Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isconn | Structured version Visualization version GIF version |
Description: The predicate 𝐽 is a connected topology . (Contributed by FL, 17-Nov-2008.) |
Ref | Expression |
---|---|
isconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isconn | ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝑗 = 𝐽) | |
2 | fveq2 6804 | . . . 4 ⊢ (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽)) | |
3 | 1, 2 | ineq12d 4153 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑗 ∩ (Clsd‘𝑗)) = (𝐽 ∩ (Clsd‘𝐽))) |
4 | unieq 4855 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
5 | isconn.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
6 | 4, 5 | eqtr4di 2794 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
7 | 6 | preq2d 4680 | . . 3 ⊢ (𝑗 = 𝐽 → {∅, ∪ 𝑗} = {∅, 𝑋}) |
8 | 3, 7 | eqeq12d 2752 | . 2 ⊢ (𝑗 = 𝐽 → ((𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗} ↔ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
9 | df-conn 22612 | . 2 ⊢ Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗}} | |
10 | 8, 9 | elrab2 3632 | 1 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∩ cin 3891 ∅c0 4262 {cpr 4567 ∪ cuni 4844 ‘cfv 6458 Topctop 22091 Clsdccld 22216 Conncconn 22611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-conn 22612 |
This theorem is referenced by: isconn2 22614 connclo 22615 conndisj 22616 conntop 22617 |
Copyright terms: Public domain | W3C validator |