![]() |
Metamath
Proof Explorer Theorem List (p. 232 of 477) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30136) |
![]() (30137-31659) |
![]() (31660-47692) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | prdstopn 23101 | Topology of a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ 𝑂 = (TopOpen‘𝑌) ⇒ ⊢ (𝜑 → 𝑂 = (∏t‘(TopOpen ∘ 𝑅))) | ||
Theorem | prdstps 23102 | A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶TopSp) ⇒ ⊢ (𝜑 → 𝑌 ∈ TopSp) | ||
Theorem | pwstps 23103 | A structure power of a topological space is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ TopSp ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ TopSp) | ||
Theorem | txrest 23104 | The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = ((𝑅 ↾t 𝐴) ×t (𝑆 ↾t 𝐵))) | ||
Theorem | txdis 23105 | The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵)) | ||
Theorem | txindislem 23106 | Lemma for txindis 23107. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (( I ‘𝐴) × ( I ‘𝐵)) = ( I ‘(𝐴 × 𝐵)) | ||
Theorem | txindis 23107 | The topological product of indiscrete spaces is indiscrete. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (𝐴 × 𝐵)} | ||
Theorem | txdis1cn 23108* | A function is jointly continuous on a discrete left topology iff it is continuous as a function of its right argument, for each fixed left value. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐾 ∈ Top) & ⊢ (𝜑 → 𝐹 Fn (𝑋 × 𝑌)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾)) | ||
Theorem | txlly 23109* | If the property 𝐴 is preserved under topological products, then so is the property of being locally 𝐴. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴) → (𝑗 ×t 𝑘) ∈ 𝐴) ⇒ ⊢ ((𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴) → (𝑅 ×t 𝑆) ∈ Locally 𝐴) | ||
Theorem | txnlly 23110* | If the property 𝐴 is preserved under topological products, then so is the property of being n-locally 𝐴. (Contributed by Mario Carneiro, 13-Apr-2015.) |
⊢ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴) → (𝑗 ×t 𝑘) ∈ 𝐴) ⇒ ⊢ ((𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴) → (𝑅 ×t 𝑆) ∈ 𝑛-Locally 𝐴) | ||
Theorem | pthaus 23111 | The product of a collection of Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Haus) → (∏t‘𝐹) ∈ Haus) | ||
Theorem | ptrescn 23112* | Restriction is a continuous function on product topologies. (Contributed by Mario Carneiro, 7-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐽 = (∏t‘𝐹) & ⊢ 𝐾 = (∏t‘(𝐹 ↾ 𝐵)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ 𝑋 ↦ (𝑥 ↾ 𝐵)) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | txtube 23113* | The "tube lemma". If 𝑋 is compact and there is an open set 𝑈 containing the line 𝑋 × {𝐴}, then there is a "tube" 𝑋 × 𝑢 for some neighborhood 𝑢 of 𝐴 which is entirely contained within 𝑈. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ (𝜑 → 𝑅 ∈ Comp) & ⊢ (𝜑 → 𝑆 ∈ Top) & ⊢ (𝜑 → 𝑈 ∈ (𝑅 ×t 𝑆)) & ⊢ (𝜑 → (𝑋 × {𝐴}) ⊆ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝑌) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈)) | ||
Theorem | txcmplem1 23114* | Lemma for txcmp 23116. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ (𝜑 → 𝑅 ∈ Comp) & ⊢ (𝜑 → 𝑆 ∈ Comp) & ⊢ (𝜑 → 𝑊 ⊆ (𝑅 ×t 𝑆)) & ⊢ (𝜑 → (𝑋 × 𝑌) = ∪ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑌) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣)) | ||
Theorem | txcmplem2 23115* | Lemma for txcmp 23116. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ (𝜑 → 𝑅 ∈ Comp) & ⊢ (𝜑 → 𝑆 ∈ Comp) & ⊢ (𝜑 → 𝑊 ⊆ (𝑅 ×t 𝑆)) & ⊢ (𝜑 → (𝑋 × 𝑌) = ∪ 𝑊) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = ∪ 𝑣) | ||
Theorem | txcmp 23116 | The topological product of two compact spaces is compact. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened 21-Mar-2015.) |
⊢ ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp) | ||
Theorem | txcmpb 23117 | The topological product of two nonempty topologies is compact iff the component topologies are both compact. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 ⇒ ⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp ↔ (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp))) | ||
Theorem | hausdiag 23118 | A topology is Hausdorff iff the diagonal set is closed in the topology's product with itself. EDITORIAL: very clumsy proof, can probably be shortened substantially. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ( I ↾ 𝑋) ∈ (Clsd‘(𝐽 ×t 𝐽)))) | ||
Theorem | hauseqlcld 23119 | In a Hausdorff topology, the equalizer of two continuous functions is closed (thus, two continuous functions which agree on a dense set agree everywhere). (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → dom (𝐹 ∩ 𝐺) ∈ (Clsd‘𝐽)) | ||
Theorem | txhaus 23120 | The topological product of two Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ ((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) → (𝑅 ×t 𝑆) ∈ Haus) | ||
Theorem | txlm 23121* | Two sequences converge iff the sequence of their ordered pairs converges. Proposition 14-2.6 of [Gleason] p. 230. (Contributed by NM, 16-Jul-2007.) (Revised by Mario Carneiro, 5-May-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) & ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ⇒ ⊢ (𝜑 → ((𝐹(⇝𝑡‘𝐽)𝑅 ∧ 𝐺(⇝𝑡‘𝐾)𝑆) ↔ 𝐻(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉)) | ||
Theorem | lmcn2 23122* | The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) & ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑅) & ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐾)𝑆) & ⊢ (𝜑 → 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) ⇒ ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑅𝑂𝑆)) | ||
Theorem | tx1stc 23123 | The topological product of two first-countable spaces is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) → (𝑅 ×t 𝑆) ∈ 1stω) | ||
Theorem | tx2ndc 23124 | The topological product of two second-countable spaces is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝑅 ∈ 2ndω ∧ 𝑆 ∈ 2ndω) → (𝑅 ×t 𝑆) ∈ 2ndω) | ||
Theorem | txkgen 23125 | The topological product of a locally compact space and a compactly generated Hausdorff space is compactly generated. (The condition on 𝑆 can also be replaced with either "compactly generated weak Hausdorff (CGWH)" or "compact Hausdorff-ly generated (CHG)", where WH means that all images of compact Hausdorff spaces are closed and CHG means that a set is open iff it is open in all compact Hausdorff spaces.) (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑅 ×t 𝑆) ∈ ran 𝑘Gen) | ||
Theorem | xkohaus 23126 | If the codomain space is Hausdorff, then the compact-open topology of continuous functions is also Hausdorff. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Haus) → (𝑆 ↑ko 𝑅) ∈ Haus) | ||
Theorem | xkoptsub 23127 | The compact-open topology is finer than the product topology restricted to continuous functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐽 = (∏t‘(𝑋 × {𝑆})) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽 ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆 ↑ko 𝑅)) | ||
Theorem | xkopt 23128 | The compact-open topology on a discrete set coincides with the product topology where all the factors are the same. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Sep-2015.) |
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑅 ↑ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝑅}))) | ||
Theorem | xkopjcn 23129* | Continuity of a projection map from the space of continuous functions. (This theorem can be strengthened, to joint continuity in both 𝑓 and 𝐴 as a function on (𝑆 ↑ko 𝑅) ×t 𝑅, but not without stronger assumptions on 𝑅; see xkofvcn 23157.) (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑋 = ∪ 𝑅 ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓‘𝐴)) ∈ ((𝑆 ↑ko 𝑅) Cn 𝑆)) | ||
Theorem | xkoco1cn 23130* | If 𝐹 is a continuous function, then 𝑔 ↦ 𝑔 ∘ 𝐹 is a continuous function on function spaces. (The reason we prove this and xkoco2cn 23131 independently of the more general xkococn 23133 is because that requires some inconvenient extra assumptions on 𝑆.) (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝜑 → 𝑇 ∈ Top) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 Cn 𝑆)) ⇒ ⊢ (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) ∈ ((𝑇 ↑ko 𝑆) Cn (𝑇 ↑ko 𝑅))) | ||
Theorem | xkoco2cn 23131* | If 𝐹 is a continuous function, then 𝑔 ↦ 𝐹 ∘ 𝑔 is a continuous function on function spaces. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ (𝜑 → 𝑅 ∈ Top) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 Cn 𝑇)) ⇒ ⊢ (𝜑 → (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) ∈ ((𝑆 ↑ko 𝑅) Cn (𝑇 ↑ko 𝑅))) | ||
Theorem | xkococnlem 23132* | Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓 ∘ 𝑔)) & ⊢ (𝜑 → 𝑆 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → 𝐾 ⊆ ∪ 𝑅) & ⊢ (𝜑 → (𝑅 ↾t 𝐾) ∈ Comp) & ⊢ (𝜑 → 𝑉 ∈ 𝑇) & ⊢ (𝜑 → 𝐴 ∈ (𝑆 Cn 𝑇)) & ⊢ (𝜑 → 𝐵 ∈ (𝑅 Cn 𝑆)) & ⊢ (𝜑 → ((𝐴 ∘ 𝐵) “ 𝐾) ⊆ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(〈𝐴, 𝐵〉 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝐾) ⊆ 𝑉}))) | ||
Theorem | xkococn 23133* | Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓 ∘ 𝑔)) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → 𝐹 ∈ (((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)) Cn (𝑇 ↑ko 𝑅))) | ||
Theorem | cnmptid 23134* | The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) | ||
Theorem | cnmptc 23135* | A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑌) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | cnmpt11 23136* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ 𝐵) ∈ (𝐾 Cn 𝐿)) & ⊢ (𝑦 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) ∈ (𝐽 Cn 𝐿)) | ||
Theorem | cnmpt11f 23137* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝐽 Cn 𝐿)) | ||
Theorem | cnmpt1t 23138* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ (𝐽 Cn (𝐾 ×t 𝐿))) | ||
Theorem | cnmpt12f 23139* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀)) | ||
Theorem | cnmpt12 23140* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → (𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) & ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐷) ∈ (𝐽 Cn 𝑀)) | ||
Theorem | cnmpt1st 23141* | The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) | ||
Theorem | cnmpt2nd 23142* | The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) | ||
Theorem | cnmpt2c 23143* | A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑃 ∈ 𝑍) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) | ||
Theorem | cnmpt21 23144* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → (𝑧 ∈ 𝑍 ↦ 𝐵) ∈ (𝐿 Cn 𝑀)) & ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) | ||
Theorem | cnmpt21f 23145* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) & ⊢ (𝜑 → 𝐹 ∈ (𝐿 Cn 𝑀)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐹‘𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) | ||
Theorem | cnmpt2t 23146* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝐴, 𝐵〉) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀))) | ||
Theorem | cnmpt22 23147* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) & ⊢ (𝜑 → (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) & ⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐷) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) | ||
Theorem | cnmpt22f 23148* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) | ||
Theorem | cnmpt1res 23149* | The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.) |
⊢ 𝐾 = (𝐽 ↾t 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) | ||
Theorem | cnmpt2res 23150* | The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
⊢ 𝐾 = (𝐽 ↾t 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ 𝑁 = (𝑀 ↾t 𝑊) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑊 ⊆ 𝑍) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿)) | ||
Theorem | cnmptcom 23151* | The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿)) | ||
Theorem | cnmptkc 23152* | The curried first projection function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝑥)) ∈ (𝐽 Cn (𝐽 ↑ko 𝐾))) | ||
Theorem | cnmptkp 23153* | The evaluation of the inner function in a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) ∈ (𝐽 Cn 𝐿)) | ||
Theorem | cnmptk1 23154* | The composition of a curried function with a one-arg function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) & ⊢ (𝜑 → (𝑧 ∈ 𝑍 ↦ 𝐵) ∈ (𝐿 Cn 𝑀)) & ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾))) | ||
Theorem | cnmpt1k 23155* | The composition of a one-arg function with a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) & ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑧 ∈ 𝑍 ↦ 𝐵)) ∈ (𝐾 Cn (𝑀 ↑ko 𝐿))) & ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑥 ∈ 𝑋 ↦ 𝐶)) ∈ (𝐾 Cn (𝑀 ↑ko 𝐽))) | ||
Theorem | cnmptkk 23156* | The composition of two curried functions is jointly continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) & ⊢ (𝜑 → 𝐿 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑧 ∈ 𝑍 ↦ 𝐵)) ∈ (𝐽 Cn (𝑀 ↑ko 𝐿))) & ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾))) | ||
Theorem | xkofvcn 23157* | Joint continuity of the function value operation as a function on continuous function spaces. (Compare xkopjcn 23129.) (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐹 = (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥 ∈ 𝑋 ↦ (𝑓‘𝑥)) ⇒ ⊢ ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝐹 ∈ (((𝑆 ↑ko 𝑅) ×t 𝑅) Cn 𝑆)) | ||
Theorem | cnmptk1p 23158* | The evaluation of a curried function by a one-arg function is jointly continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) ∈ (𝐽 Cn 𝐿)) | ||
Theorem | cnmptk2 23159* | The uncurrying of a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) | ||
Theorem | xkoinjcn 23160* | Continuity of "injection", i.e. currying, as a function on continuous function spaces. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) ⇒ ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝐹 ∈ (𝑅 Cn ((𝑆 ×t 𝑅) ↑ko 𝑆))) | ||
Theorem | cnmpt2k 23161* | The currying of a two-argument function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) | ||
Theorem | txconn 23162 | The topological product of two connected spaces is connected. (Contributed by Mario Carneiro, 29-Mar-2015.) |
⊢ ((𝑅 ∈ Conn ∧ 𝑆 ∈ Conn) → (𝑅 ×t 𝑆) ∈ Conn) | ||
Theorem | imasnopn 23163 | If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑅 “ {𝐴}) ∈ 𝐾) | ||
Theorem | imasncld 23164 | If a relation graph is closed, then an image set of a singleton is also closed. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsd‘(𝐽 ×t 𝐾)) ∧ 𝐴 ∈ 𝑋)) → (𝑅 “ {𝐴}) ∈ (Clsd‘𝐾)) | ||
Theorem | imasncls 23165 | If a relation graph is closed, then an image set of a singleton is also closed. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴 ∈ 𝑋)) → ((cls‘𝐾)‘(𝑅 “ {𝐴})) ⊆ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴})) | ||
Syntax | ckq 23166 | Extend class notation with the Kolmogorov quotient function. |
class KQ | ||
Definition | df-kq 23167* | Define the Kolmogorov quotient. This is a function on topologies which maps a topology to its quotient under the topological distinguishability map, which takes a point to the set of open sets that contain it. Two points are mapped to the same image under this function iff they are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) | ||
Theorem | qtopval 23168* | Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹 “ 𝑋) ∣ ((◡𝐹 “ 𝑠) ∩ 𝑋) ∈ 𝐽}) | ||
Theorem | qtopval2 23169* | Value of the quotient topology function when 𝐹 is a function on the base set. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽}) | ||
Theorem | elqtop 23170 | Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) | ||
Theorem | qtopres 23171 | The quotient topology is unaffected by restriction to the base set. This property makes it slightly more convenient to use, since we don't have to require that 𝐹 be a function with domain 𝑋. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹 ↾ 𝑋))) | ||
Theorem | qtoptop2 23172 | The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top) | ||
Theorem | qtoptop 23173 | The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) | ||
Theorem | elqtop2 23174 | Value of the quotient topology function. (Contributed by Mario Carneiro, 9-Apr-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑋–onto→𝑌) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) | ||
Theorem | qtopuni 23175 | The base set of the quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) | ||
Theorem | elqtop3 23176 | Value of the quotient topology function. (Contributed by Mario Carneiro, 9-Apr-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) | ||
Theorem | qtoptopon 23177 | The base set of the quotient topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) | ||
Theorem | qtopid 23178 | A quotient map is a continuous function into its quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) | ||
Theorem | idqtop 23179 | The quotient topology induced by the identity function is the original topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽) | ||
Theorem | qtopcmplem 23180 | Lemma for qtopcmp 23181 and qtopconn 23182. (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) & ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴) ⇒ ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴) | ||
Theorem | qtopcmp 23181 | A quotient of a compact space is compact. (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Comp) | ||
Theorem | qtopconn 23182 | A quotient of a connected space is connected. (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Conn ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Conn) | ||
Theorem | qtopkgen 23183 | A quotient of a compactly generated space is compactly generated. (Contributed by Mario Carneiro, 9-Apr-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ ran 𝑘Gen) | ||
Theorem | basqtop 23184 | An injection maps bases to bases. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) → (𝐽 qTop 𝐹) ∈ TopBases) | ||
Theorem | tgqtop 23185 | An injection maps generated topologies to each other. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) → ((topGen‘𝐽) qTop 𝐹) = (topGen‘(𝐽 qTop 𝐹))) | ||
Theorem | qtopcld 23186 | The property of being a closed set in the quotient topology. (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)))) | ||
Theorem | qtopcn 23187 | Universal property of a quotient map. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐾))) | ||
Theorem | qtopss 23188 | A surjective continuous function from 𝐽 to 𝐾 induces a topology 𝐽 qTop 𝐹 on the base set of 𝐾. This topology is in general finer than 𝐾. Together with qtopid 23178, this implies that 𝐽 qTop 𝐹 is the finest topology making 𝐹 continuous, i.e. the final topology with respect to the family {𝐹}. (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹)) | ||
Theorem | qtopeu 23189* | Universal property of the quotient topology. If 𝐺 is a function from 𝐽 to 𝐾 which is equal on all equivalent elements under 𝐹, then there is a unique continuous map 𝑓:(𝐽 / 𝐹)⟶𝐾 such that 𝐺 = 𝑓 ∘ 𝐹, and we say that 𝐺 "passes to the quotient". (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐺‘𝑥) = (𝐺‘𝑦)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)𝐺 = (𝑓 ∘ 𝐹)) | ||
Theorem | qtoprest 23190 | If 𝐴 is a saturated open or closed set (where saturated means that 𝐴 = (◡𝐹 “ 𝑈) for some 𝑈), then the restriction of the quotient map 𝐹 to 𝐴 is a quotient map. (Contributed by Mario Carneiro, 24-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝑈 ⊆ 𝑌) & ⊢ (𝜑 → 𝐴 = (◡𝐹 “ 𝑈)) & ⊢ (𝜑 → (𝐴 ∈ 𝐽 ∨ 𝐴 ∈ (Clsd‘𝐽))) ⇒ ⊢ (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) = ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴))) | ||
Theorem | qtopomap 23191* | If 𝐹 is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → ran 𝐹 = 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) ⇒ ⊢ (𝜑 → 𝐾 = (𝐽 qTop 𝐹)) | ||
Theorem | qtopcmap 23192* | If 𝐹 is a surjective continuous closed map, then it is a quotient map. (A closed map is a function that maps closed sets to closed sets.) (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → ran 𝐹 = 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑥) ∈ (Clsd‘𝐾)) ⇒ ⊢ (𝜑 → 𝐾 = (𝐽 qTop 𝐹)) | ||
Theorem | imastopn 23193 | The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝑂 = (TopOpen‘𝑈) ⇒ ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) | ||
Theorem | imastps 23194 | The image of a topological space under a function is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ TopSp) ⇒ ⊢ (𝜑 → 𝑈 ∈ TopSp) | ||
Theorem | qustps 23195 | A quotient structure is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ (𝜑 → 𝑈 = (𝑅 /s 𝐸)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ TopSp) ⇒ ⊢ (𝜑 → 𝑈 ∈ TopSp) | ||
Theorem | kqfval 23196* | Value of the function appearing in df-kq 23167. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) = {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦}) | ||
Theorem | kqfeq 23197* | Two points in the Kolmogorov quotient are equal iff the original points are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ↔ 𝐵 ∈ 𝑦))) | ||
Theorem | kqffn 23198* | The topological indistinguishability map is a function on the base. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ (𝐽 ∈ 𝑉 → 𝐹 Fn 𝑋) | ||
Theorem | kqval 23199* | Value of the quotient topology function. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) | ||
Theorem | kqtopon 23200* | The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |