| Metamath
Proof Explorer Theorem List (p. 354 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cvmsuni 35301* | An even covering of 𝑈 has union equal to the preimage of 𝑈 by 𝐹. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → ∪ 𝑇 = (◡𝐹 “ 𝑈)) | ||
| Theorem | cvmsdisj 35302* | An even covering of 𝑈 is a disjoint union. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → (𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅)) | ||
| Theorem | cvmshmeo 35303* | Every element of an even covering of 𝑈 is homeomorphic to 𝑈 via 𝐹. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) | ||
| Theorem | cvmsf1o 35304* | 𝐹, localized to an element of an even covering of 𝑈, is a bijection. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝑈) | ||
| Theorem | cvmscld 35305* | The sets of an even covering are clopen in the subspace topology on 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑈)))) | ||
| Theorem | cvmsss2 35306* | An open subset of an evenly covered set is evenly covered. (Contributed by Mario Carneiro, 7-Jul-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) → ((𝑆‘𝑈) ≠ ∅ → (𝑆‘𝑉) ≠ ∅)) | ||
| Theorem | cvmcov2 35307* | The covering map property can be restricted to an open subset. (Contributed by Mario Carneiro, 7-Jul-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑥 ∈ 𝒫 𝑈(𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) | ||
| Theorem | cvmseu 35308* | Every element in ∪ 𝑇 is a member of a unique element of 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → ∃!𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) | ||
| Theorem | cvmsiota 35309* | Identify the unique element of 𝑇 containing 𝐴. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑊 = (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) | ||
| Theorem | cvmopnlem 35310* | Lemma for cvmopn 35312. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → (𝐹 “ 𝐴) ∈ 𝐽) | ||
| Theorem | cvmfolem 35311* | Lemma for cvmfo 35332. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵–onto→𝑋) | ||
| Theorem | cvmopn 35312 | A covering map is an open map. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → (𝐹 “ 𝐴) ∈ 𝐽) | ||
| Theorem | cvmliftmolem1 35313* | Lemma for cvmliftmo 35316. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) & ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ ((𝜑 ∧ 𝜓) → 𝑇 ∈ (𝑆‘𝑈)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝜓) → 𝐼 ⊆ (◡𝑀 “ 𝑊)) & ⊢ ((𝜑 ∧ 𝜓) → (𝐾 ↾t 𝐼) ∈ Conn) & ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐼) & ⊢ ((𝜑 ∧ 𝜓) → 𝑄 ∈ 𝐼) & ⊢ ((𝜑 ∧ 𝜓) → 𝑅 ∈ 𝐼) & ⊢ ((𝜑 ∧ 𝜓) → (𝐹‘(𝑀‘𝑋)) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝑄 ∈ dom (𝑀 ∩ 𝑁) → 𝑅 ∈ dom (𝑀 ∩ 𝑁))) | ||
| Theorem | cvmliftmolem2 35314* | Lemma for cvmliftmo 35316. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) & ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
| Theorem | cvmliftmoi 35315 | A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) & ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
| Theorem | cvmliftmo 35316* | A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by NM, 17-Jun-2017.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) ⇒ ⊢ (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) | ||
| Theorem | cvmliftlem1 35317* | Lemma for cvmlift 35331. In cvmliftlem15 35330, we picked an 𝑁 large enough so that the sections (𝐺 “ [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁]) are all contained in an even covering, and the function 𝑇 enumerates these even coverings. So 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁]), and 2nd ‘(𝑇‘𝑀) is an even covering of 1st ‘(𝑇‘𝑀), which is to say a disjoint union of open sets in 𝐶 whose image is 1st ‘(𝑇‘𝑀). (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) | ||
| Theorem | cvmliftlem2 35318* | Lemma for cvmlift 35331. 𝑊 = [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁] is a subset of [0, 1] for each 𝑀 ∈ (1...𝑁). (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) | ||
| Theorem | cvmliftlem3 35319* | Lemma for cvmlift 35331. Since 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ 𝑊), every element 𝐴 ∈ 𝑊 satisfies (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀)). (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀))) | ||
| Theorem | cvmliftlem4 35320* | Lemma for cvmlift 35331. The function 𝑄 will be our lifted path, defined piecewise on each section [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] for 𝑀 ∈ (1...𝑁). For 𝑀 = 0, it is a "seed" value which makes the rest of the recursion work, a singleton function mapping 0 to 𝑃. (Contributed by Mario Carneiro, 15-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) ⇒ ⊢ (𝑄‘0) = {〈0, 𝑃〉} | ||
| Theorem | cvmliftlem5 35321* | Lemma for cvmlift 35331. Definition of 𝑄 at a successor. This is a function defined on 𝑊 as ◡(𝑇 ↾ 𝐼) ∘ 𝐺 where 𝐼 is the unique covering set of 2nd ‘(𝑇‘𝑀) that contains 𝑄(𝑀 − 1) evaluated at the last defined point, namely (𝑀 − 1) / 𝑁 (note that for 𝑀 = 1 this is using the seed value 𝑄(0)(0) = 𝑃). (Contributed by Mario Carneiro, 15-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑄‘𝑀) = (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) | ||
| Theorem | cvmliftlem6 35322* | Lemma for cvmlift 35331. Induction step for cvmliftlem7 35323. Assuming that 𝑄(𝑀 − 1) is defined at (𝑀 − 1) / 𝑁 and is a preimage of 𝐺((𝑀 − 1) / 𝑁), the next segment 𝑄(𝑀) is also defined and is a function on 𝑊 which is a lift 𝐺 for this segment. This follows explicitly from the definition 𝑄(𝑀) = ◡(𝐹 ↾ 𝐼) ∘ 𝐺 since 𝐺 is in 1st ‘(𝐹‘𝑀) for the entire interval so that ◡(𝐹 ↾ 𝐼) maps this into 𝐼 and 𝐹 ∘ 𝑄 maps back to 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝑄‘𝑀):𝑊⟶𝐵 ∧ (𝐹 ∘ (𝑄‘𝑀)) = (𝐺 ↾ 𝑊))) | ||
| Theorem | cvmliftlem7 35323* | Lemma for cvmlift 35331. Prove by induction that every 𝑄 function is well-defined (we can immediately follow this theorem with cvmliftlem6 35322 to show functionality and lifting of 𝑄). (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) | ||
| Theorem | cvmliftlem8 35324* | Lemma for cvmlift 35331. The functions 𝑄 are continuous functions because they are defined as ◡(𝐹 ↾ 𝐼) ∘ 𝐺 where 𝐺 is continuous and (𝐹 ↾ 𝐼) is a homeomorphism. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑄‘𝑀) ∈ ((𝐿 ↾t 𝑊) Cn 𝐶)) | ||
| Theorem | cvmliftlem9 35325* | Lemma for cvmlift 35331. The 𝑄(𝑀) functions are defined on almost disjoint intervals, but they overlap at the edges. Here we show that at these points the 𝑄 functions agree on their common domain. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘𝑀)‘((𝑀 − 1) / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) | ||
| Theorem | cvmliftlem10 35326* | Lemma for cvmlift 35331. The function 𝐾 is going to be our complete lifted path, formed by unioning together all the 𝑄 functions (each of which is defined on one segment [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] of the interval). Here we prove by induction that 𝐾 is a continuous function and a lift of 𝐺 by applying cvmliftlem6 35322, cvmliftlem7 35323 (to show it is a function and a lift), cvmliftlem8 35324 (to show it is continuous), and cvmliftlem9 35325 (to show that different 𝑄 functions agree on the intersection of their domains, so that the pasting lemma paste 23207 gives that 𝐾 is well-defined and continuous). (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) & ⊢ (𝜒 ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ (∪ 𝑘 ∈ (1...𝑛)(𝑄‘𝑘) ∈ ((𝐿 ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ ∪ 𝑘 ∈ (1...𝑛)(𝑄‘𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))) ⇒ ⊢ (𝜑 → (𝐾 ∈ ((𝐿 ↾t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))) | ||
| Theorem | cvmliftlem11 35327* | Lemma for cvmlift 35331. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) ⇒ ⊢ (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = 𝐺)) | ||
| Theorem | cvmliftlem13 35328* | Lemma for cvmlift 35331. The initial value of 𝐾 is 𝑃 because 𝑄(1) is a subset of 𝐾 which takes value 𝑃 at 0. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) ⇒ ⊢ (𝜑 → (𝐾‘0) = 𝑃) | ||
| Theorem | cvmliftlem14 35329* | Lemma for cvmlift 35331. Putting the results of cvmliftlem11 35327, cvmliftlem13 35328 and cvmliftmo 35316 together, we have that 𝐾 is a continuous function, satisfies 𝐹 ∘ 𝐾 = 𝐺 and 𝐾(0) = 𝑃, and is equal to any other function which also has these properties, so it follows that 𝐾 is the unique lift of 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | ||
| Theorem | cvmliftlem15 35330* | Lemma for cvmlift 35331. Discharge the assumptions of cvmliftlem14 35329. The set of all open subsets 𝑢 of the unit interval such that 𝐺 “ 𝑢 is contained in an even covering of some open set in 𝐽 is a cover of II by the definition of a covering map, so by the Lebesgue number lemma lebnumii 24890, there is a subdivision of the closed unit interval into 𝑁 equal parts such that each part is entirely contained within one such open set of 𝐽. Then using finite choice ac6sfi 9168 to uniformly select one such subset and one even covering of each subset, we are ready to finish the proof with cvmliftlem14 35329. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | ||
| Theorem | cvmlift 35331* | One of the important properties of covering maps is that any path 𝐺 in the base space "lifts" to a path 𝑓 in the covering space such that 𝐹 ∘ 𝑓 = 𝐺, and given a starting point 𝑃 in the covering space this lift is unique. The proof is contained in cvmliftlem1 35317 thru cvmliftlem15 35330. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 ⇒ ⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝑃 ∈ 𝐵 ∧ (𝐹‘𝑃) = (𝐺‘0))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | ||
| Theorem | cvmfo 35332 | A covering map is an onto function. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵–onto→𝑋) | ||
| Theorem | cvmliftiota 35333* | Write out a function 𝐻 that is the unique lift of 𝐹. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) ⇒ ⊢ (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = 𝐺 ∧ (𝐻‘0) = 𝑃)) | ||
| Theorem | cvmlift2lem1 35334* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 1-Jun-2015.) |
| ⊢ (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀)) | ||
| Theorem | cvmlift2lem9a 35335* | Lemma for cvmlift2 35348 and cvmlift3 35360. (Contributed by Mario Carneiro, 9-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐻:𝑌⟶𝐵) & ⊢ (𝜑 → (𝐹 ∘ 𝐻) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Top) & ⊢ (𝜑 → 𝑋 ∈ 𝑌) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝐴)) & ⊢ (𝜑 → (𝑊 ∈ 𝑇 ∧ (𝐻‘𝑋) ∈ 𝑊)) & ⊢ (𝜑 → 𝑀 ⊆ 𝑌) & ⊢ (𝜑 → (𝐻 “ 𝑀) ⊆ 𝑊) ⇒ ⊢ (𝜑 → (𝐻 ↾ 𝑀) ∈ ((𝐾 ↾t 𝑀) Cn 𝐶)) | ||
| Theorem | cvmlift2lem2 35336* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) ⇒ ⊢ (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃)) | ||
| Theorem | cvmlift2lem3 35337* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻‘𝑋))) | ||
| Theorem | cvmlift2lem4 35338* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 1-Jun-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋𝐾𝑌) = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑌)) | ||
| Theorem | cvmlift2lem5 35339* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ (𝜑 → 𝐾:((0[,]1) × (0[,]1))⟶𝐵) | ||
| Theorem | cvmlift2lem6 35340* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶)) | ||
| Theorem | cvmlift2lem7 35341* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐾) = 𝐺) | ||
| Theorem | cvmlift2lem8 35342* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑋𝐾0) = (𝐻‘𝑋)) | ||
| Theorem | cvmlift2lem9 35343* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 1-Jun-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ 𝑀) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝑀)) & ⊢ (𝜑 → 𝑈 ∈ II) & ⊢ (𝜑 → 𝑉 ∈ II) & ⊢ (𝜑 → (II ↾t 𝑈) ∈ Conn) & ⊢ (𝜑 → (II ↾t 𝑉) ∈ Conn) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 × 𝑉) ⊆ (◡𝐺 “ 𝑀)) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶)) & ⊢ 𝑊 = (℩𝑏 ∈ 𝑇 (𝑋𝐾𝑌) ∈ 𝑏) ⇒ ⊢ (𝜑 → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶)) | ||
| Theorem | cvmlift2lem10 35344* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 1-Jun-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → 𝑋 ∈ (0[,]1)) & ⊢ (𝜑 → 𝑌 ∈ (0[,]1)) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) | ||
| Theorem | cvmlift2lem11 35345* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 1-Jun-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} & ⊢ (𝜑 → 𝑈 ∈ II) & ⊢ (𝜑 → 𝑉 ∈ II) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (∃𝑤 ∈ 𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))) ⇒ ⊢ (𝜑 → ((𝑈 × {𝑌}) ⊆ 𝑀 → (𝑈 × {𝑍}) ⊆ 𝑀)) | ||
| Theorem | cvmlift2lem12 35346* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 1-Jun-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} & ⊢ 𝐴 = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀} & ⊢ 𝑆 = {〈𝑟, 𝑡〉 ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ⇒ ⊢ (𝜑 → 𝐾 ∈ ((II ×t II) Cn 𝐶)) | ||
| Theorem | cvmlift2lem13 35347* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ 𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃)) | ||
| Theorem | cvmlift2 35348* | A two-dimensional version of cvmlift 35331. There is a unique lift of functions on the unit square II ×t II which commutes with the covering map. (Contributed by Mario Carneiro, 1-Jun-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃)) | ||
| Theorem | cvmliftphtlem 35349* | Lemma for cvmliftpht 35350. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐻)) & ⊢ (𝜑 → 𝐴 ∈ ((II ×t II) Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝐴) = 𝐾) & ⊢ (𝜑 → (0𝐴0) = 𝑃) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝑀(PHtpy‘𝐶)𝑁)) | ||
| Theorem | cvmliftpht 35350* | If 𝐺 and 𝐻 are path-homotopic, then their lifts 𝑀 and 𝑁 are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐻) ⇒ ⊢ (𝜑 → 𝑀( ≃ph‘𝐶)𝑁) | ||
| Theorem | cvmlift3lem1 35351* | Lemma for cvmlift3 35360. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ (𝜑 → 𝑀 ∈ (II Cn 𝐾)) & ⊢ (𝜑 → (𝑀‘0) = 𝑂) & ⊢ (𝜑 → 𝑁 ∈ (II Cn 𝐾)) & ⊢ (𝜑 → (𝑁‘0) = 𝑂) & ⊢ (𝜑 → (𝑀‘1) = (𝑁‘1)) ⇒ ⊢ (𝜑 → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑀) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = 𝑃))‘1)) | ||
| Theorem | cvmlift3lem2 35352* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ∃!𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) | ||
| Theorem | cvmlift3lem3 35353* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) ⇒ ⊢ (𝜑 → 𝐻:𝑌⟶𝐵) | ||
| Theorem | cvmlift3lem4 35354* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ((𝐻‘𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴))) | ||
| Theorem | cvmlift3lem5 35355* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐻) = 𝐺) | ||
| Theorem | cvmlift3lem6 35356* | Lemma for cvmlift3 35360. (Contributed by Mario Carneiro, 9-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐴) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝐴)) & ⊢ (𝜑 → 𝑀 ⊆ (◡𝐺 “ 𝐴)) & ⊢ 𝑊 = (℩𝑏 ∈ 𝑇 (𝐻‘𝑋) ∈ 𝑏) & ⊢ (𝜑 → 𝑋 ∈ 𝑀) & ⊢ (𝜑 → 𝑍 ∈ 𝑀) & ⊢ (𝜑 → 𝑄 ∈ (II Cn 𝐾)) & ⊢ 𝑅 = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑄) ∧ (𝑔‘0) = 𝑃)) & ⊢ (𝜑 → ((𝑄‘0) = 𝑂 ∧ (𝑄‘1) = 𝑋 ∧ (𝑅‘1) = (𝐻‘𝑋))) & ⊢ (𝜑 → 𝑁 ∈ (II Cn (𝐾 ↾t 𝑀))) & ⊢ (𝜑 → ((𝑁‘0) = 𝑋 ∧ (𝑁‘1) = 𝑍)) & ⊢ 𝐼 = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = (𝐻‘𝑋))) ⇒ ⊢ (𝜑 → (𝐻‘𝑍) ∈ 𝑊) | ||
| Theorem | cvmlift3lem7 35357* | Lemma for cvmlift3 35360. (Contributed by Mario Carneiro, 9-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐴) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝐴)) & ⊢ (𝜑 → 𝑀 ⊆ (◡𝐺 “ 𝐴)) & ⊢ 𝑊 = (℩𝑏 ∈ 𝑇 (𝐻‘𝑋) ∈ 𝑏) & ⊢ (𝜑 → (𝐾 ↾t 𝑀) ∈ PConn) & ⊢ (𝜑 → 𝑉 ∈ 𝐾) & ⊢ (𝜑 → 𝑉 ⊆ 𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋)) | ||
| Theorem | cvmlift3lem8 35358* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝜑 → 𝐻 ∈ (𝐾 Cn 𝐶)) | ||
| Theorem | cvmlift3lem9 35359* | Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) | ||
| Theorem | cvmlift3 35360* | A general version of cvmlift 35331. If 𝐾 is simply connected and weakly locally path-connected, then there is a unique lift of functions on 𝐾 which commutes with the covering map. (Contributed by Mario Carneiro, 9-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) | ||
| Theorem | snmlff 35361* | The function 𝐹 from snmlval 35363 is a mapping from positive integers to real numbers in the range [0, 1]. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)) ⇒ ⊢ 𝐹:ℕ⟶(0[,]1) | ||
| Theorem | snmlfval 35362* | The function 𝐹 from snmlval 35363 maps 𝑁 to the relative density of 𝐵 in the first 𝑁 digits of the digit string of 𝐴 in base 𝑅. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐹‘𝑁) = ((♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑁)) | ||
| Theorem | snmlval 35363* | The property "𝐴 is simply normal in base 𝑅". A number is simply normal if each digit 0 ≤ 𝑏 < 𝑅 occurs in the base- 𝑅 digit string of 𝐴 with frequency 1 / 𝑅 (which is consistent with the expectation in an infinite random string of numbers selected from 0...𝑅 − 1). (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ 𝑆 = (𝑟 ∈ (ℤ≥‘2) ↦ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)}) ⇒ ⊢ (𝐴 ∈ (𝑆‘𝑅) ↔ (𝑅 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))) | ||
| Theorem | snmlflim 35364* | If 𝐴 is simply normal, then the function 𝐹 of relative density of 𝐵 in the digit string converges to 1 / 𝑅, i.e. the set of occurrences of 𝐵 in the digit string has natural density 1 / 𝑅. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ 𝑆 = (𝑟 ∈ (ℤ≥‘2) ↦ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)}) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)) ⇒ ⊢ ((𝐴 ∈ (𝑆‘𝑅) ∧ 𝐵 ∈ (0...(𝑅 − 1))) → 𝐹 ⇝ (1 / 𝑅)) | ||
| Syntax | cgoe 35365 | The Godel-set of membership. |
| class ∈𝑔 | ||
| Syntax | cgna 35366 | The Godel-set for the Sheffer stroke. |
| class ⊼𝑔 | ||
| Syntax | cgol 35367 | The Godel-set of universal quantification. (Note that this is not a wff.) |
| class ∀𝑔𝑁𝑈 | ||
| Syntax | csat 35368 | The satisfaction function. |
| class Sat | ||
| Syntax | cfmla 35369 | The formula set predicate. |
| class Fmla | ||
| Syntax | csate 35370 | The ∈-satisfaction function. |
| class Sat∈ | ||
| Syntax | cprv 35371 | The "proves" relation. |
| class ⊧ | ||
| Definition | df-goel 35372 | Define the Godel-set of membership. Here the arguments 𝑥 = 〈𝑁, 𝑃〉 correspond to vN and vP , so (∅∈𝑔1o) actually means v0 ∈ v1 , not 0 ∈ 1. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉) | ||
| Definition | df-gona 35373 | Define the Godel-set for the Sheffer stroke NAND. Here the arguments 𝑥 = 〈𝑈, 𝑉〉 are also Godel-sets corresponding to smaller formulas. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ⊼𝑔 = (𝑥 ∈ (V × V) ↦ 〈1o, 𝑥〉) | ||
| Definition | df-goal 35374 | Define the Godel-set of universal quantification. Here 𝑁 ∈ ω corresponds to vN , and 𝑈 represents another formula, and this expression is [∀𝑥𝜑] = ∀𝑔𝑁𝑈 where 𝑥 is the 𝑁-th variable, 𝑈 = [𝜑] is the code for 𝜑. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ∀𝑔𝑁𝑈 = 〈2o, 〈𝑁, 𝑈〉〉 | ||
| Definition | df-sat 35375* |
Define the satisfaction predicate. This recursive construction builds up
a function over wff codes (see satff 35442) and simultaneously defines the
set of assignments to all variables from 𝑀 that makes the coded wff
true in the model 𝑀, where ∈ is interpreted as the binary
relation 𝐸 on 𝑀.
The interpretation of the statement 𝑆 ∈ (((𝑀 Sat 𝐸)‘𝑛)‘𝑈) is that for the model 〈𝑀, 𝐸〉, 𝑆:ω⟶𝑀 is a
valuation of the variables (v0 = (𝑆‘∅), v1 = (𝑆‘1o), etc.) and 𝑈 is a code for a wff using ∈ , ⊼ , ∀ that
is true under the assignment 𝑆. The function is defined by finite
recursion; ((𝑀 Sat 𝐸)‘𝑛) only operates on wffs of depth at
most 𝑛 ∈ ω, and ((𝑀 Sat 𝐸)‘ω) = ∪ 𝑛 ∈ ω((𝑀 Sat 𝐸)‘𝑛) operates on all wffs.
The coding scheme for the wffs is defined so that
(Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ Sat = (𝑚 ∈ V, 𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑚 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑m ω) ∣ ∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑m ω) ∣ (𝑎‘𝑖)𝑒(𝑎‘𝑗)})}) ↾ suc ω)) | ||
| Definition | df-sate 35376* | A simplified version of the satisfaction predicate, using the standard membership relation and eliminating the extra variable 𝑛. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)) | ||
| Definition | df-fmla 35377 | Define the predicate which defines the set of valid Godel formulas. The parameter 𝑛 defines the maximum height of the formulas: the set (Fmla‘∅) is all formulas of the form 𝑥 ∈ 𝑦 (which in our coding scheme is the set ({∅} × (ω × ω)); see df-sat 35375 for the full coding scheme), see fmla0 35414, and each extra level adds to the complexity of the formulas in (Fmla‘𝑛), see fmlasuc 35418. Remark: it is sufficient to have atomic formulas of the form 𝑥 ∈ 𝑦 only, because equations (formulas of the form 𝑥 = 𝑦), which are required as (atomic) formulas, can be introduced as a defined notion in terms of ∈𝑔, see df-goeq 35476. (Fmla‘ω) = ∪ 𝑛 ∈ ω(Fmla‘𝑛) is the set of all valid formulas, see fmla 35413. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)) | ||
| Definition | df-prv 35378* | Define the "proves" relation on a set. A wff is true in a model 𝑀 if for every valuation 𝑠 ∈ (𝑀 ↑m ω), the interpretation of the wff using the membership relation on 𝑀 is true. Since ⊧ is defined in terms of the interpretations making the given formula true, it is not defined on the empty "model" 𝑀 = ∅, since there are no interpretations. In particular, the empty set on the LHS of ⊧ should not be interpreted as the empty model. Statement prv0 35462 shows that our definition yields ∅⊧𝑈 for all formulas, though of course the formula ∃𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ⊧ = {〈𝑚, 𝑢〉 ∣ (𝑚 Sat∈ 𝑢) = (𝑚 ↑m ω)} | ||
| Theorem | goel 35379 | A "Godel-set of membership". The variables are identified by their indices (which are natural numbers), and the membership vi ∈ vj is coded as 〈∅, 〈𝑖, 𝑗〉〉. (Contributed by AV, 15-Sep-2023.) |
| ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) | ||
| Theorem | goelel3xp 35380 | A "Godel-set of membership" is a member of a doubled Cartesian product. (Contributed by AV, 16-Sep-2023.) |
| ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) ∈ (ω × (ω × ω))) | ||
| Theorem | goeleq12bg 35381 | Two "Godel-set of membership" codes for two variables are equal iff the two corresponding variables are equal. (Contributed by AV, 8-Oct-2023.) |
| ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼∈𝑔𝐽) = (𝑀∈𝑔𝑁) ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) | ||
| Theorem | gonafv 35382 | The "Godel-set for the Sheffer stroke NAND" for two formulas 𝐴 and 𝐵. (Contributed by AV, 16-Oct-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴⊼𝑔𝐵) = 〈1o, 〈𝐴, 𝐵〉〉) | ||
| Theorem | goaleq12d 35383 | Equality of the "Godel-set of universal quantification". (Contributed by AV, 18-Sep-2023.) |
| ⊢ (𝜑 → 𝑀 = 𝑁) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵) | ||
| Theorem | gonanegoal 35384 | The Godel-set for the Sheffer stroke NAND is not equal to the Godel-set of universal quantification. (Contributed by AV, 21-Oct-2023.) |
| ⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 | ||
| Theorem | satf 35385* | The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 14-Sep-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑀 Sat 𝐸) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})}) ↾ suc ω)) | ||
| Theorem | satfsucom 35386* | The satisfaction predicate for wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at an element of the successor of ω. (Contributed by AV, 22-Sep-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ suc ω) → ((𝑀 Sat 𝐸)‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})})‘𝑁)) | ||
| Theorem | satfn 35387 | The satisfaction predicate for wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 is a function over suc ω. (Contributed by AV, 6-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑀 Sat 𝐸) Fn suc ω) | ||
| Theorem | satom 35388* | The satisfaction predicate for wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at omega (ω). (Contributed by AV, 6-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘ω) = ∪ 𝑛 ∈ ω ((𝑀 Sat 𝐸)‘𝑛)) | ||
| Theorem | satfvsucom 35389* | The satisfaction predicate as function over wff codes at a successor of ω. (Contributed by AV, 22-Sep-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ suc ω) → (𝑆‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})})‘𝑁)) | ||
| Theorem | satfv0 35390* | The value of the satisfaction predicate as function over wff codes at ∅. (Contributed by AV, 8-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘∅) = {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})}) | ||
| Theorem | satfvsuclem1 35391* | Lemma 1 for satfvsuc 35393. (Contributed by AV, 8-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ∧ 𝑦 ∈ 𝒫 (𝑀 ↑m ω))} ∈ V) | ||
| Theorem | satfvsuclem2 35392* | Lemma 2 for satfvsuc 35393. (Contributed by AV, 8-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} ∈ V) | ||
| Theorem | satfvsuc 35393* | The value of the satisfaction predicate as function over wff codes at a successor. (Contributed by AV, 10-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (𝑆‘suc 𝑁) = ((𝑆‘𝑁) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) | ||
| Theorem | satfv1lem 35394* | Lemma for satfv1 35395. (Contributed by AV, 9-Nov-2023.) |
| ⊢ ((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) → {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ {𝑏 ∈ (𝑀 ↑m ω) ∣ (𝑏‘𝐼)𝐸(𝑏‘𝐽)}} = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))}) | ||
| Theorem | satfv1 35395* | The value of the satisfaction predicate as function over wff codes of height 1. (Contributed by AV, 9-Nov-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘1o) = ((𝑆‘∅) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))})) | ||
| Theorem | satfsschain 35396 | The binary relation of a satisfaction predicate as function over wff codes is an increasing chain (with respect to inclusion). (Contributed by AV, 15-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 ⊆ 𝐴 → (𝑆‘𝐵) ⊆ (𝑆‘𝐴))) | ||
| Theorem | satfvsucsuc 35397* | The satisfaction predicate as function over wff codes of height (𝑁 + 1), expressed by the minimally necessary satisfaction predicates as function over wff codes of height 𝑁. (Contributed by AV, 21-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) & ⊢ 𝐴 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))) & ⊢ 𝐵 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (𝑆‘suc suc 𝑁) = ((𝑆‘suc 𝑁) ∪ {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(∃𝑣 ∈ (𝑆‘suc 𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = 𝐵)) ∨ ∃𝑢 ∈ (𝑆‘𝑁)∃𝑣 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴))})) | ||
| Theorem | satfbrsuc 35398* | The binary relation of a satisfaction predicate as function over wff codes at a successor. (Contributed by AV, 13-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) & ⊢ 𝑃 = (𝑆‘𝑁) ⇒ ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (𝐴(𝑆‘suc 𝑁)𝐵 ↔ (𝐴𝑃𝐵 ∨ ∃𝑢 ∈ 𝑃 (∃𝑣 ∈ 𝑃 (𝐴 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝐵 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))))) | ||
| Theorem | satfrel 35399 | The value of the satisfaction predicate as function over wff codes at a natural number is a relation. (Contributed by AV, 12-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑁)) | ||
| Theorem | satfdmlem 35400* | Lemma for satfdm 35401. (Contributed by AV, 12-Oct-2023.) |
| ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st ‘𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑎)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |