Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcup Structured version   Visualization version   GIF version

Theorem brcup 34168
Description: Binary relation form of the Cup function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brcup.1 𝐴 ∈ V
brcup.2 𝐵 ∈ V
brcup.3 𝐶 ∈ V
Assertion
Ref Expression
brcup (⟨𝐴, 𝐵⟩Cup𝐶𝐶 = (𝐴𝐵))

Proof of Theorem brcup
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5373 . 2 𝐴, 𝐵⟩ ∈ V
2 brcup.3 . 2 𝐶 ∈ V
3 df-cup 34098 . 2 Cup = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((1st ∘ E ) ∪ (2nd ∘ E )) ⊗ V)))
4 brcup.1 . . . 4 𝐴 ∈ V
5 brcup.2 . . . 4 𝐵 ∈ V
64, 5opelvv 5619 . . 3 𝐴, 𝐵⟩ ∈ (V × V)
7 brxp 5627 . . 3 (⟨𝐴, 𝐵⟩((V × V) × V)𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ 𝐶 ∈ V))
86, 2, 7mpbir2an 707 . 2 𝐴, 𝐵⟩((V × V) × V)𝐶
9 epel 5489 . . . . . . 7 (𝑥 E 𝑦𝑥𝑦)
10 vex 3426 . . . . . . . . 9 𝑦 ∈ V
1110, 1brcnv 5780 . . . . . . . 8 (𝑦1st𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝐵⟩1st 𝑦)
124, 5br1steq 33651 . . . . . . . 8 (⟨𝐴, 𝐵⟩1st 𝑦𝑦 = 𝐴)
1311, 12bitri 274 . . . . . . 7 (𝑦1st𝐴, 𝐵⟩ ↔ 𝑦 = 𝐴)
149, 13anbi12ci 627 . . . . . 6 ((𝑥 E 𝑦𝑦1st𝐴, 𝐵⟩) ↔ (𝑦 = 𝐴𝑥𝑦))
1514exbii 1851 . . . . 5 (∃𝑦(𝑥 E 𝑦𝑦1st𝐴, 𝐵⟩) ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦))
16 vex 3426 . . . . . 6 𝑥 ∈ V
1716, 1brco 5768 . . . . 5 (𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ↔ ∃𝑦(𝑥 E 𝑦𝑦1st𝐴, 𝐵⟩))
184clel3 3585 . . . . 5 (𝑥𝐴 ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦))
1915, 17, 183bitr4i 302 . . . 4 (𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ↔ 𝑥𝐴)
2010, 1brcnv 5780 . . . . . . . 8 (𝑦2nd𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝐵⟩2nd 𝑦)
214, 5br2ndeq 33652 . . . . . . . 8 (⟨𝐴, 𝐵⟩2nd 𝑦𝑦 = 𝐵)
2220, 21bitri 274 . . . . . . 7 (𝑦2nd𝐴, 𝐵⟩ ↔ 𝑦 = 𝐵)
239, 22anbi12ci 627 . . . . . 6 ((𝑥 E 𝑦𝑦2nd𝐴, 𝐵⟩) ↔ (𝑦 = 𝐵𝑥𝑦))
2423exbii 1851 . . . . 5 (∃𝑦(𝑥 E 𝑦𝑦2nd𝐴, 𝐵⟩) ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦))
2516, 1brco 5768 . . . . 5 (𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩ ↔ ∃𝑦(𝑥 E 𝑦𝑦2nd𝐴, 𝐵⟩))
265clel3 3585 . . . . 5 (𝑥𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦))
2724, 25, 263bitr4i 302 . . . 4 (𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩ ↔ 𝑥𝐵)
2819, 27orbi12i 911 . . 3 ((𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ∨ 𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩) ↔ (𝑥𝐴𝑥𝐵))
29 brun 5121 . . 3 (𝑥((1st ∘ E ) ∪ (2nd ∘ E ))⟨𝐴, 𝐵⟩ ↔ (𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ∨ 𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩))
30 elun 4079 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
3128, 29, 303bitr4ri 303 . 2 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥((1st ∘ E ) ∪ (2nd ∘ E ))⟨𝐴, 𝐵⟩)
321, 2, 3, 8, 31brtxpsd3 34125 1 (⟨𝐴, 𝐵⟩Cup𝐶𝐶 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wo 843   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  cun 3881  cop 4564   class class class wbr 5070   E cep 5485   × cxp 5578  ccnv 5579  ccom 5584  1st c1st 7802  2nd c2nd 7803  Cupccup 34075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-symdif 4173  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-txp 34083  df-cup 34098
This theorem is referenced by:  brsuccf  34170
  Copyright terms: Public domain W3C validator