Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isconn | Structured version Visualization version GIF version |
Description: The predicate 𝐽 is a connected topology . (Contributed by FL, 17-Nov-2008.) |
Ref | Expression |
---|---|
isconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isconn | ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝑗 = 𝐽) | |
2 | fveq2 6658 | . . . 4 ⊢ (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽)) | |
3 | 1, 2 | ineq12d 4118 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑗 ∩ (Clsd‘𝑗)) = (𝐽 ∩ (Clsd‘𝐽))) |
4 | unieq 4809 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
5 | isconn.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
6 | 4, 5 | eqtr4di 2811 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
7 | 6 | preq2d 4633 | . . 3 ⊢ (𝑗 = 𝐽 → {∅, ∪ 𝑗} = {∅, 𝑋}) |
8 | 3, 7 | eqeq12d 2774 | . 2 ⊢ (𝑗 = 𝐽 → ((𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗} ↔ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
9 | df-conn 22112 | . 2 ⊢ Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗}} | |
10 | 8, 9 | elrab2 3605 | 1 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∩ cin 3857 ∅c0 4225 {cpr 4524 ∪ cuni 4798 ‘cfv 6335 Topctop 21593 Clsdccld 21716 Conncconn 22111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rab 3079 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-iota 6294 df-fv 6343 df-conn 22112 |
This theorem is referenced by: isconn2 22114 connclo 22115 conndisj 22116 conntop 22117 |
Copyright terms: Public domain | W3C validator |