![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isconn | Structured version Visualization version GIF version |
Description: The predicate 𝐽 is a connected topology . (Contributed by FL, 17-Nov-2008.) |
Ref | Expression |
---|---|
isconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isconn | ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝑗 = 𝐽) | |
2 | fveq2 6920 | . . . 4 ⊢ (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽)) | |
3 | 1, 2 | ineq12d 4242 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑗 ∩ (Clsd‘𝑗)) = (𝐽 ∩ (Clsd‘𝐽))) |
4 | unieq 4942 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
5 | isconn.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
6 | 4, 5 | eqtr4di 2798 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
7 | 6 | preq2d 4765 | . . 3 ⊢ (𝑗 = 𝐽 → {∅, ∪ 𝑗} = {∅, 𝑋}) |
8 | 3, 7 | eqeq12d 2756 | . 2 ⊢ (𝑗 = 𝐽 → ((𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗} ↔ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
9 | df-conn 23441 | . 2 ⊢ Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗}} | |
10 | 8, 9 | elrab2 3711 | 1 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ∅c0 4352 {cpr 4650 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 Clsdccld 23045 Conncconn 23440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-conn 23441 |
This theorem is referenced by: isconn2 23443 connclo 23444 conndisj 23445 conntop 23446 |
Copyright terms: Public domain | W3C validator |