| Metamath
Proof Explorer Theorem List (p. 232 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | toponmre 23101 | The topologies over a given base set form a Moore collection: the intersection of any family of them is a topology, including the empty (relative) intersection which gives the discrete topology distop 23002. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (TopOn‘𝐵) ∈ (Moore‘𝒫 𝐵)) | ||
| Theorem | cldmreon 23102 | The closed sets of a topology over a set are a Moore collection over the same set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘𝐵)) | ||
| Theorem | iscldtop 23103* | A family is the closed sets of a topology iff it is a Moore collection and closed under finite union. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝐾 ∈ (Clsd “ (TopOn‘𝐵)) ↔ (𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐾 (𝑥 ∪ 𝑦) ∈ 𝐾)) | ||
| Theorem | mreclatdemoBAD 23104 | The closed subspaces of a topology-bearing module form a complete lattice. Demonstration for mreclatBAD 18608. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 7388 update): This proof uses the old df-clat 18544 and references the required instance of mreclatBAD 18608 as a hypothesis. When mreclatBAD 18608 is corrected to become mreclat, delete this theorem and uncomment the mreclatdemo below. |
| ⊢ (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) ⇒ ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) | ||
| Syntax | cnei 23105 | Extend class notation with neighborhood relation for topologies. |
| class nei | ||
| Definition | df-nei 23106* | Define a function on topologies whose value is a map from a subset to its neighborhoods. (Contributed by NM, 11-Feb-2007.) |
| ⊢ nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ {𝑦 ∈ 𝒫 ∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)})) | ||
| Theorem | neifval 23107* | Value of the neighborhood function on the subsets of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (nei‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)})) | ||
| Theorem | neif 23108 | The neighborhood function is a function from the set of the subsets of the base set of a topology. (Contributed by NM, 12-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋) | ||
| Theorem | neiss2 23109 | A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) | ||
| Theorem | neival 23110* | Value of the set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)}) | ||
| Theorem | isnei 23111* | The predicate "the class 𝑁 is a neighborhood of 𝑆". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) | ||
| Theorem | neiint 23112 | An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁))) | ||
| Theorem | isneip 23113* | The predicate "the class 𝑁 is a neighborhood of point 𝑃". (Contributed by NM, 26-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) | ||
| Theorem | neii1 23114 | A neighborhood is included in the topology's base set. (Contributed by NM, 12-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 ⊆ 𝑋) | ||
| Theorem | neisspw 23115 | The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋) | ||
| Theorem | neii2 23116* | Property of a neighborhood. (Contributed by NM, 12-Feb-2007.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) | ||
| Theorem | neiss 23117 | Any neighborhood of a set 𝑆 is also a neighborhood of any subset 𝑅 ⊆ 𝑆. Similar to Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅)) | ||
| Theorem | ssnei 23118 | A set is included in any of its neighborhoods. Generalization to subsets of elnei 23119. (Contributed by FL, 16-Nov-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑁) | ||
| Theorem | elnei 23119 | A point belongs to any of its neighborhoods. Property Viii of [BourbakiTop1] p. I.3. (Contributed by FL, 28-Sep-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝐴 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑃 ∈ 𝑁) | ||
| Theorem | 0nnei 23120 | The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆)) | ||
| Theorem | neips 23121* | A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝 ∈ 𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))) | ||
| Theorem | opnneissb 23122 | An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) | ||
| Theorem | opnssneib 23123 | Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) | ||
| Theorem | ssnei2 23124 | Any subset 𝑀 of 𝑋 containing a neighborhood 𝑁 of a set 𝑆 is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆)) | ||
| Theorem | neindisj 23125 | Any neighborhood of an element in the closure of a subset intersects the subset. Part of proof of Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) → (𝑁 ∩ 𝑆) ≠ ∅) | ||
| Theorem | opnneiss 23126 | An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) | ||
| Theorem | opnneip 23127 | An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) | ||
| Theorem | opnnei 23128* | A set is open iff it is a neighborhood of all of its points. (Contributed by Jeff Hankins, 15-Sep-2009.) |
| ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))) | ||
| Theorem | tpnei 23129 | The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss 23126. (Contributed by FL, 2-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 ↔ 𝑋 ∈ ((nei‘𝐽)‘𝑆))) | ||
| Theorem | neiuni 23130 | The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 9-Apr-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 = ∪ ((nei‘𝐽)‘𝑆)) | ||
| Theorem | neindisj2 23131* | A point 𝑃 belongs to the closure of a set 𝑆 iff every neighborhood of 𝑃 meets 𝑆. (Contributed by FL, 15-Sep-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅)) | ||
| Theorem | topssnei 23132 | A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽 ⊆ 𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆)) | ||
| Theorem | innei 23133 | The intersection of two neighborhoods of a set is also a neighborhood of the set. Generalization to subsets of Property Vii of [BourbakiTop1] p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁 ∩ 𝑀) ∈ ((nei‘𝐽)‘𝑆)) | ||
| Theorem | opnneiid 23134 | Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.) |
| ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁 ∈ 𝐽)) | ||
| Theorem | neissex 23135* | For any neighborhood 𝑁 of 𝑆, there is a neighborhood 𝑥 of 𝑆 such that 𝑁 is a neighborhood of all subsets of 𝑥. Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦 ⊆ 𝑥 → 𝑁 ∈ ((nei‘𝐽)‘𝑦))) | ||
| Theorem | 0nei 23136 | The empty set is a neighborhood of itself. (Contributed by FL, 10-Dec-2006.) |
| ⊢ (𝐽 ∈ Top → ∅ ∈ ((nei‘𝐽)‘∅)) | ||
| Theorem | neipeltop 23137* | Lemma for neiptopreu 23141. (Contributed by Thierry Arnoux, 6-Jan-2018.) |
| ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} ⇒ ⊢ (𝐶 ∈ 𝐽 ↔ (𝐶 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝))) | ||
| Theorem | neiptopuni 23138* | Lemma for neiptopreu 23141. (Contributed by Thierry Arnoux, 6-Jan-2018.) |
| ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} & ⊢ (𝜑 → 𝑁:𝑋⟶𝒫 𝒫 𝑋) & ⊢ ((((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) ⇒ ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | ||
| Theorem | neiptoptop 23139* | Lemma for neiptopreu 23141. (Contributed by Thierry Arnoux, 7-Jan-2018.) |
| ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} & ⊢ (𝜑 → 𝑁:𝑋⟶𝒫 𝒫 𝑋) & ⊢ ((((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) ⇒ ⊢ (𝜑 → 𝐽 ∈ Top) | ||
| Theorem | neiptopnei 23140* | Lemma for neiptopreu 23141. (Contributed by Thierry Arnoux, 7-Jan-2018.) |
| ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} & ⊢ (𝜑 → 𝑁:𝑋⟶𝒫 𝒫 𝑋) & ⊢ ((((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) ⇒ ⊢ (𝜑 → 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐽)‘{𝑝}))) | ||
| Theorem | neiptopreu 23141* | If, to each element 𝑃 of a set 𝑋, we associate a set (𝑁‘𝑃) fulfilling Properties Vi, Vii, Viii and Property Viv of [BourbakiTop1] p. I.2. , corresponding to ssnei 23118, innei 23133, elnei 23119 and neissex 23135, then there is a unique topology 𝑗 such that for any point 𝑝, (𝑁‘𝑝) is the set of neighborhoods of 𝑝. Proposition 2 of [BourbakiTop1] p. I.3. This can be used to build a topology from a set of neighborhoods. Note that innei 23133 uses binary intersections whereas Property Vii mentions finite intersections (which includes the empty intersection of subsets of 𝑋, which is equal to 𝑋), so we add the hypothesis that 𝑋 is a neighborhood of all points. TODO: when df-fi 9451 includes the empty intersection, remove that extra hypothesis. (Contributed by Thierry Arnoux, 6-Jan-2018.) |
| ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} & ⊢ (𝜑 → 𝑁:𝑋⟶𝒫 𝒫 𝑋) & ⊢ ((((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) ⇒ ⊢ (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) | ||
| Syntax | clp 23142 | Extend class notation with the limit point function for topologies. |
| class limPt | ||
| Syntax | cperf 23143 | Extend class notation with the class of all perfect spaces. |
| class Perf | ||
| Definition | df-lp 23144* | Define a function on topologies whose value is the set of limit points of the subsets of the base set. See lpval 23147. (Contributed by NM, 10-Feb-2007.) |
| ⊢ limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))})) | ||
| Definition | df-perf 23145 | Define the class of all perfect spaces. A perfect space is one for which every point in the set is a limit point of the whole space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ Perf = {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘∪ 𝑗) = ∪ 𝑗} | ||
| Theorem | lpfval 23146* | The limit point function on the subsets of a topology's base set. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))})) | ||
| Theorem | lpval 23147* | The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in [Munkres] p. 97. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) | ||
| Theorem | islp 23148 | The predicate "the class 𝑃 is a limit point of 𝑆". (Contributed by NM, 10-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))) | ||
| Theorem | lpsscls 23149 | The limit points of a subset are included in the subset's closure. (Contributed by NM, 26-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝑆)) | ||
| Theorem | lpss 23150 | The limit points of a subset are included in the base set. (Contributed by NM, 9-Nov-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) ⊆ 𝑋) | ||
| Theorem | lpdifsn 23151 | 𝑃 is a limit point of 𝑆 iff it is a limit point of 𝑆 ∖ {𝑃}. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})))) | ||
| Theorem | lpss3 23152 | Subset relationship for limit points. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((limPt‘𝐽)‘𝑇) ⊆ ((limPt‘𝐽)‘𝑆)) | ||
| Theorem | islp2 23153* | The predicate "𝑃 is a limit point of 𝑆 " in terms of neighborhoods. Definition of limit point in [Munkres] p. 97. Although Munkres uses open neighborhoods, it also works for our more general neighborhoods. (Contributed by NM, 26-Feb-2007.) (Proof shortened by Mario Carneiro, 25-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)) | ||
| Theorem | islp3 23154* | The predicate "𝑃 is a limit point of 𝑆 " in terms of open sets. see islp2 23153, elcls 23081, islp 23148. (Contributed by FL, 31-Jul-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))) | ||
| Theorem | maxlp 23155 | A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃 ∈ 𝑋 ∧ ¬ {𝑃} ∈ 𝐽))) | ||
| Theorem | clslp 23156 | The closure of a subset of a topological space is the subset together with its limit points. Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆))) | ||
| Theorem | islpi 23157 | A point belonging to a set's closure but not the set itself is a limit point. (Contributed by NM, 8-Nov-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ ¬ 𝑃 ∈ 𝑆)) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) | ||
| Theorem | cldlp 23158 | A subset of a topological space is closed iff it contains all its limit points. Corollary 6.7 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑆) ⊆ 𝑆)) | ||
| Theorem | isperf 23159 | Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) | ||
| Theorem | isperf2 23160 | Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) | ||
| Theorem | isperf3 23161* | A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) | ||
| Theorem | perflp 23162 | The limit points of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf → ((limPt‘𝐽)‘𝑋) = 𝑋) | ||
| Theorem | perfi 23163 | Property of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Perf ∧ 𝑃 ∈ 𝑋) → ¬ {𝑃} ∈ 𝐽) | ||
| Theorem | perftop 23164 | A perfect space is a topology. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ (𝐽 ∈ Perf → 𝐽 ∈ Top) | ||
| Theorem | restrcl 23165 | Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) | ||
| Theorem | restbas 23166 | A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ (𝐵 ∈ TopBases → (𝐵 ↾t 𝐴) ∈ TopBases) | ||
| Theorem | tgrest 23167 | A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (topGen‘(𝐵 ↾t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴)) | ||
| Theorem | resttop 23168 | A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) | ||
| Theorem | resttopon 23169 | A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | ||
| Theorem | restuni 23170 | The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) | ||
| Theorem | stoig 23171 | The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), (𝐽 ↾t 𝐴)〉} ∈ TopSp) | ||
| Theorem | restco 23172 | Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝐽 ↾t 𝐴) ↾t 𝐵) = (𝐽 ↾t (𝐴 ∩ 𝐵))) | ||
| Theorem | restabs 23173 | Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) | ||
| Theorem | restin 23174 | When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) | ||
| Theorem | restuni2 23175 | The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t 𝐴)) | ||
| Theorem | resttopon2 23176 | The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ 𝑋))) | ||
| Theorem | rest0 23177 | The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = {∅}) | ||
| Theorem | restsn 23178 | The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) | ||
| Theorem | restsn2 23179 | The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) = 𝒫 {𝐴}) | ||
| Theorem | restcld 23180* | A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘(𝐽 ↾t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥 ∩ 𝑆))) | ||
| Theorem | restcldi 23181 | A closed set is closed in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) | ||
| Theorem | restcldr 23182 | A set which is closed in the subspace topology induced by a closed set is closed in the original topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽)) | ||
| Theorem | restopnb 23183 | If 𝐵 is an open subset of the subspace base set 𝐴, then any subset of 𝐵 is open iff it is open in 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 ↔ 𝐶 ∈ (𝐽 ↾t 𝐴))) | ||
| Theorem | ssrest 23184 | If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) | ||
| Theorem | restopn2 23185 | If 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) | ||
| Theorem | restdis 23186 | A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝐵) = 𝒫 𝐵) | ||
| Theorem | restfpw 23187 | The restriction of the set of finite subsets of 𝐴 is the set of finite subsets of 𝐵. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = (𝒫 𝐵 ∩ Fin)) | ||
| Theorem | neitr 23188 | The neighborhood of a trace is the trace of the neighborhood. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((nei‘(𝐽 ↾t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴)) | ||
| Theorem | restcls 23189 | A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐾)‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) | ||
| Theorem | restntr 23190 | An interior in a subspace topology. Willard in General Topology says that there is no analogue of restcls 23189 for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) = (((int‘𝐽)‘(𝑆 ∪ (𝑋 ∖ 𝑌))) ∩ 𝑌)) | ||
| Theorem | restlp 23191 | The limit points of a subset restrict naturally in a subspace. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((limPt‘𝐾)‘𝑆) = (((limPt‘𝐽)‘𝑆) ∩ 𝑌)) | ||
| Theorem | restperf 23192 | Perfection of a subspace. Note that the term "perfect set" is reserved for closed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌))) | ||
| Theorem | perfopn 23193 | An open subset of a perfect space is perfect. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → 𝐾 ∈ Perf) | ||
| Theorem | resstopn 23194 | The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ 𝐻 = (𝐾 ↾s 𝐴) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) | ||
| Theorem | resstps 23195 | A restricted topological space is a topological space. Note that this theorem would not be true if TopSp was defined directly in terms of the TopSet slot instead of the TopOpen derived function. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ ((𝐾 ∈ TopSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ TopSp) | ||
| Theorem | ordtbaslem 23196* | Lemma for ordtbas 23200. In a total order, unbounded-above intervals are closed under intersection. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ⇒ ⊢ (𝑅 ∈ TosetRel → (fi‘𝐴) = 𝐴) | ||
| Theorem | ordtval 23197* | Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ⇒ ⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (𝐴 ∪ 𝐵))))) | ||
| Theorem | ordtuni 23198* | Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑋 = ∪ ({𝑋} ∪ (𝐴 ∪ 𝐵))) | ||
| Theorem | ordtbas2 23199* | Lemma for ordtbas 23200. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) & ⊢ 𝐶 = ran (𝑎 ∈ 𝑋, 𝑏 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ⇒ ⊢ (𝑅 ∈ TosetRel → (fi‘(𝐴 ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∪ 𝐶)) | ||
| Theorem | ordtbas 23200* | In a total order, the finite intersections of the open rays generates the set of open intervals, but no more - these four collections form a subbasis for the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) & ⊢ 𝐶 = ran (𝑎 ∈ 𝑋, 𝑏 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ⇒ ⊢ (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴 ∪ 𝐵))) = (({𝑋} ∪ (𝐴 ∪ 𝐵)) ∪ 𝐶)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |