Detailed syntax breakdown of Definition df-cup
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ccup 35848 | . 2
class
Cup | 
| 2 |  | cvv 3479 | . . . . 5
class
V | 
| 3 | 2, 2 | cxp 5682 | . . . 4
class (V
× V) | 
| 4 | 3, 2 | cxp 5682 | . . 3
class ((V
× V) × V) | 
| 5 |  | cep 5582 | . . . . . 6
class 
E | 
| 6 | 2, 5 | ctxp 35832 | . . . . 5
class (V
⊗ E ) | 
| 7 |  | c1st 8013 | . . . . . . . . 9
class
1st | 
| 8 | 7 | ccnv 5683 | . . . . . . . 8
class ◡1st | 
| 9 | 8, 5 | ccom 5688 | . . . . . . 7
class (◡1st ∘ E ) | 
| 10 |  | c2nd 8014 | . . . . . . . . 9
class
2nd | 
| 11 | 10 | ccnv 5683 | . . . . . . . 8
class ◡2nd | 
| 12 | 11, 5 | ccom 5688 | . . . . . . 7
class (◡2nd ∘ E ) | 
| 13 | 9, 12 | cun 3948 | . . . . . 6
class ((◡1st ∘ E ) ∪ (◡2nd ∘ E )) | 
| 14 | 13, 2 | ctxp 35832 | . . . . 5
class (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V) | 
| 15 | 6, 14 | csymdif 4251 | . . . 4
class ((V
⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V)) | 
| 16 | 15 | crn 5685 | . . 3
class ran ((V
⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V)) | 
| 17 | 4, 16 | cdif 3947 | . 2
class (((V
× V) × V) ∖ ran ((V ⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V))) | 
| 18 | 1, 17 | wceq 1539 | 1
wff Cup = (((V
× V) × V) ∖ ran ((V ⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V))) |