Detailed syntax breakdown of Definition df-cyg
Step | Hyp | Ref
| Expression |
1 | | ccyg 19064 |
. 2
class
CycGrp |
2 | | vn |
. . . . . . 7
setvar 𝑛 |
3 | | cz 12020 |
. . . . . . 7
class
ℤ |
4 | 2 | cv 1537 |
. . . . . . . 8
class 𝑛 |
5 | | vx |
. . . . . . . . 9
setvar 𝑥 |
6 | 5 | cv 1537 |
. . . . . . . 8
class 𝑥 |
7 | | vg |
. . . . . . . . . 10
setvar 𝑔 |
8 | 7 | cv 1537 |
. . . . . . . . 9
class 𝑔 |
9 | | cmg 18291 |
. . . . . . . . 9
class
.g |
10 | 8, 9 | cfv 6335 |
. . . . . . . 8
class
(.g‘𝑔) |
11 | 4, 6, 10 | co 7150 |
. . . . . . 7
class (𝑛(.g‘𝑔)𝑥) |
12 | 2, 3, 11 | cmpt 5112 |
. . . . . 6
class (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) |
13 | 12 | crn 5525 |
. . . . 5
class ran
(𝑛 ∈ ℤ ↦
(𝑛(.g‘𝑔)𝑥)) |
14 | | cbs 16541 |
. . . . . 6
class
Base |
15 | 8, 14 | cfv 6335 |
. . . . 5
class
(Base‘𝑔) |
16 | 13, 15 | wceq 1538 |
. . . 4
wff ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔) |
17 | 16, 5, 15 | wrex 3071 |
. . 3
wff
∃𝑥 ∈
(Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔) |
18 | | cgrp 18169 |
. . 3
class
Grp |
19 | 17, 7, 18 | crab 3074 |
. 2
class {𝑔 ∈ Grp ∣ ∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔)} |
20 | 1, 19 | wceq 1538 |
1
wff CycGrp =
{𝑔 ∈ Grp ∣
∃𝑥 ∈
(Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔)} |