Detailed syntax breakdown of Definition df-cup
Step | Hyp | Ref
| Expression |
1 | | ccup 34127 |
. 2
class
Cup |
2 | | cvv 3430 |
. . . . 5
class
V |
3 | 2, 2 | cxp 5586 |
. . . 4
class (V
× V) |
4 | 3, 2 | cxp 5586 |
. . 3
class ((V
× V) × V) |
5 | | cep 5493 |
. . . . . 6
class
E |
6 | 2, 5 | ctxp 34111 |
. . . . 5
class (V
⊗ E ) |
7 | | c1st 7815 |
. . . . . . . . 9
class
1st |
8 | 7 | ccnv 5587 |
. . . . . . . 8
class ◡1st |
9 | 8, 5 | ccom 5592 |
. . . . . . 7
class (◡1st ∘ E ) |
10 | | c2nd 7816 |
. . . . . . . . 9
class
2nd |
11 | 10 | ccnv 5587 |
. . . . . . . 8
class ◡2nd |
12 | 11, 5 | ccom 5592 |
. . . . . . 7
class (◡2nd ∘ E ) |
13 | 9, 12 | cun 3889 |
. . . . . 6
class ((◡1st ∘ E ) ∪ (◡2nd ∘ E )) |
14 | 13, 2 | ctxp 34111 |
. . . . 5
class (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V) |
15 | 6, 14 | csymdif 4180 |
. . . 4
class ((V
⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V)) |
16 | 15 | crn 5589 |
. . 3
class ran ((V
⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V)) |
17 | 4, 16 | cdif 3888 |
. 2
class (((V
× V) × V) ∖ ran ((V ⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V))) |
18 | 1, 17 | wceq 1541 |
1
wff Cup = (((V
× V) × V) ∖ ran ((V ⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V))) |