MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isconn Structured version   Visualization version   GIF version

Theorem isconn 22545
Description: The predicate 𝐽 is a connected topology . (Contributed by FL, 17-Nov-2008.)
Hypothesis
Ref Expression
isconn.1 𝑋 = 𝐽
Assertion
Ref Expression
isconn (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}))

Proof of Theorem isconn
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑗 = 𝐽𝑗 = 𝐽)
2 fveq2 6768 . . . 4 (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽))
31, 2ineq12d 4152 . . 3 (𝑗 = 𝐽 → (𝑗 ∩ (Clsd‘𝑗)) = (𝐽 ∩ (Clsd‘𝐽)))
4 unieq 4855 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
5 isconn.1 . . . . 5 𝑋 = 𝐽
64, 5eqtr4di 2797 . . . 4 (𝑗 = 𝐽 𝑗 = 𝑋)
76preq2d 4681 . . 3 (𝑗 = 𝐽 → {∅, 𝑗} = {∅, 𝑋})
83, 7eqeq12d 2755 . 2 (𝑗 = 𝐽 → ((𝑗 ∩ (Clsd‘𝑗)) = {∅, 𝑗} ↔ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}))
9 df-conn 22544 . 2 Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, 𝑗}}
108, 9elrab2 3628 1 (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1541  wcel 2109  cin 3890  c0 4261  {cpr 4568   cuni 4844  cfv 6430  Topctop 22023  Clsdccld 22148  Conncconn 22543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-conn 22544
This theorem is referenced by:  isconn2  22546  connclo  22547  conndisj  22548  conntop  22549
  Copyright terms: Public domain W3C validator