| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isconn | Structured version Visualization version GIF version | ||
| Description: The predicate 𝐽 is a connected topology . (Contributed by FL, 17-Nov-2008.) |
| Ref | Expression |
|---|---|
| isconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| isconn | ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝑗 = 𝐽) | |
| 2 | fveq2 6881 | . . . 4 ⊢ (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽)) | |
| 3 | 1, 2 | ineq12d 4201 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑗 ∩ (Clsd‘𝑗)) = (𝐽 ∩ (Clsd‘𝐽))) |
| 4 | unieq 4899 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
| 5 | isconn.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 6 | 4, 5 | eqtr4di 2789 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
| 7 | 6 | preq2d 4721 | . . 3 ⊢ (𝑗 = 𝐽 → {∅, ∪ 𝑗} = {∅, 𝑋}) |
| 8 | 3, 7 | eqeq12d 2752 | . 2 ⊢ (𝑗 = 𝐽 → ((𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗} ↔ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
| 9 | df-conn 23355 | . 2 ⊢ Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗}} | |
| 10 | 8, 9 | elrab2 3679 | 1 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3930 ∅c0 4313 {cpr 4608 ∪ cuni 4888 ‘cfv 6536 Topctop 22836 Clsdccld 22959 Conncconn 23354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-conn 23355 |
| This theorem is referenced by: isconn2 23357 connclo 23358 conndisj 23359 conntop 23360 |
| Copyright terms: Public domain | W3C validator |