![]() |
Metamath
Proof Explorer Theorem List (p. 354 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cgoe 35301 | The Godel-set of membership. |
class ∈𝑔 | ||
Syntax | cgna 35302 | The Godel-set for the Sheffer stroke. |
class ⊼𝑔 | ||
Syntax | cgol 35303 | The Godel-set of universal quantification. (Note that this is not a wff.) |
class ∀𝑔𝑁𝑈 | ||
Syntax | csat 35304 | The satisfaction function. |
class Sat | ||
Syntax | cfmla 35305 | The formula set predicate. |
class Fmla | ||
Syntax | csate 35306 | The ∈-satisfaction function. |
class Sat∈ | ||
Syntax | cprv 35307 | The "proves" relation. |
class ⊧ | ||
Definition | df-goel 35308 | Define the Godel-set of membership. Here the arguments 𝑥 = 〈𝑁, 𝑃〉 correspond to vN and vP , so (∅∈𝑔1o) actually means v0 ∈ v1 , not 0 ∈ 1. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉) | ||
Definition | df-gona 35309 | Define the Godel-set for the Sheffer stroke NAND. Here the arguments 𝑥 = 〈𝑈, 𝑉〉 are also Godel-sets corresponding to smaller formulas. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ⊼𝑔 = (𝑥 ∈ (V × V) ↦ 〈1o, 𝑥〉) | ||
Definition | df-goal 35310 | Define the Godel-set of universal quantification. Here 𝑁 ∈ ω corresponds to vN , and 𝑈 represents another formula, and this expression is [∀𝑥𝜑] = ∀𝑔𝑁𝑈 where 𝑥 is the 𝑁-th variable, 𝑈 = [𝜑] is the code for 𝜑. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ∀𝑔𝑁𝑈 = 〈2o, 〈𝑁, 𝑈〉〉 | ||
Definition | df-sat 35311* |
Define the satisfaction predicate. This recursive construction builds up
a function over wff codes (see satff 35378) and simultaneously defines the
set of assignments to all variables from 𝑀 that makes the coded wff
true in the model 𝑀, where ∈ is interpreted as the binary
relation 𝐸 on 𝑀.
The interpretation of the statement 𝑆 ∈ (((𝑀 Sat 𝐸)‘𝑛)‘𝑈) is that for the model 〈𝑀, 𝐸〉, 𝑆:ω⟶𝑀 is a
valuation of the variables (v0 = (𝑆‘∅), v1 = (𝑆‘1o), etc.) and 𝑈 is a code for a wff using ∈ , ⊼ , ∀ that
is true under the assignment 𝑆. The function is defined by finite
recursion; ((𝑀 Sat 𝐸)‘𝑛) only operates on wffs of depth at
most 𝑛 ∈ ω, and ((𝑀 Sat 𝐸)‘ω) = ∪ 𝑛 ∈ ω((𝑀 Sat 𝐸)‘𝑛) operates on all wffs.
The coding scheme for the wffs is defined so that
(Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ Sat = (𝑚 ∈ V, 𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑚 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑m ω) ∣ ∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑m ω) ∣ (𝑎‘𝑖)𝑒(𝑎‘𝑗)})}) ↾ suc ω)) | ||
Definition | df-sate 35312* | A simplified version of the satisfaction predicate, using the standard membership relation and eliminating the extra variable 𝑛. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)) | ||
Definition | df-fmla 35313 | Define the predicate which defines the set of valid Godel formulas. The parameter 𝑛 defines the maximum height of the formulas: the set (Fmla‘∅) is all formulas of the form 𝑥 ∈ 𝑦 (which in our coding scheme is the set ({∅} × (ω × ω)); see df-sat 35311 for the full coding scheme), see fmla0 35350, and each extra level adds to the complexity of the formulas in (Fmla‘𝑛), see fmlasuc 35354. Remark: it is sufficient to have atomic formulas of the form 𝑥 ∈ 𝑦 only, because equations (formulas of the form 𝑥 = 𝑦), which are required as (atomic) formulas, can be introduced as a defined notion in terms of ∈𝑔, see df-goeq 35412. (Fmla‘ω) = ∪ 𝑛 ∈ ω(Fmla‘𝑛) is the set of all valid formulas, see fmla 35349. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)) | ||
Definition | df-prv 35314* | Define the "proves" relation on a set. A wff is true in a model 𝑀 if for every valuation 𝑠 ∈ (𝑀 ↑m ω), the interpretation of the wff using the membership relation on 𝑀 is true. Since ⊧ is defined in terms of the interpretations making the given formula true, it is not defined on the empty "model" 𝑀 = ∅, since there are no interpretations. In particular, the empty set on the LHS of ⊧ should not be interpreted as the empty model. Statement prv0 35398 shows that our definition yields ∅⊧𝑈 for all formulas, though of course the formula ∃𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ⊧ = {〈𝑚, 𝑢〉 ∣ (𝑚 Sat∈ 𝑢) = (𝑚 ↑m ω)} | ||
Theorem | goel 35315 | A "Godel-set of membership". The variables are identified by their indices (which are natural numbers), and the membership vi ∈ vj is coded as 〈∅, 〈𝑖, 𝑗〉〉. (Contributed by AV, 15-Sep-2023.) |
⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) | ||
Theorem | goelel3xp 35316 | A "Godel-set of membership" is a member of a doubled Cartesian product. (Contributed by AV, 16-Sep-2023.) |
⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) ∈ (ω × (ω × ω))) | ||
Theorem | goeleq12bg 35317 | Two "Godel-set of membership" codes for two variables are equal iff the two corresponding variables are equal. (Contributed by AV, 8-Oct-2023.) |
⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼∈𝑔𝐽) = (𝑀∈𝑔𝑁) ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) | ||
Theorem | gonafv 35318 | The "Godel-set for the Sheffer stroke NAND" for two formulas 𝐴 and 𝐵. (Contributed by AV, 16-Oct-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴⊼𝑔𝐵) = 〈1o, 〈𝐴, 𝐵〉〉) | ||
Theorem | goaleq12d 35319 | Equality of the "Godel-set of universal quantification". (Contributed by AV, 18-Sep-2023.) |
⊢ (𝜑 → 𝑀 = 𝑁) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵) | ||
Theorem | gonanegoal 35320 | The Godel-set for the Sheffer stroke NAND is not equal to the Godel-set of universal quantification. (Contributed by AV, 21-Oct-2023.) |
⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 | ||
Theorem | satf 35321* | The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 14-Sep-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑀 Sat 𝐸) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})}) ↾ suc ω)) | ||
Theorem | satfsucom 35322* | The satisfaction predicate for wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at an element of the successor of ω. (Contributed by AV, 22-Sep-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ suc ω) → ((𝑀 Sat 𝐸)‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})})‘𝑁)) | ||
Theorem | satfn 35323 | The satisfaction predicate for wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 is a function over suc ω. (Contributed by AV, 6-Oct-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑀 Sat 𝐸) Fn suc ω) | ||
Theorem | satom 35324* | The satisfaction predicate for wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at omega (ω). (Contributed by AV, 6-Oct-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘ω) = ∪ 𝑛 ∈ ω ((𝑀 Sat 𝐸)‘𝑛)) | ||
Theorem | satfvsucom 35325* | The satisfaction predicate as function over wff codes at a successor of ω. (Contributed by AV, 22-Sep-2023.) |
⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ suc ω) → (𝑆‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})})‘𝑁)) | ||
Theorem | satfv0 35326* | The value of the satisfaction predicate as function over wff codes at ∅. (Contributed by AV, 8-Oct-2023.) |
⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘∅) = {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})}) | ||
Theorem | satfvsuclem1 35327* | Lemma 1 for satfvsuc 35329. (Contributed by AV, 8-Oct-2023.) |
⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ∧ 𝑦 ∈ 𝒫 (𝑀 ↑m ω))} ∈ V) | ||
Theorem | satfvsuclem2 35328* | Lemma 2 for satfvsuc 35329. (Contributed by AV, 8-Oct-2023.) |
⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} ∈ V) | ||
Theorem | satfvsuc 35329* | The value of the satisfaction predicate as function over wff codes at a successor. (Contributed by AV, 10-Oct-2023.) |
⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (𝑆‘suc 𝑁) = ((𝑆‘𝑁) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) | ||
Theorem | satfv1lem 35330* | Lemma for satfv1 35331. (Contributed by AV, 9-Nov-2023.) |
⊢ ((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) → {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ {𝑏 ∈ (𝑀 ↑m ω) ∣ (𝑏‘𝐼)𝐸(𝑏‘𝐽)}} = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))}) | ||
Theorem | satfv1 35331* | The value of the satisfaction predicate as function over wff codes of height 1. (Contributed by AV, 9-Nov-2023.) |
⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘1o) = ((𝑆‘∅) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))})) | ||
Theorem | satfsschain 35332 | The binary relation of a satisfaction predicate as function over wff codes is an increasing chain (with respect to inclusion). (Contributed by AV, 15-Oct-2023.) |
⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 ⊆ 𝐴 → (𝑆‘𝐵) ⊆ (𝑆‘𝐴))) | ||
Theorem | satfvsucsuc 35333* | The satisfaction predicate as function over wff codes of height (𝑁 + 1), expressed by the minimally necessary satisfaction predicates as function over wff codes of height 𝑁. (Contributed by AV, 21-Oct-2023.) |
⊢ 𝑆 = (𝑀 Sat 𝐸) & ⊢ 𝐴 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))) & ⊢ 𝐵 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (𝑆‘suc suc 𝑁) = ((𝑆‘suc 𝑁) ∪ {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(∃𝑣 ∈ (𝑆‘suc 𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = 𝐵)) ∨ ∃𝑢 ∈ (𝑆‘𝑁)∃𝑣 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴))})) | ||
Theorem | satfbrsuc 35334* | The binary relation of a satisfaction predicate as function over wff codes at a successor. (Contributed by AV, 13-Oct-2023.) |
⊢ 𝑆 = (𝑀 Sat 𝐸) & ⊢ 𝑃 = (𝑆‘𝑁) ⇒ ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (𝐴(𝑆‘suc 𝑁)𝐵 ↔ (𝐴𝑃𝐵 ∨ ∃𝑢 ∈ 𝑃 (∃𝑣 ∈ 𝑃 (𝐴 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝐵 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))))) | ||
Theorem | satfrel 35335 | The value of the satisfaction predicate as function over wff codes at a natural number is a relation. (Contributed by AV, 12-Oct-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑁)) | ||
Theorem | satfdmlem 35336* | Lemma for satfdm 35337. (Contributed by AV, 12-Oct-2023.) |
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st ‘𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑎)))) | ||
Theorem | satfdm 35337* | The domain of the satisfaction predicate as function over wff codes does not depend on the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 13-Oct-2023.) |
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑁 Sat 𝐹)‘𝑛)) | ||
Theorem | satfrnmapom 35338 | The range of the satisfaction predicate as function over wff codes in any model 𝑀 and any binary relation 𝐸 on 𝑀 for a natural number 𝑁 is a subset of the power set of all mappings from the natural numbers into the model 𝑀. (Contributed by AV, 13-Oct-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → ran ((𝑀 Sat 𝐸)‘𝑁) ⊆ 𝒫 (𝑀 ↑m ω)) | ||
Theorem | satfv0fun 35339 | The value of the satisfaction predicate as function over wff codes at ∅ is a function. (Contributed by AV, 15-Oct-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘∅)) | ||
Theorem | satf0 35340* | The satisfaction predicate as function over wff codes in the empty model with an empty binary relation. (Contributed by AV, 14-Sep-2023.) |
⊢ (∅ Sat ∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))}) ↾ suc ω) | ||
Theorem | satf0sucom 35341* | The satisfaction predicate as function over wff codes in the empty model with an empty binary relation at a successor of ω. (Contributed by AV, 14-Sep-2023.) |
⊢ (𝑁 ∈ suc ω → ((∅ Sat ∅)‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑁)) | ||
Theorem | satf00 35342* | The value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at ∅. (Contributed by AV, 14-Sep-2023.) |
⊢ ((∅ Sat ∅)‘∅) = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} | ||
Theorem | satf0suclem 35343* | Lemma for satf0suc 35344, sat1el2xp 35347 and fmlasuc0 35352. (Contributed by AV, 19-Sep-2023.) |
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))} ∈ V) | ||
Theorem | satf0suc 35344* | The value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation at a successor. (Contributed by AV, 19-Sep-2023.) |
⊢ 𝑆 = (∅ Sat ∅) ⇒ ⊢ (𝑁 ∈ ω → (𝑆‘suc 𝑁) = ((𝑆‘𝑁) ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})) | ||
Theorem | satf0op 35345* | An element of a value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation expressed as ordered pair. (Contributed by AV, 19-Sep-2023.) |
⊢ 𝑆 = (∅ Sat ∅) ⇒ ⊢ (𝑁 ∈ ω → (𝑋 ∈ (𝑆‘𝑁) ↔ ∃𝑥(𝑋 = 〈𝑥, ∅〉 ∧ 〈𝑥, ∅〉 ∈ (𝑆‘𝑁)))) | ||
Theorem | satf0n0 35346 | The value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation does not contain the empty set. (Contributed by AV, 19-Sep-2023.) |
⊢ (𝑁 ∈ ω → ∅ ∉ ((∅ Sat ∅)‘𝑁)) | ||
Theorem | sat1el2xp 35347* | The first component of an element of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation is a member of a doubled Cartesian product. (Contributed by AV, 17-Sep-2023.) |
⊢ (𝑁 ∈ ω → ∀𝑤 ∈ ((∅ Sat ∅)‘𝑁)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) | ||
Theorem | fmlafv 35348 | The valid Godel formulas of height 𝑁 is the domain of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 15-Sep-2023.) |
⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) | ||
Theorem | fmla 35349 | The set of all valid Godel formulas. (Contributed by AV, 20-Sep-2023.) |
⊢ (Fmla‘ω) = ∪ 𝑛 ∈ ω (Fmla‘𝑛) | ||
Theorem | fmla0 35350* | The valid Godel formulas of height 0 is the set of all formulas of the form vi ∈ vj ("Godel-set of membership") coded as 〈∅, 〈𝑖, 𝑗〉〉. (Contributed by AV, 14-Sep-2023.) |
⊢ (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} | ||
Theorem | fmla0xp 35351 | The valid Godel formulas of height 0 is the set of all formulas of the form vi ∈ vj ("Godel-set of membership") coded as 〈∅, 〈𝑖, 𝑗〉〉. (Contributed by AV, 15-Sep-2023.) |
⊢ (Fmla‘∅) = ({∅} × (ω × ω)) | ||
Theorem | fmlasuc0 35352* | The valid Godel formulas of height (𝑁 + 1). (Contributed by AV, 18-Sep-2023.) |
⊢ (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢))})) | ||
Theorem | fmlafvel 35353 | A class is a valid Godel formula of height 𝑁 iff it is the first component of a member of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 19-Sep-2023.) |
⊢ (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ 〈𝐹, ∅〉 ∈ ((∅ Sat ∅)‘𝑁))) | ||
Theorem | fmlasuc 35354* | The valid Godel formulas of height (𝑁 + 1), expressed by the valid Godel formulas of height 𝑁. (Contributed by AV, 20-Sep-2023.) |
⊢ (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)})) | ||
Theorem | fmla1 35355* | The valid Godel formulas of height 1 is the set of all formulas of the form (𝑎⊼𝑔𝑏) and ∀𝑔𝑘𝑎 with atoms 𝑎, 𝑏 of the form 𝑥 ∈ 𝑦. (Contributed by AV, 20-Sep-2023.) |
⊢ (Fmla‘1o) = (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))}) | ||
Theorem | isfmlasuc 35356* | The characterization of a Godel formula of height at least 1. (Contributed by AV, 14-Oct-2023.) |
⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))) | ||
Theorem | fmlasssuc 35357 | The Godel formulas of height 𝑁 are a subset of the Godel formulas of height 𝑁 + 1. (Contributed by AV, 20-Oct-2023.) |
⊢ (𝑁 ∈ ω → (Fmla‘𝑁) ⊆ (Fmla‘suc 𝑁)) | ||
Theorem | fmlaomn0 35358 | The empty set is not a Godel formula of any height. (Contributed by AV, 21-Oct-2023.) |
⊢ (𝑁 ∈ ω → ∅ ∉ (Fmla‘𝑁)) | ||
Theorem | fmlan0 35359 | The empty set is not a Godel formula. (Contributed by AV, 19-Nov-2023.) |
⊢ ∅ ∉ (Fmla‘ω) | ||
Theorem | gonan0 35360 | The "Godel-set of NAND" is a Godel formula of at least height 1. (Contributed by AV, 21-Oct-2023.) |
⊢ ((𝐴⊼𝑔𝐵) ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅) | ||
Theorem | goaln0 35361* | The "Godel-set of universal quantification" is a Godel formula of at least height 1. (Contributed by AV, 22-Oct-2023.) |
⊢ (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅) | ||
Theorem | gonarlem 35362* | Lemma for gonar 35363 (induction step). (Contributed by AV, 21-Oct-2023.) |
⊢ (𝑁 ∈ ω → (((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))) → ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))) | ||
Theorem | gonar 35363* | If the "Godel-set of NAND" applied to classes is a Godel formula, the classes are also Godel formulas. Remark: The reverse is not valid for 𝐴 or 𝐵 being of the same height as the "Godel-set of NAND". (Contributed by AV, 21-Oct-2023.) |
⊢ ((𝑁 ∈ ω ∧ (𝑎⊼𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))) | ||
Theorem | goalrlem 35364* | Lemma for goalr 35365 (induction step). (Contributed by AV, 22-Oct-2023.) |
⊢ (𝑁 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))) | ||
Theorem | goalr 35365* | If the "Godel-set of universal quantification" applied to a class is a Godel formula, the class is also a Godel formula. Remark: The reverse is not valid for 𝐴 being of the same height as the "Godel-set of universal quantification". (Contributed by AV, 22-Oct-2023.) |
⊢ ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → 𝑎 ∈ (Fmla‘𝑁)) | ||
Theorem | fmla0disjsuc 35366* | The set of valid Godel formulas of height 0 is disjoint with the formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification. (Contributed by AV, 20-Oct-2023.) |
⊢ ((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ∅ | ||
Theorem | fmlasucdisj 35367* | The valid Godel formulas of height (𝑁 + 1) is disjoint with the difference ((Fmla‘suc suc 𝑁) ∖ (Fmla‘suc 𝑁)), expressed by formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification based on the valid Godel formulas of height (𝑁 + 1). (Contributed by AV, 20-Oct-2023.) |
⊢ (𝑁 ∈ ω → ((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣))}) = ∅) | ||
Theorem | satfdmfmla 35368 | The domain of the satisfaction predicate as function over wff codes in any model 𝑀 and any binary relation 𝐸 on 𝑀 for a natural number 𝑁 is the set of valid Godel formulas of height 𝑁. (Contributed by AV, 13-Oct-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁)) | ||
Theorem | satffunlem 35369 | Lemma for satffunlem1lem1 35370 and satffunlem2lem1 35372. (Contributed by AV, 27-Oct-2023.) |
⊢ (((Fun 𝑍 ∧ (𝑠 ∈ 𝑍 ∧ 𝑟 ∈ 𝑍) ∧ (𝑢 ∈ 𝑍 ∧ 𝑣 ∈ 𝑍)) ∧ (𝑥 = ((1st ‘𝑠)⊼𝑔(1st ‘𝑟)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑠) ∩ (2nd ‘𝑟)))) ∧ (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))))) → 𝑦 = 𝑤) | ||
Theorem | satffunlem1lem1 35370* | Lemma for satffunlem1 35375. (Contributed by AV, 17-Oct-2023.) |
⊢ (Fun ((𝑀 Sat 𝐸)‘𝑁) → Fun {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ ∀𝑘 ∈ 𝑀 ({〈𝑖, 𝑘〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) | ||
Theorem | satffunlem1lem2 35371* | Lemma 2 for satffunlem1 35375. (Contributed by AV, 23-Oct-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (dom ((𝑀 Sat 𝐸)‘∅) ∩ dom {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ ∀𝑗 ∈ 𝑀 ({〈𝑖, 𝑗〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) = ∅) | ||
Theorem | satffunlem2lem1 35372* | Lemma 1 for satffunlem2 35376. (Contributed by AV, 28-Oct-2023.) |
⊢ 𝑆 = (𝑀 Sat 𝐸) & ⊢ 𝐴 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))) & ⊢ 𝐵 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ⇒ ⊢ ((Fun (𝑆‘suc 𝑁) ∧ (𝑆‘𝑁) ⊆ (𝑆‘suc 𝑁)) → Fun {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(∃𝑣 ∈ (𝑆‘suc 𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = 𝐵)) ∨ ∃𝑢 ∈ (𝑆‘𝑁)∃𝑣 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴))}) | ||
Theorem | dmopab3rexdif 35373* | The domain of an ordered pair class abstraction with three nested restricted existential quantifiers with differences. (Contributed by AV, 25-Oct-2023.) |
⊢ ((∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀𝑖 ∈ 𝐼 𝐷 ∈ 𝑊) ∧ 𝑆 ⊆ 𝑈) → dom {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ (𝑈 ∖ 𝑆)(∃𝑣 ∈ 𝑈 (𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) ∨ ∃𝑢 ∈ 𝑆 ∃𝑣 ∈ (𝑈 ∖ 𝑆)(𝑥 = 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∣ (∃𝑢 ∈ (𝑈 ∖ 𝑆)(∃𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑥 = 𝐶) ∨ ∃𝑢 ∈ 𝑆 ∃𝑣 ∈ (𝑈 ∖ 𝑆)𝑥 = 𝐴)}) | ||
Theorem | satffunlem2lem2 35374* | Lemma 2 for satffunlem2 35376. (Contributed by AV, 27-Oct-2023.) |
⊢ 𝑆 = (𝑀 Sat 𝐸) & ⊢ 𝐴 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))) & ⊢ 𝐵 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ⇒ ⊢ (((𝑁 ∈ ω ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) ∧ Fun (𝑆‘suc 𝑁)) → (dom (𝑆‘suc 𝑁) ∩ dom {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(∃𝑣 ∈ (𝑆‘suc 𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = 𝐵)) ∨ ∃𝑢 ∈ (𝑆‘𝑁)∃𝑣 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴))}) = ∅) | ||
Theorem | satffunlem1 35375 | Lemma 1 for satffun 35377: induction basis. (Contributed by AV, 28-Oct-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅)) | ||
Theorem | satffunlem2 35376 | Lemma 2 for satffun 35377: induction step. (Contributed by AV, 28-Oct-2023.) |
⊢ ((𝑁 ∈ ω ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁))) | ||
Theorem | satffun 35377 | The value of the satisfaction predicate as function over wff codes at a natural number is a function. (Contributed by AV, 28-Oct-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁)) | ||
Theorem | satff 35378 | The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 28-Oct-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑁):(Fmla‘𝑁)⟶𝒫 (𝑀 ↑m ω)) | ||
Theorem | satfun 35379 | The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 29-Oct-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω)) | ||
Theorem | satfvel 35380 | An element of the value of the satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at the code 𝑈 for a wff using ∈ , ⊼ , ∀ is a valuation 𝑆:ω⟶𝑀 of the variables (v0 = (𝑆‘∅), v1 = (𝑆‘1o), etc.) so that 𝑈 is true under the assignment 𝑆. (Contributed by AV, 29-Oct-2023.) |
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈)) → 𝑆:ω⟶𝑀) | ||
Theorem | satfv0fvfmla0 35381* | The value of the satisfaction predicate as function over a wff code at ∅. (Contributed by AV, 2-Nov-2023.) |
⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑋 ∈ (Fmla‘∅)) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd ‘𝑋)))}) | ||
Theorem | satefv 35382 | The simplified satisfaction predicate as function over wff codes in the model 𝑀 at the code 𝑈. (Contributed by AV, 30-Oct-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) | ||
Theorem | sate0 35383 | The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023.) (Revised by AV, 5-Nov-2023.) |
⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) | ||
Theorem | satef 35384 | The simplified satisfaction predicate as function over wff codes over an empty model. (Contributed by AV, 30-Oct-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → 𝑆:ω⟶𝑀) | ||
Theorem | sate0fv0 35385 | A simplified satisfaction predicate as function over wff codes over an empty model is an empty set. (Contributed by AV, 31-Oct-2023.) |
⊢ (𝑈 ∈ (Fmla‘ω) → (𝑆 ∈ (∅ Sat∈ 𝑈) → 𝑆 = ∅)) | ||
Theorem | satefvfmla0 35386* | The simplified satisfaction predicate for wff codes of height 0. (Contributed by AV, 4-Nov-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → (𝑀 Sat∈ 𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘𝑋))) ∈ (𝑎‘(2nd ‘(2nd ‘𝑋)))}) | ||
Theorem | sategoelfvb 35387 | Characterization of a valuation 𝑆 of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.) |
⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆 ∈ 𝐸 ↔ (𝑆 ∈ (𝑀 ↑m ω) ∧ (𝑆‘𝐴) ∈ (𝑆‘𝐵)))) | ||
Theorem | sategoelfv 35388 | Condition of a valuation 𝑆 of a simplified satisfaction predicate for a Godel-set of membership: The sets in model 𝑀 corresponding to the variables 𝐴 and 𝐵 under the assignment of 𝑆 are in a membership relation in 𝑀. (Contributed by AV, 5-Nov-2023.) |
⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑆 ∈ 𝐸) → (𝑆‘𝐴) ∈ (𝑆‘𝐵)) | ||
Theorem | ex-sategoelel 35389* | Example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.) |
⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) & ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))) ⇒ ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → 𝑆 ∈ 𝐸) | ||
Theorem | ex-sategoel 35390* | Instance of sategoelfv 35388 for the example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.) |
⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) & ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))) ⇒ ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → (𝑆‘𝐴) ∈ (𝑆‘𝐵)) | ||
Theorem | satfv1fvfmla1 35391* | The value of the satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023.) |
⊢ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ⇒ ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat 𝐸)‘1o)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}) | ||
Theorem | 2goelgoanfmla1 35392 | Two Godel-sets of membership combined with a Godel-set for NAND is a Godel formula of height 1. (Contributed by AV, 17-Nov-2023.) |
⊢ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ⇒ ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o)) | ||
Theorem | satefvfmla1 35393* | The simplified satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023.) |
⊢ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀 Sat∈ 𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐼) ∈ (𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾) ∈ (𝑎‘𝐿))}) | ||
Theorem | ex-sategoelelomsuc 35394* | Example of a valuation of a simplified satisfaction predicate over the ordinal numbers as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 𝑍 ∈ suc 𝑍 = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)) ⇒ ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω Sat∈ (2o∈𝑔1o))) | ||
Theorem | ex-sategoelel12 35395 | Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 1o ∈ 2o = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) ⇒ ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) | ||
Theorem | prv 35396 | The "proves" relation on a set. A wff encoded as 𝑈 is true in a model 𝑀 iff for every valuation 𝑠 ∈ (𝑀 ↑m ω), the interpretation of the wff using the membership relation on 𝑀 is true. (Contributed by AV, 5-Nov-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀⊧𝑈 ↔ (𝑀 Sat∈ 𝑈) = (𝑀 ↑m ω))) | ||
Theorem | elnanelprv 35397 | The wff (𝐴 ∈ 𝐵 ⊼ 𝐵 ∈ 𝐴) encoded as ((𝐴∈𝑔𝐵) ⊼𝑔(𝐵∈𝑔𝐴)) is true in any model 𝑀. This is the model theoretic proof of elnanel 9676. (Contributed by AV, 5-Nov-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) | ||
Theorem | prv0 35398 | Every wff encoded as 𝑈 is true in an "empty model" (𝑀 = ∅). Since ⊧ is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of ⊧ should not be interpreted as the empty model, because ∃𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.) |
⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) | ||
Theorem | prv1n 35399 | No wff encoded as a Godel-set of membership is true in a model with only one element. (Contributed by AV, 19-Nov-2023.) |
⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉) → ¬ {𝑋}⊧(𝐼∈𝑔𝐽)) | ||
Syntax | cgon 35400 | The Godel-set of negation. (Note that this is not a wff.) |
class ¬𝑔𝑈 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |