MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isconn Structured version   Visualization version   GIF version

Theorem isconn 22613
Description: The predicate 𝐽 is a connected topology . (Contributed by FL, 17-Nov-2008.)
Hypothesis
Ref Expression
isconn.1 𝑋 = 𝐽
Assertion
Ref Expression
isconn (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}))

Proof of Theorem isconn
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑗 = 𝐽𝑗 = 𝐽)
2 fveq2 6804 . . . 4 (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽))
31, 2ineq12d 4153 . . 3 (𝑗 = 𝐽 → (𝑗 ∩ (Clsd‘𝑗)) = (𝐽 ∩ (Clsd‘𝐽)))
4 unieq 4855 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
5 isconn.1 . . . . 5 𝑋 = 𝐽
64, 5eqtr4di 2794 . . . 4 (𝑗 = 𝐽 𝑗 = 𝑋)
76preq2d 4680 . . 3 (𝑗 = 𝐽 → {∅, 𝑗} = {∅, 𝑋})
83, 7eqeq12d 2752 . 2 (𝑗 = 𝐽 → ((𝑗 ∩ (Clsd‘𝑗)) = {∅, 𝑗} ↔ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}))
9 df-conn 22612 . 2 Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, 𝑗}}
108, 9elrab2 3632 1 (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1539  wcel 2104  cin 3891  c0 4262  {cpr 4567   cuni 4844  cfv 6458  Topctop 22091  Clsdccld 22216  Conncconn 22611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-iota 6410  df-fv 6466  df-conn 22612
This theorem is referenced by:  isconn2  22614  connclo  22615  conndisj  22616  conntop  22617
  Copyright terms: Public domain W3C validator