Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcup Structured version   Visualization version   GIF version

Theorem brcup 35927
Description: Binary relation form of the Cup function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brcup.1 𝐴 ∈ V
brcup.2 𝐵 ∈ V
brcup.3 𝐶 ∈ V
Assertion
Ref Expression
brcup (⟨𝐴, 𝐵⟩Cup𝐶𝐶 = (𝐴𝐵))

Proof of Theorem brcup
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5424 . 2 𝐴, 𝐵⟩ ∈ V
2 brcup.3 . 2 𝐶 ∈ V
3 df-cup 35857 . 2 Cup = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((1st ∘ E ) ∪ (2nd ∘ E )) ⊗ V)))
4 brcup.1 . . . 4 𝐴 ∈ V
5 brcup.2 . . . 4 𝐵 ∈ V
64, 5opelvv 5678 . . 3 𝐴, 𝐵⟩ ∈ (V × V)
7 brxp 5687 . . 3 (⟨𝐴, 𝐵⟩((V × V) × V)𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ 𝐶 ∈ V))
86, 2, 7mpbir2an 711 . 2 𝐴, 𝐵⟩((V × V) × V)𝐶
9 epel 5541 . . . . . . 7 (𝑥 E 𝑦𝑥𝑦)
10 vex 3451 . . . . . . . . 9 𝑦 ∈ V
1110, 1brcnv 5846 . . . . . . . 8 (𝑦1st𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝐵⟩1st 𝑦)
124, 5br1steq 35758 . . . . . . . 8 (⟨𝐴, 𝐵⟩1st 𝑦𝑦 = 𝐴)
1311, 12bitri 275 . . . . . . 7 (𝑦1st𝐴, 𝐵⟩ ↔ 𝑦 = 𝐴)
149, 13anbi12ci 629 . . . . . 6 ((𝑥 E 𝑦𝑦1st𝐴, 𝐵⟩) ↔ (𝑦 = 𝐴𝑥𝑦))
1514exbii 1848 . . . . 5 (∃𝑦(𝑥 E 𝑦𝑦1st𝐴, 𝐵⟩) ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦))
16 vex 3451 . . . . . 6 𝑥 ∈ V
1716, 1brco 5834 . . . . 5 (𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ↔ ∃𝑦(𝑥 E 𝑦𝑦1st𝐴, 𝐵⟩))
184clel3 3628 . . . . 5 (𝑥𝐴 ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦))
1915, 17, 183bitr4i 303 . . . 4 (𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ↔ 𝑥𝐴)
2010, 1brcnv 5846 . . . . . . . 8 (𝑦2nd𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝐵⟩2nd 𝑦)
214, 5br2ndeq 35759 . . . . . . . 8 (⟨𝐴, 𝐵⟩2nd 𝑦𝑦 = 𝐵)
2220, 21bitri 275 . . . . . . 7 (𝑦2nd𝐴, 𝐵⟩ ↔ 𝑦 = 𝐵)
239, 22anbi12ci 629 . . . . . 6 ((𝑥 E 𝑦𝑦2nd𝐴, 𝐵⟩) ↔ (𝑦 = 𝐵𝑥𝑦))
2423exbii 1848 . . . . 5 (∃𝑦(𝑥 E 𝑦𝑦2nd𝐴, 𝐵⟩) ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦))
2516, 1brco 5834 . . . . 5 (𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩ ↔ ∃𝑦(𝑥 E 𝑦𝑦2nd𝐴, 𝐵⟩))
265clel3 3628 . . . . 5 (𝑥𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦))
2724, 25, 263bitr4i 303 . . . 4 (𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩ ↔ 𝑥𝐵)
2819, 27orbi12i 914 . . 3 ((𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ∨ 𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩) ↔ (𝑥𝐴𝑥𝐵))
29 brun 5158 . . 3 (𝑥((1st ∘ E ) ∪ (2nd ∘ E ))⟨𝐴, 𝐵⟩ ↔ (𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ∨ 𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩))
30 elun 4116 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
3128, 29, 303bitr4ri 304 . 2 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥((1st ∘ E ) ∪ (2nd ∘ E ))⟨𝐴, 𝐵⟩)
321, 2, 3, 8, 31brtxpsd3 35884 1 (⟨𝐴, 𝐵⟩Cup𝐶𝐶 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  cun 3912  cop 4595   class class class wbr 5107   E cep 5537   × cxp 5636  ccnv 5637  ccom 5642  1st c1st 7966  2nd c2nd 7967  Cupccup 35834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-symdif 4216  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-1st 7968  df-2nd 7969  df-txp 35842  df-cup 35857
This theorem is referenced by:  brsuccf  35929
  Copyright terms: Public domain W3C validator