HomeHome Metamath Proof Explorer
Theorem List (p. 232 of 462)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28971)
  Hilbert Space Explorer  Hilbert Space Explorer
(28972-30494)
  Users' Mathboxes  Users' Mathboxes
(30495-46134)
 

Theorem List for Metamath Proof Explorer - 23101-23200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-utop 23101* Definition of a topology induced by a uniform structure. Definition 3 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Nov-2017.)
unifTop = (𝑢 ran UnifOn ↦ {𝑎 ∈ 𝒫 dom 𝑢 ∣ ∀𝑥𝑎𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎})
 
Theoremutopval 23102* The topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 30-Nov-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
 
Theoremelutop 23103* Open sets in the topology induced by an uniform structure 𝑈 on 𝑋 (Contributed by Thierry Arnoux, 30-Nov-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)))
 
Theoremutoptop 23104 The topology induced by a uniform structure 𝑈 is a topology. (Contributed by Thierry Arnoux, 30-Nov-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top)
 
Theoremutopbas 23105 The base of the topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 5-Dec-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))
 
Theoremutoptopon 23106 Topology induced by a uniform structure 𝑈 with its base set. (Contributed by Thierry Arnoux, 5-Jan-2018.)
(𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ (TopOn‘𝑋))
 
Theoremrestutop 23107 Restriction of a topology induced by an uniform structure. (Contributed by Thierry Arnoux, 12-Dec-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → ((unifTop‘𝑈) ↾t 𝐴) ⊆ (unifTop‘(𝑈t (𝐴 × 𝐴))))
 
Theoremrestutopopn 23108 The restriction of the topology induced by an uniform structure to an open set. (Contributed by Thierry Arnoux, 16-Dec-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → ((unifTop‘𝑈) ↾t 𝐴) = (unifTop‘(𝑈t (𝐴 × 𝐴))))
 
Theoremustuqtoplem 23109* Lemma for ustuqtop 23116. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴𝑉) → (𝐴 ∈ (𝑁𝑃) ↔ ∃𝑤𝑈 𝐴 = (𝑤 “ {𝑃})))
 
Theoremustuqtop0 23110* Lemma for ustuqtop 23116. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋)
 
Theoremustuqtop1 23111* Lemma for ustuqtop 23116, similar to ssnei2 21985. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
 
Theoremustuqtop2 23112* Lemma for ustuqtop 23116. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
 
Theoremustuqtop3 23113* Lemma for ustuqtop 23116, similar to elnei 21980. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
 
Theoremustuqtop4 23114* Lemma for ustuqtop 23116. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
 
Theoremustuqtop5 23115* Lemma for ustuqtop 23116. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
 
Theoremustuqtop 23116* For a given uniform structure 𝑈 on a set 𝑋, there is a unique topology 𝑗 such that the set ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) is the filter of the neighborhoods of 𝑝 for that topology. Proposition 1 of [BourbakiTop1] p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
 
Theoremutopsnneiplem 23117* The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝐽 = (unifTop‘𝑈)    &   𝐾 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}    &   𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
 
Theoremutopsnneip 23118* The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 13-Jan-2018.)
𝐽 = (unifTop‘𝑈)       ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
 
Theoremutopsnnei 23119 Images of singletons by entourages 𝑉 are neighborhoods of those singletons. (Contributed by Thierry Arnoux, 13-Jan-2018.)
𝐽 = (unifTop‘𝑈)       ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}))
 
Theoremutop2nei 23120 For any symmetrical entourage 𝑉 and any relation 𝑀, build a neighborhood of 𝑀. First part of proposition 2 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 14-Jan-2018.)
𝐽 = (unifTop‘𝑈)       ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → (𝑉 ∘ (𝑀𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘𝑀))
 
Theoremutop3cls 23121 Relation between a topological closure and a symmetric entourage in an uniform space. Second part of proposition 2 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Jan-2018.)
𝐽 = (unifTop‘𝑈)       (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑉 ∘ (𝑀𝑉)))
 
Theoremutopreg 23122 All Hausdorff uniform spaces are regular. Proposition 3 of [BourbakiTop1] p. II.5. (Contributed by Thierry Arnoux, 16-Jan-2018.)
𝐽 = (unifTop‘𝑈)       ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg)
 
12.3.3  Uniform Spaces
 
Syntaxcuss 23123 Extend class notation with the Uniform Structure extractor function.
class UnifSt
 
Syntaxcusp 23124 Extend class notation with the class of uniform spaces.
class UnifSp
 
Syntaxctus 23125 Extend class notation with the function mapping a uniform structure to a uniform space.
class toUnifSp
 
Definitiondf-uss 23126 Define the uniform structure extractor function. Similarly with df-topn 16900 this differs from df-unif 16790 when a structure has been restricted using df-ress 16692; in this case the UnifSet component will still have a uniform set over the larger set, and this function fixes this by restricting the uniform set as well. (Contributed by Thierry Arnoux, 1-Dec-2017.)
UnifSt = (𝑓 ∈ V ↦ ((UnifSet‘𝑓) ↾t ((Base‘𝑓) × (Base‘𝑓))))
 
Definitiondf-usp 23127 Definition of a uniform space, i.e. a base set with an uniform structure and its induced topology. Derived from definition 3 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Nov-2017.)
UnifSp = {𝑓 ∣ ((UnifSt‘𝑓) ∈ (UnifOn‘(Base‘𝑓)) ∧ (TopOpen‘𝑓) = (unifTop‘(UnifSt‘𝑓)))}
 
Definitiondf-tus 23128 Define the function mapping a uniform structure to a uniform space. (Contributed by Thierry Arnoux, 17-Nov-2017.)
toUnifSp = (𝑢 ran UnifOn ↦ ({⟨(Base‘ndx), dom 𝑢⟩, ⟨(UnifSet‘ndx), 𝑢⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑢)⟩))
 
Theoremussval 23129 The uniform structure on uniform space 𝑊. This proof uses a trick with fvprc 6698 to avoid requiring 𝑊 to be a set. (Contributed by Thierry Arnoux, 3-Dec-2017.)
𝐵 = (Base‘𝑊)    &   𝑈 = (UnifSet‘𝑊)       (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊)
 
Theoremussid 23130 In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017.)
𝐵 = (Base‘𝑊)    &   𝑈 = (UnifSet‘𝑊)       ((𝐵 × 𝐵) = 𝑈𝑈 = (UnifSt‘𝑊))
 
Theoremisusp 23131 The predicate 𝑊 is a uniform space. (Contributed by Thierry Arnoux, 4-Dec-2017.)
𝐵 = (Base‘𝑊)    &   𝑈 = (UnifSt‘𝑊)    &   𝐽 = (TopOpen‘𝑊)       (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈)))
 
Theoremressuss 23132 Value of the uniform structure of a restricted space. (Contributed by Thierry Arnoux, 12-Dec-2017.)
(𝐴𝑉 → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
 
Theoremressust 23133 The uniform structure of a restricted space. (Contributed by Thierry Arnoux, 22-Jan-2018.)
𝑋 = (Base‘𝑊)    &   𝑇 = (UnifSt‘(𝑊s 𝐴))       ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → 𝑇 ∈ (UnifOn‘𝐴))
 
Theoremressusp 23134 The restriction of a uniform topological space to an open set is a uniform space. (Contributed by Thierry Arnoux, 16-Dec-2017.)
𝐵 = (Base‘𝑊)    &   𝐽 = (TopOpen‘𝑊)       ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝑊s 𝐴) ∈ UnifSp)
 
Theoremtusval 23135 The value of the uniform space mapping function. (Contributed by Thierry Arnoux, 5-Dec-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
 
Theoremtuslem 23136 Lemma for tusbas 23137, tusunif 23138, and tustopn 23140. (Contributed by Thierry Arnoux, 5-Dec-2017.)
𝐾 = (toUnifSp‘𝑈)       (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾)))
 
Theoremtusbas 23137 The base set of a constructed uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.)
𝐾 = (toUnifSp‘𝑈)       (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘𝐾))
 
Theoremtusunif 23138 The uniform structure of a constructed uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.)
𝐾 = (toUnifSp‘𝑈)       (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘𝐾))
 
Theoremtususs 23139 The uniform structure of a constructed uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017.)
𝐾 = (toUnifSp‘𝑈)       (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSt‘𝐾))
 
Theoremtustopn 23140 The topology induced by a constructed uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.)
𝐾 = (toUnifSp‘𝑈)    &   𝐽 = (unifTop‘𝑈)       (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 = (TopOpen‘𝐾))
 
Theoremtususp 23141 A constructed uniform space is an uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.)
𝐾 = (toUnifSp‘𝑈)       (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 ∈ UnifSp)
 
Theoremtustps 23142 A constructed uniform space is a topological space. (Contributed by Thierry Arnoux, 25-Jan-2018.)
𝐾 = (toUnifSp‘𝑈)       (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 ∈ TopSp)
 
Theoremuspreg 23143 If a uniform space is Hausdorff, it is regular. Proposition 3 of [BourbakiTop1] p. II.5. (Contributed by Thierry Arnoux, 4-Jan-2018.)
𝐽 = (TopOpen‘𝑊)       ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg)
 
12.3.4  Uniform continuity
 
Syntaxcucn 23144 Extend class notation with the uniform continuity operation.
class Cnu
 
Definitiondf-ucn 23145* Define a function on two uniform structures which value is the set of uniformly continuous functions from the first uniform structure to the second. A function 𝑓 is uniformly continuous if, roughly speaking, it is possible to guarantee that (𝑓𝑥) and (𝑓𝑦) be as close to each other as we please by requiring only that 𝑥 and 𝑦 are sufficiently close to each other; unlike ordinary continuity, the maximum distance between (𝑓𝑥) and (𝑓𝑦) cannot depend on 𝑥 and 𝑦 themselves. This formulation is the definition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Cnu = (𝑢 ran UnifOn, 𝑣 ran UnifOn ↦ {𝑓 ∈ (dom 𝑣m dom 𝑢) ∣ ∀𝑠𝑣𝑟𝑢𝑥 ∈ dom 𝑢𝑦 ∈ dom 𝑢(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))})
 
Theoremucnval 23146* The set of all uniformly continuous function from uniform space 𝑈 to uniform space 𝑉. (Contributed by Thierry Arnoux, 16-Nov-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝑈 Cnu𝑉) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))})
 
Theoremisucn 23147* The predicate "𝐹 is a uniformly continuous function from uniform space 𝑈 to uniform space 𝑉". (Contributed by Thierry Arnoux, 16-Nov-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
 
Theoremisucn2 23148* The predicate "𝐹 is a uniformly continuous function from uniform space 𝑈 to uniform space 𝑉", expressed with filter bases for the entourages. (Contributed by Thierry Arnoux, 26-Jan-2018.)
𝑈 = ((𝑋 × 𝑋)filGen𝑅)    &   𝑉 = ((𝑌 × 𝑌)filGen𝑆)    &   (𝜑𝑈 ∈ (UnifOn‘𝑋))    &   (𝜑𝑉 ∈ (UnifOn‘𝑌))    &   (𝜑𝑅 ∈ (fBas‘(𝑋 × 𝑋)))    &   (𝜑𝑆 ∈ (fBas‘(𝑌 × 𝑌)))       (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑠𝑆𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
 
Theoremucnimalem 23149* Reformulate the 𝐺 function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017.)
(𝜑𝑈 ∈ (UnifOn‘𝑋))    &   (𝜑𝑉 ∈ (UnifOn‘𝑌))    &   (𝜑𝐹 ∈ (𝑈 Cnu𝑉))    &   (𝜑𝑊𝑉)    &   𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)       𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
 
Theoremucnima 23150* An equivalent statement of the definition of uniformly continuous function. (Contributed by Thierry Arnoux, 19-Nov-2017.)
(𝜑𝑈 ∈ (UnifOn‘𝑋))    &   (𝜑𝑉 ∈ (UnifOn‘𝑌))    &   (𝜑𝐹 ∈ (𝑈 Cnu𝑉))    &   (𝜑𝑊𝑉)    &   𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)       (𝜑 → ∃𝑟𝑈 (𝐺𝑟) ⊆ 𝑊)
 
Theoremucnprima 23151* The preimage by a uniformly continuous function 𝐹 of an entourage 𝑊 of 𝑌 is an entourage of 𝑋. Note of the definition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 19-Nov-2017.)
(𝜑𝑈 ∈ (UnifOn‘𝑋))    &   (𝜑𝑉 ∈ (UnifOn‘𝑌))    &   (𝜑𝐹 ∈ (𝑈 Cnu𝑉))    &   (𝜑𝑊𝑉)    &   𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)       (𝜑 → (𝐺𝑊) ∈ 𝑈)
 
Theoremiducn 23152 The identity is uniformly continuous from a uniform structure to itself. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈))
 
Theoremcstucnd 23153 A constant function is uniformly continuous. Deduction form. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.)
(𝜑𝑈 ∈ (UnifOn‘𝑋))    &   (𝜑𝑉 ∈ (UnifOn‘𝑌))    &   (𝜑𝐴𝑌)       (𝜑 → (𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉))
 
Theoremucncn 23154 Uniform continuity implies continuity. Deduction form. Proposition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 30-Nov-2017.)
𝐽 = (TopOpen‘𝑅)    &   𝐾 = (TopOpen‘𝑆)    &   (𝜑𝑅 ∈ UnifSp)    &   (𝜑𝑆 ∈ UnifSp)    &   (𝜑𝑅 ∈ TopSp)    &   (𝜑𝑆 ∈ TopSp)    &   (𝜑𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)))       (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
 
12.3.5  Cauchy filters in uniform spaces
 
Syntaxccfilu 23155 Extend class notation with the set of Cauchy filter bases.
class CauFilu
 
Definitiondf-cfilu 23156* Define the set of Cauchy filter bases on a uniform space. A Cauchy filter base is a filter base on the set such that for every entourage 𝑣, there is an element 𝑎 of the filter "small enough in 𝑣 " i.e. such that every pair {𝑥, 𝑦} of points in 𝑎 is related by 𝑣". Definition 2 of [BourbakiTop1] p. II.13. (Contributed by Thierry Arnoux, 16-Nov-2017.)
CauFilu = (𝑢 ran UnifOn ↦ {𝑓 ∈ (fBas‘dom 𝑢) ∣ ∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
 
Theoremiscfilu 23157* The predicate "𝐹 is a Cauchy filter base on uniform space 𝑈". (Contributed by Thierry Arnoux, 18-Nov-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
 
Theoremcfilufbas 23158 A Cauchy filter base is a filter base. (Contributed by Thierry Arnoux, 19-Nov-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → 𝐹 ∈ (fBas‘𝑋))
 
Theoremcfiluexsm 23159* For a Cauchy filter base and any entourage 𝑉, there is an element of the filter small in 𝑉. (Contributed by Thierry Arnoux, 19-Nov-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈) ∧ 𝑉𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉)
 
Theoremfmucndlem 23160* Lemma for fmucnd 23161. (Contributed by Thierry Arnoux, 19-Nov-2017.)
((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ((𝐹𝐴) × (𝐹𝐴)))
 
Theoremfmucnd 23161* The image of a Cauchy filter base by an uniformly continuous function is a Cauchy filter base. Deduction form. Proposition 3 of [BourbakiTop1] p. II.13. (Contributed by Thierry Arnoux, 18-Nov-2017.)
(𝜑𝑈 ∈ (UnifOn‘𝑋))    &   (𝜑𝑉 ∈ (UnifOn‘𝑌))    &   (𝜑𝐹 ∈ (𝑈 Cnu𝑉))    &   (𝜑𝐶 ∈ (CauFilu𝑈))    &   𝐷 = ran (𝑎𝐶 ↦ (𝐹𝑎))       (𝜑𝐷 ∈ (CauFilu𝑉))
 
Theoremcfilufg 23162 The filter generated by a Cauchy filter base is still a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → (𝑋filGen𝐹) ∈ (CauFilu𝑈))
 
Theoremtrcfilu 23163 Condition for the trace of a Cauchy filter base to be a Cauchy filter base for the restricted uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))))
 
Theoremcfiluweak 23164 A Cauchy filter base is also a Cauchy filter base on any coarser uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ∈ (CauFilu𝑈))
 
Theoremneipcfilu 23165 In an uniform space, a neighboring filter is a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018.)
𝑋 = (Base‘𝑊)    &   𝐽 = (TopOpen‘𝑊)    &   𝑈 = (UnifSt‘𝑊)       ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (CauFilu𝑈))
 
12.3.6  Complete uniform spaces
 
Syntaxccusp 23166 Extend class notation with the class of all complete uniform spaces.
class CUnifSp
 
Definitiondf-cusp 23167* Define the class of all complete uniform spaces. Definition 3 of [BourbakiTop1] p. II.15. (Contributed by Thierry Arnoux, 1-Dec-2017.)
CUnifSp = {𝑤 ∈ UnifSp ∣ ∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅)}
 
Theoremiscusp 23168* The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 3-Dec-2017.)
(𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
 
Theoremcuspusp 23169 A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017.)
(𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp)
 
Theoremcuspcvg 23170 In a complete uniform space, any Cauchy filter 𝐶 has a limit. (Contributed by Thierry Arnoux, 3-Dec-2017.)
𝐵 = (Base‘𝑊)    &   𝐽 = (TopOpen‘𝑊)       ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐽 fLim 𝐶) ≠ ∅)
 
Theoremiscusp2 23171* The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 15-Dec-2017.)
𝐵 = (Base‘𝑊)    &   𝑈 = (UnifSt‘𝑊)    &   𝐽 = (TopOpen‘𝑊)       (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅)))
 
Theoremcnextucn 23172* Extension by continuity. Proposition 11 of [BourbakiTop1] p. II.20. Given a topology 𝐽 on 𝑋, a subset 𝐴 dense in 𝑋, this states a condition for 𝐹 from 𝐴 to a space 𝑌 Hausdorff and complete to be extensible by continuity. (Contributed by Thierry Arnoux, 4-Dec-2017.)
𝑋 = (Base‘𝑉)    &   𝑌 = (Base‘𝑊)    &   𝐽 = (TopOpen‘𝑉)    &   𝐾 = (TopOpen‘𝑊)    &   𝑈 = (UnifSt‘𝑊)    &   (𝜑𝑉 ∈ TopSp)    &   (𝜑𝑊 ∈ TopSp)    &   (𝜑𝑊 ∈ CUnifSp)    &   (𝜑𝐾 ∈ Haus)    &   (𝜑𝐴𝑋)    &   (𝜑𝐹:𝐴𝑌)    &   (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)    &   ((𝜑𝑥𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu𝑈))       (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))
 
Theoremucnextcn 23173 Extension by continuity. Theorem 2 of [BourbakiTop1] p. II.20. Given an uniform space on a set 𝑋, a subset 𝐴 dense in 𝑋, and a function 𝐹 uniformly continuous from 𝐴 to 𝑌, that function can be extended by continuity to the whole 𝑋, and its extension is uniformly continuous. (Contributed by Thierry Arnoux, 25-Jan-2018.)
𝑋 = (Base‘𝑉)    &   𝑌 = (Base‘𝑊)    &   𝐽 = (TopOpen‘𝑉)    &   𝐾 = (TopOpen‘𝑊)    &   𝑆 = (UnifSt‘𝑉)    &   𝑇 = (UnifSt‘(𝑉s 𝐴))    &   𝑈 = (UnifSt‘𝑊)    &   (𝜑𝑉 ∈ TopSp)    &   (𝜑𝑉 ∈ UnifSp)    &   (𝜑𝑊 ∈ TopSp)    &   (𝜑𝑊 ∈ CUnifSp)    &   (𝜑𝐾 ∈ Haus)    &   (𝜑𝐴𝑋)    &   (𝜑𝐹 ∈ (𝑇 Cnu𝑈))    &   (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)       (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))
 
12.4  Metric spaces
 
12.4.1  Pseudometric spaces
 
Theoremispsmet 23174* Express the predicate "𝐷 is a pseudometric." (Contributed by Thierry Arnoux, 7-Feb-2018.)
(𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
 
Theorempsmetdmdm 23175 Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
(𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
 
Theorempsmetf 23176 The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.)
(𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
 
Theorempsmetcl 23177 Closure of the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 7-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
 
Theorempsmet0 23178 The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
 
Theorempsmettri2 23179 Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
 
Theorempsmetsym 23180 The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
 
Theorempsmettri 23181 Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵)))
 
Theorempsmetge0 23182 The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
 
Theorempsmetxrge0 23183 The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
(𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
 
Theorempsmetres2 23184 Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅))
 
Theorempsmetlecl 23185 Real closure of an extended metric value that is upper bounded by a real. (Contributed by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ)
 
Theoremdistspace 23186 A set 𝑋 together with a (distance) function 𝐷 which is a pseudometric is a distance space (according to E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006), i.e. a (base) set 𝑋 equipped with a distance 𝐷, which is a mapping of two elements of the base set to the (extended) reals and which is nonnegative, symmetric and equal to 0 if the two elements are equal. (Contributed by AV, 15-Oct-2021.) (Revised by AV, 5-Jul-2022.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ (𝐴𝐷𝐴) = 0) ∧ (0 ≤ (𝐴𝐷𝐵) ∧ (𝐴𝐷𝐵) = (𝐵𝐷𝐴))))
 
12.4.2  Basic metric space properties
 
Syntaxcxms 23187 Extend class notation with the class of extended metric spaces.
class ∞MetSp
 
Syntaxcms 23188 Extend class notation with the class of metric spaces.
class MetSp
 
Syntaxctms 23189 Extend class notation with the function mapping a metric to the metric space it defines.
class toMetSp
 
Definitiondf-xms 23190 Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))}
 
Definitiondf-ms 23191 Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006.)
MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}
 
Definitiondf-tms 23192 Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015.)
toMetSp = (𝑑 ran ∞Met ↦ ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩))
 
Theoremismet 23193* Express the predicate "𝐷 is a metric." (Contributed by NM, 25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
(𝑋𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
 
Theoremisxmet 23194* Express the predicate "𝐷 is an extended metric." (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝑋𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
 
Theoremismeti 23195* Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
𝑋 ∈ V    &   𝐷:(𝑋 × 𝑋)⟶ℝ    &   ((𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))    &   ((𝑥𝑋𝑦𝑋𝑧𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))       𝐷 ∈ (Met‘𝑋)
 
Theoremisxmetd 23196* Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 9-Apr-2024.)
(𝜑𝑋𝑉)    &   (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))       (𝜑𝐷 ∈ (∞Met‘𝑋))
 
Theoremisxmet2d 23197* It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample: 𝐷(𝑥, 𝑦) = if(𝑥 = 𝑦, 0, -∞) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝜑𝑋𝑉)    &   (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐷𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))       (𝜑𝐷 ∈ (∞Met‘𝑋))
 
Theoremmetflem 23198* Lemma for metf 23200 and others. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
 
Theoremxmetf 23199 Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
 
Theoremmetf 23200 Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.)
(𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46134
  Copyright terms: Public domain < Previous  Next >