Home | Metamath
Proof Explorer Theorem List (p. 354 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29276) |
Hilbert Space Explorer
(29277-30799) |
Users' Mathboxes
(30800-46482) |
Type | Label | Description |
---|---|---|
Statement | ||
Groundwork for changing the definition, syntax and token for component-setting in extensible structures. See https://github.com/metamath/set.mm/issues/2401 | ||
Syntax | cstrset 35301 | Syntax for component-setting in extensible structures. |
class [𝐵 / 𝐴]struct𝑆 | ||
Definition | df-strset 35302 | Component-setting in extensible structures. Define the extensible structure [𝐵 / 𝐴]struct𝑆, which is like the extensible structure 𝑆 except that the value 𝐵 has been put in the slot 𝐴 (replacing the current value if there was already one). In such expressions, 𝐴 is generally substituted for slot mnemonics like Base or +g or dist. The V in this definition was chosen to be closer to df-sets 16863, but since extensible structures are functions on ℕ, it will be more natural to replace it with ℕ when df-strset 35302 becomes the main definition. (Contributed by BJ, 13-Feb-2022.) |
⊢ [𝐵 / 𝐴]struct𝑆 = ((𝑆 ↾ (V ∖ {(𝐴‘ndx)})) ∪ {〈(𝐴‘ndx), 𝐵〉}) | ||
Theorem | setsstrset 35303 | Relation between df-sets 16863 and df-strset 35302. Temporary theorem kept during the transition from the former to the latter. (Contributed by BJ, 13-Feb-2022.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → [𝐵 / 𝐴]struct𝑆 = (𝑆 sSet 〈(𝐴‘ndx), 𝐵〉)) | ||
In this section, we indroduce several supersets of the set ℝ of real numbers and the set ℂ of complex numbers. Once they are given their usual topologies, which are locally compact, both topological spaces have a one-point compactification. They are denoted by ℝ̂ and ℂ̂ respectively, defined in df-bj-cchat 35400 and df-bj-rrhat 35402, and the point at infinity is denoted by ∞, defined in df-bj-infty 35398. Both ℝ and ℂ also have "directional compactifications", denoted respectively by ℝ̅, defined in df-bj-rrbar 35396 (already defined as ℝ*, see df-xr 11014) and ℂ̅, defined in df-bj-ccbar 35383. Since ℂ̅ does not seem to be standard, we describe it in some detail. It is obtained by adding to ℂ a "point at infinity at the end of each ray with origin at 0". Although ℂ̅ is not an important object in itself, the motivation for introducing it is to provide a common superset to both ℝ̅ and ℂ and to define algebraic operations (addition, opposite, multiplication, inverse) as widely as reasonably possible. Mathematically, ℂ̅ is the quotient of ((ℂ × ℝ≥0) ∖ {〈0, 0〉}) by the diagonal multiplicative action of ℝ>0 (think of the closed "northern hemisphere" in ℝ^3 identified with (ℂ × ℝ), that each open ray from 0 included in the closed northern half-space intersects exactly once). Since in set.mm, we want to have a genuine inclusion ℂ ⊆ ℂ̅, we instead define ℂ̅ as the (disjoint) union of ℂ with a circle at infinity denoted by ℂ∞. To have a genuine inclusion ℝ̅ ⊆ ℂ̅, we define +∞ and -∞ as certain points in ℂ∞. Thanks to this framework, one has the genuine inclusions ℝ ⊆ ℝ̅ and ℝ ⊆ ℝ̂ and similarly ℂ ⊆ ℂ̅ and ℂ ⊆ ℂ̂. Furthermore, one has ℝ ⊆ ℂ as well as ℝ̅ ⊆ ℂ̅ and ℝ̂ ⊆ ℂ̂. Furthermore, we define the main algebraic operations on (ℂ̅ ∪ ℂ̂), which is not very mathematical, but "overloads" the operations, so that one can use the same notation in all cases. | ||
Theorem | bj-nfald 35304 | Variant of nfald 2326. (Contributed by BJ, 25-Dec-2023.) |
⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) | ||
Theorem | bj-nfexd 35305 | Variant of nfexd 2327. (Contributed by BJ, 25-Dec-2023.) |
⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) | ||
Theorem | copsex2d 35306* | Implicit substitution deduction for ordered pairs. (Contributed by BJ, 25-Dec-2023.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑦𝜒) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ 𝜒)) | ||
Theorem | copsex2b 35307* | Biconditional form of copsex2d 35306. TODO: prove a relative version, that is, with ∃𝑥 ∈ 𝑉∃𝑦 ∈ 𝑊...(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊). (Contributed by BJ, 27-Dec-2023.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑦𝜒) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) | ||
Theorem | opelopabd 35308* | Membership of an ordere pair in a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑦𝜒) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ 𝜒)) | ||
Theorem | opelopabb 35309* | Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑦𝜒) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) | ||
Theorem | opelopabbv 35310* | Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023.) |
⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) | ||
Theorem | bj-opelrelex 35311 | The coordinates of an ordered pair that belongs to a relation are sets. TODO: Slightly shorter than brrelex12 5640, which could be proved from it. (Contributed by BJ, 27-Dec-2023.) |
⊢ ((Rel 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | bj-opelresdm 35312 | If an ordered pair is in a restricted binary relation, then its first component is an element of the restricting class. See also opelres 5896. (Contributed by BJ, 25-Dec-2023.) |
⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ↾ 𝑋) → 𝐴 ∈ 𝑋) | ||
Theorem | bj-brresdm 35313 |
If two classes are related by a restricted binary relation, then the first
class is an element of the restricting class. See also brres 5897 and
brrelex1 5641.
Remark: there are many pairs like bj-opelresdm 35312 / bj-brresdm 35313, where one uses membership of ordered pairs and the other, related classes (for instance, bj-opelresdm 35312 / brrelex12 5640 or the opelopabg 5454 / brabg 5455 family). They are straightforwardly equivalent by df-br 5080. The latter is indeed a very direct definition, introducing a "shorthand", and barely necessary, were it not for the frequency of the expression 𝐴𝑅𝐵. Therefore, in the spirit of "definitions are here to be used", most theorems, apart from the most elementary ones, should only have the "br" version, not the "opel" one. (Contributed by BJ, 25-Dec-2023.) |
⊢ (𝐴(𝑅 ↾ 𝑋)𝐵 → 𝐴 ∈ 𝑋) | ||
Theorem | brabd0 35314* | Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑦𝜒) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝜒)) | ||
Theorem | brabd 35315* | Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝜒)) | ||
Theorem | bj-brab2a1 35316* | "Unbounded" version of brab2a 5680. (Contributed by BJ, 25-Dec-2023.) |
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜓)) | ||
Complements on the identity relation. | ||
Theorem | bj-opabssvv 35317* | A variant of relopabiv 5729 (which could be proved from it, similarly to relxp 5608 from xpss 5606). (Contributed by BJ, 28-Dec-2023.) |
⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ (V × V) | ||
Theorem | bj-funidres 35318 |
The restricted identity relation is a function. (Contributed by BJ,
27-Dec-2023.)
TODO: relabel funi 6464 to funid. |
⊢ Fun ( I ↾ 𝑉) | ||
Theorem | bj-opelidb 35319 |
Characterization of the ordered pair elements of the identity relation.
Remark: in deduction-style proofs, one could save a few syntactic steps by using another antecedent than ⊤ which already appears in the proof. Here for instance this could be the definition I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} but this would make the proof less easy to read. (Contributed by BJ, 27-Dec-2023.) |
⊢ (〈𝐴, 𝐵〉 ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) | ||
Theorem | bj-opelidb1 35320 | Characterization of the ordered pair elements of the identity relation. Variant of bj-opelidb 35319 where only the sethood of the first component is expressed. (Contributed by BJ, 27-Dec-2023.) |
⊢ (〈𝐴, 𝐵〉 ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) | ||
Theorem | bj-inexeqex 35321 | Lemma for bj-opelid 35323 (but not specific to the identity relation): if the intersection of two classes is a set and the two classes are equal, then both are sets (all three classes are equal, so they all belong to 𝑉, but it is more convenient to have V in the consequent for theorems using it). (Contributed by BJ, 27-Dec-2023.) |
⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | bj-elsn0 35322 | If the intersection of two classes is a set, then these classes are equal if and only if one is an element of the singleton formed on the other. Stronger form of elsng 4581 and elsn2g 4605 (which could be proved from it). (Contributed by BJ, 20-Jan-2024.) |
⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-opelid 35323 | Characterization of the ordered pair elements of the identity relation when the intersection of their components are sets. Note that the antecedent is more general than either component being a set. (Contributed by BJ, 29-Mar-2020.) |
⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-ideqg 35324 |
Characterization of the classes related by the identity relation when
their intersection is a set. Note that the antecedent is more general
than either class being a set. (Contributed by NM, 30-Apr-2004.) Weaken
the antecedent to sethood of the intersection. (Revised by BJ,
24-Dec-2023.)
TODO: replace ideqg 5759, or at least prove ideqg 5759 from it. |
⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-ideqgALT 35325 | Alternate proof of bj-ideqg 35324 from brabga 5450 instead of bj-opelid 35323 itself proved from bj-opelidb 35319. (Contributed by BJ, 27-Dec-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-ideqb 35326 | Characterization of classes related by the identity relation. (Contributed by BJ, 24-Dec-2023.) |
⊢ (𝐴 I 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) | ||
Theorem | bj-idres 35327 |
Alternate expression for the restricted identity relation. The
advantage of that expression is to expose it as a "bounded"
class, being
included in the Cartesian square of the restricting class. (Contributed
by BJ, 27-Dec-2023.)
This is an alternate of idinxpresid 5954 (see idinxpres 5953). See also elrid 5952 and elidinxp 5950. (Proof modification is discouraged.) |
⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × 𝐴)) | ||
Theorem | bj-opelidres 35328 | Characterization of the ordered pairs in the restricted identity relation when the intersection of their component belongs to the restricting class. TODO: prove bj-idreseq 35329 from it. (Contributed by BJ, 29-Mar-2020.) |
⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ ( I ↾ 𝑉) ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-idreseq 35329 | Sufficient condition for the restricted identity relation to agree with equality. Note that the instance of bj-ideqg 35324 with V substituted for 𝑉 is a direct consequence of bj-idreseq 35329. This is a strengthening of resieq 5901 which should be proved from it (note that currently, resieq 5901 relies on ideq 5760). Note that the intersection in the antecedent is not very meaningful, but is a device to prove versions with either class assumed to be a set. It could be enough to prove the version with a disjunctive antecedent: ⊢ ((𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶) → ...). (Contributed by BJ, 25-Dec-2023.) |
⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐴( I ↾ 𝐶)𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-idreseqb 35330 | Characterization for two classes to be related under the restricted identity relation. (Contributed by BJ, 24-Dec-2023.) |
⊢ (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵)) | ||
Theorem | bj-ideqg1 35331 |
For sets, the identity relation is the same thing as equality.
(Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon,
27-Aug-2011.) Generalize to a disjunctive antecedent. (Revised by BJ,
24-Dec-2023.)
TODO: delete once bj-ideqg 35324 is in the main section. |
⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-ideqg1ALT 35332 |
Alternate proof of bj-ideqg1 using brabga 5450 instead of the "unbounded"
version bj-brab2a1 35316 or brab2a 5680. (Contributed by BJ, 25-Dec-2023.)
(Proof modification is discouraged.) (New usage is discouraged.)
TODO: delete once bj-ideqg 35324 is in the main section. |
⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-opelidb1ALT 35333 | Characterization of the couples in I. (Contributed by BJ, 29-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (〈𝐴, 𝐵〉 ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) | ||
Theorem | bj-elid3 35334 | Characterization of the couples in I whose first component is a setvar. (Contributed by BJ, 29-Mar-2020.) |
⊢ (〈𝑥, 𝐴〉 ∈ I ↔ 𝑥 = 𝐴) | ||
Theorem | bj-elid4 35335 | Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.) |
⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 ∈ I ↔ (1st ‘𝐴) = (2nd ‘𝐴))) | ||
Theorem | bj-elid5 35336 | Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.) |
⊢ (𝐴 ∈ I ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = (2nd ‘𝐴))) | ||
Theorem | bj-elid6 35337 | Characterization of the elements of the diagonal of a Cartesian square. (Contributed by BJ, 22-Jun-2019.) |
⊢ (𝐵 ∈ ( I ↾ 𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵))) | ||
Theorem | bj-elid7 35338 | Characterization of the elements of the diagonal of a Cartesian square. (Contributed by BJ, 22-Jun-2019.) |
⊢ (〈𝐵, 𝐶〉 ∈ ( I ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶)) | ||
This subsection defines a functionalized version of the identity relation, that can also be seen as the diagonal in a Cartesian square). As explained in df-bj-diag 35340, it will probably be deleted. | ||
Syntax | cdiag2 35339 | Syntax for the diagonal of the Cartesian square of a set. |
class Id | ||
Definition | df-bj-diag 35340 |
Define the functionalized identity, which can also be seen as the diagonal
function. Its value is given in bj-diagval 35341 when it is viewed as the
functionalized identity, and in bj-diagval2 35342 when it is viewed as the
diagonal function.
Indeed, Definition df-br 5080 identifies a binary relation with the class of couples that are related by that binary relation (see eqrel2 36431 for the extensionality property of binary relations). As a consequence, the identity relation, or identity function (see funi 6464), on any class, can alternatively be seen as the diagonal of the cartesian square of that class. The identity relation on the universal class, I, is an "identity relation generator", since its restriction to any class is the identity relation on that class. It may be useful to consider a functionalized version of that fact, and that is the purpose of df-bj-diag 35340. Note: most proofs will only use its values (Id‘𝐴), in which case it may be enough to use ( I ↾ 𝐴) everywhere and dispense with this definition. (Contributed by BJ, 22-Jun-2019.) |
⊢ Id = (𝑥 ∈ V ↦ ( I ↾ 𝑥)) | ||
Theorem | bj-diagval 35341 | Value of the functionalized identity, or equivalently of the diagonal function. This expression views it as the functionalized identity, whereas bj-diagval2 35342 views it as the diagonal function. See df-bj-diag 35340 for the terminology. (Contributed by BJ, 22-Jun-2019.) |
⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ↾ 𝐴)) | ||
Theorem | bj-diagval2 35342 | Value of the functionalized identity, or equivalently of the diagonal function. This expression views it as the diagonal function, whereas bj-diagval 35341 views it as the functionalized identity. See df-bj-diag 35340 for the terminology. (Contributed by BJ, 22-Jun-2019.) |
⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴))) | ||
Theorem | bj-eldiag 35343 | Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid6 35337. (Contributed by BJ, 22-Jun-2019.) |
⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵)))) | ||
Theorem | bj-eldiag2 35344 | Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid7 35338. (Contributed by BJ, 22-Jun-2019.) |
⊢ (𝐴 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (Id‘𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶))) | ||
Definitions of the functionalized direct image and inverse image. The functionalized direct (resp. inverse) image is the morphism component of the covariant (resp. contravariant) powerset endofunctor of the category of sets and relations (and, up to restriction, of its subcategory of sets and functions). Its object component is the powerset operation 𝒫 defined in df-pw 4541. | ||
Syntax | cimdir 35345 | Syntax for the functionalized direct image. |
class 𝒫* | ||
Definition | df-imdir 35346* | Definition of the functionalized direct image, which maps a binary relation between two given sets to its associated direct image relation. (Contributed by BJ, 16-Dec-2023.) |
⊢ 𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ (𝑟 “ 𝑥) = 𝑦)})) | ||
Theorem | bj-imdirvallem 35347* | Lemma for bj-imdirval 35348 and bj-iminvval 35360. (Contributed by BJ, 23-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)})) ⇒ ⊢ (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)})) | ||
Theorem | bj-imdirval 35348* | Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑟 “ 𝑥) = 𝑦)})) | ||
Theorem | bj-imdirval2lem 35349* | Lemma for bj-imdirval2 35350 and bj-iminvval2 35361. (Contributed by BJ, 23-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)} ∈ V) | ||
Theorem | bj-imdirval2 35350* | Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) ⇒ ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) | ||
Theorem | bj-imdirval3 35351 | Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) ⇒ ⊢ (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) ∧ (𝑅 “ 𝑋) = 𝑌))) | ||
Theorem | bj-imdiridlem 35352* | Lemma for bj-imdirid 35353 and bj-iminvid 35362. (Contributed by BJ, 26-May-2024.) |
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → (𝜑 ↔ 𝑥 = 𝑦)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ 𝜑)} = ( I ↾ 𝒫 𝐴) | ||
Theorem | bj-imdirid 35353 | Functorial property of the direct image: the direct image by the identity on a set is the identity on the powerset. (Contributed by BJ, 24-Dec-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) | ||
Theorem | bj-opelopabid 35354* | Membership in an ordered-pair class abstraction. One can remove the DV condition on 𝑥, 𝑦 by using opabid 5442 in place of opabidw 5441. (Contributed by BJ, 22-May-2024.) |
⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 𝜑) | ||
Theorem | bj-opabco 35355* | Composition of ordered-pair class abstractions. (Contributed by BJ, 22-May-2024.) |
⊢ ({〈𝑦, 𝑧〉 ∣ 𝜓} ∘ {〈𝑥, 𝑦〉 ∣ 𝜑}) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝜑 ∧ 𝜓)} | ||
Theorem | bj-xpcossxp 35356 | The composition of two Cartesian products is included in the expected Cartesian product. There is equality if (𝐵 ∩ 𝐶) ≠ ∅, see xpcogend 14683. (Contributed by BJ, 22-May-2024.) |
⊢ ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐷) | ||
Theorem | bj-imdirco 35357 | Functorial property of the direct image: the direct image by a composition is the composition of the direct images. (Contributed by BJ, 23-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) & ⊢ (𝜑 → 𝑆 ⊆ (𝐵 × 𝐶)) ⇒ ⊢ (𝜑 → ((𝐴𝒫*𝐶)‘(𝑆 ∘ 𝑅)) = (((𝐵𝒫*𝐶)‘𝑆) ∘ ((𝐴𝒫*𝐵)‘𝑅))) | ||
Syntax | ciminv 35358 | Syntax for the functionalized inverse image. |
class 𝒫* | ||
Definition | df-iminv 35359* | Definition of the functionalized inverse image, which maps a binary relation between two given sets to its associated inverse image relation. (Contributed by BJ, 23-Dec-2023.) |
⊢ 𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝑥 = (◡𝑟 “ 𝑦))})) | ||
Theorem | bj-iminvval 35360* | Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑟 “ 𝑦))})) | ||
Theorem | bj-iminvval2 35361* | Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) ⇒ ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑅 “ 𝑦))}) | ||
Theorem | bj-iminvid 35362 | Functorial property of the inverse image: the inverse image by the identity on a set is the identity on the powerset. (Contributed by BJ, 26-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) | ||
We parameterize the set of infinite extended complex numbers ℂ∞ (df-bj-ccinfty 35379) using the real numbers ℝ (df-r 10882) via the function +∞eiτ. Since at that point, we have only defined the set of real numbers but no operations on it, we define a temporary "fractional part" function, which is more convenient to define on the temporary reals R (df-nr 10813) since we can use operations on the latter. We also define the temporary real "one-half" in order to define minus infinity (df-bj-minfty 35391) and then we can define the sets of extended real numbers and of extended complex numbers, and the projective real and complex lines, as well as addition and negation on these, and also the order relation on the extended reals (which bypasses the intermediate definition of a temporary order on the real numbers and then a superseding one on the extended real numbers). | ||
Syntax | cfractemp 35363 | Syntax for the fractional part of a tempopary real. |
class {R | ||
Definition | df-bj-fractemp 35364* |
Temporary definition: fractional part of a temporary real.
To understand this definition, recall the canonical injection ω⟶R, 𝑛 ↦ [{𝑥 ∈ Q ∣ 𝑥 <Q 〈suc 𝑛, 1o〉}, 1P] ~R where we successively take the successor of 𝑛 to land in positive integers, then take the couple with 1o as second component to land in positive rationals, then take the Dedekind cut that positive rational forms, and finally take the equivalence class of the couple with 1P as second component. Adding one at the beginning and subtracting it at the end is necessary since the constructions used in set.mm use the positive integers, positive rationals, and positive reals as intermediate number systems. (Contributed by BJ, 22-Jan-2023.) The precise definition is irrelevant and should generally not be used. One could even inline it. The definitive fractional part of an extended or projective complex number will be defined later. (New usage is discouraged.) |
⊢ {R = (𝑥 ∈ R ↦ (℩𝑦 ∈ R ((𝑦 = 0R ∨ (0R <R 𝑦 ∧ 𝑦 <R 1R)) ∧ ∃𝑛 ∈ ω ([〈{𝑧 ∈ Q ∣ 𝑧 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R +R 𝑦) = 𝑥))) | ||
Syntax | cinftyexpitau 35365 | Syntax for the function +∞eiτ parameterizing ℂ∞. |
class +∞eiτ | ||
Definition | df-bj-inftyexpitau 35366 | Definition of the auxiliary function +∞eiτ parameterizing the circle at infinity ℂ∞ in ℂ̅. We use coupling with {R} to simplify the proof of bj-inftyexpitaudisj 35372. (Contributed by BJ, 22-Jan-2023.) The precise definition is irrelevant and should generally not be used. TODO: prove only the necessary lemmas to prove ⊢ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((+∞eiτ‘𝐴) = (+∞eiτ‘𝐵) ↔ (𝐴 − 𝐵) ∈ ℤ)). (New usage is discouraged.) |
⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) | ||
Syntax | cccinftyN 35367 | Syntax for the circle at infinity ℂ∞N. |
class ℂ∞N | ||
Definition | df-bj-ccinftyN 35368 | Definition of the circle at infinity ℂ∞N. (Contributed by BJ, 22-Jun-2019.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
⊢ ℂ∞N = ran +∞eiτ | ||
Theorem | bj-inftyexpitaufo 35369 | The function +∞eiτ written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.) |
⊢ +∞eiτ:ℝ–onto→ℂ∞N | ||
Syntax | chalf 35370 | Syntax for the temporary one-half. |
class 1/2 | ||
Definition | df-bj-onehalf 35371 |
Define the temporary real "one-half". Once the machinery is
developed,
the real number "one-half" is commonly denoted by (1 / 2).
(Contributed by BJ, 4-Feb-2023.) (New usage is discouraged.)
TODO: $p |- 1/2 e. R. $= ? $. (riotacl 7246) $p |- -. 0R = 1/2 $= ? $. (since -. ( 0R +R 0R ) = 1R ) $p |- 0R <R 1/2 $= ? $. $p |- 1/2 <R 1R $= ? $. $p |- ( {R ` 0R ) = 0R $= ? $. $p |- ( {R ` 1/2 ) = 1/2 $= ? $. df-minfty $a |- minfty = ( inftyexpitau ` <. 1/2 , 0R >. ) $. |
⊢ 1/2 = (℩𝑥 ∈ R (𝑥 +R 𝑥) = 1R) | ||
Theorem | bj-inftyexpitaudisj 35372 | An element of the circle at infinity is not a complex number. (Contributed by BJ, 4-Feb-2023.) |
⊢ ¬ (+∞eiτ‘𝐴) ∈ ℂ | ||
Syntax | cinftyexpi 35373 | Syntax for the function +∞ei parameterizing ℂ∞. |
class +∞ei | ||
Definition | df-bj-inftyexpi 35374 | Definition of the auxiliary function +∞ei parameterizing the circle at infinity ℂ∞ in ℂ̅. We use coupling with ℂ to simplify the proof of bj-ccinftydisj 35380. It could seem more natural to define +∞ei on all of ℝ, but we want to use only basic functions in the definition of ℂ̅. TODO: transition to df-bj-inftyexpitau 35366 instead. (Contributed by BJ, 22-Jun-2019.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥, ℂ〉) | ||
Theorem | bj-inftyexpiinv 35375 | Utility theorem for the inverse of +∞ei. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.) |
⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) | ||
Theorem | bj-inftyexpiinj 35376 | Injectivity of the parameterization +∞ei. Remark: a more conceptual proof would use bj-inftyexpiinv 35375 and the fact that a function with a retraction is injective. (Contributed by BJ, 22-Jun-2019.) |
⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei‘𝐴) = (+∞ei‘𝐵))) | ||
Theorem | bj-inftyexpidisj 35377 | An element of the circle at infinity is not a complex number. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.) |
⊢ ¬ (+∞ei‘𝐴) ∈ ℂ | ||
Syntax | cccinfty 35378 | Syntax for the circle at infinity ℂ∞. |
class ℂ∞ | ||
Definition | df-bj-ccinfty 35379 | Definition of the circle at infinity ℂ∞. (Contributed by BJ, 22-Jun-2019.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
⊢ ℂ∞ = ran +∞ei | ||
Theorem | bj-ccinftydisj 35380 | The circle at infinity is disjoint from the set of complex numbers. (Contributed by BJ, 22-Jun-2019.) |
⊢ (ℂ ∩ ℂ∞) = ∅ | ||
Theorem | bj-elccinfty 35381 | A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) | ||
Syntax | cccbar 35382 | Syntax for the set of extended complex numbers ℂ̅. |
class ℂ̅ | ||
Definition | df-bj-ccbar 35383 | Definition of the set of extended complex numbers ℂ̅. (Contributed by BJ, 22-Jun-2019.) |
⊢ ℂ̅ = (ℂ ∪ ℂ∞) | ||
Theorem | bj-ccssccbar 35384 | Complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
⊢ ℂ ⊆ ℂ̅ | ||
Theorem | bj-ccinftyssccbar 35385 | Infinite extended complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
⊢ ℂ∞ ⊆ ℂ̅ | ||
Syntax | cpinfty 35386 | Syntax for "plus infinity". |
class +∞ | ||
Definition | df-bj-pinfty 35387 | Definition of "plus infinity". (Contributed by BJ, 27-Jun-2019.) |
⊢ +∞ = (+∞ei‘0) | ||
Theorem | bj-pinftyccb 35388 | The class +∞ is an extended complex number. (Contributed by BJ, 27-Jun-2019.) |
⊢ +∞ ∈ ℂ̅ | ||
Theorem | bj-pinftynrr 35389 | The extended complex number +∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.) |
⊢ ¬ +∞ ∈ ℂ | ||
Syntax | cminfty 35390 | Syntax for "minus infinity". |
class -∞ | ||
Definition | df-bj-minfty 35391 | Definition of "minus infinity". (Contributed by BJ, 27-Jun-2019.) |
⊢ -∞ = (+∞ei‘π) | ||
Theorem | bj-minftyccb 35392 | The class -∞ is an extended complex number. (Contributed by BJ, 27-Jun-2019.) |
⊢ -∞ ∈ ℂ̅ | ||
Theorem | bj-minftynrr 35393 | The extended complex number -∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.) |
⊢ ¬ -∞ ∈ ℂ | ||
Theorem | bj-pinftynminfty 35394 | The extended complex numbers +∞ and -∞ are different. (Contributed by BJ, 27-Jun-2019.) |
⊢ +∞ ≠ -∞ | ||
Syntax | crrbar 35395 | Syntax for the set of extended real numbers. |
class ℝ̅ | ||
Definition | df-bj-rrbar 35396 | Definition of the set of extended real numbers. This aims to replace df-xr 11014. (Contributed by BJ, 29-Jun-2019.) |
⊢ ℝ̅ = (ℝ ∪ {-∞, +∞}) | ||
Syntax | cinfty 35397 | Syntax for ∞. |
class ∞ | ||
Definition | df-bj-infty 35398 | Definition of ∞, the point at infinity of the real or complex projective line. (Contributed by BJ, 27-Jun-2019.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
⊢ ∞ = 𝒫 ∪ ℂ | ||
Syntax | ccchat 35399 | Syntax for ℂ̂. |
class ℂ̂ | ||
Definition | df-bj-cchat 35400 | Define the complex projective line, or Riemann sphere. (Contributed by BJ, 27-Jun-2019.) |
⊢ ℂ̂ = (ℂ ∪ {∞}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |