theorem | tsmsfbas 23187* | The collection of all sets of the form 𝐹(𝑧) = {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}, which can be read as the set of all finite subsets of 𝐴 which contain 𝑧 as a subset, for each finite subset 𝑧 of 𝐴, form a filter base. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) & ⊢ 𝐿 = ran 𝐹 & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐿 ∈ (fBas‘𝑆)) | ||
Theorem | tsmslem1 23188 | The finite partial sums of a function 𝐹 are defined in a commutative monoid. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐺 Σg (𝐹 ↾ 𝑋)) ∈ 𝐵) | ||
Theorem | tsmsval2 23189* | Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → dom 𝐹 = 𝐴) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) | ||
Theorem | tsmsval 23190* | Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) | ||
Theorem | tsmspropd 23191 | The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 18325 etc. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) & ⊢ (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻)) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹)) | ||
Theorem | eltsms 23192* | The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))))) | ||
Theorem | tsmsi 23193* | The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)) | ||
Theorem | tsmscl 23194 | A sum in a topological group is an element of the group. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) | ||
Theorem | haustsms 23195* | In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ Haus) ⇒ ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) | ||
Theorem | haustsms2 23196 | In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 13-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ Haus) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑋})) | ||
Theorem | tsmscls 23197 | One half of tgptsmscls 23209, true in any commutative monoid topological space. (Contributed by Mario Carneiro, 21-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → ((cls‘𝐽)‘{𝑋}) ⊆ (𝐺 tsums 𝐹)) | ||
Theorem | tsmsgsum 23198 | The convergent points of a finite topological group sum are the closure of the finite group sum operation. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)})) | ||
Theorem | tsmsid 23199 | If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹)) | ||
Theorem | haustsmsid 23200 | In a Hausdorff topological group, a finite sum sums to exactly the usual number with no extraneous limit points. By setting the topology to the discrete topology (which is Hausdorff), this theorem can be used to turn any tsums theorem into a Σg theorem, so that the infinite group sum operation can be viewed as a generalization of the finite group sum. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ Haus) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = {(𝐺 Σg 𝐹)}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |