MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyg Structured version   Visualization version   GIF version

Theorem iscyg 18992
Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
Assertion
Ref Expression
iscyg (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝐺,𝑥   · ,𝑛,𝑥

Proof of Theorem iscyg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6664 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2 iscyg.1 . . . 4 𝐵 = (Base‘𝐺)
31, 2syl6eqr 2874 . . 3 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
4 fveq2 6664 . . . . . . . 8 (𝑔 = 𝐺 → (.g𝑔) = (.g𝐺))
5 iscyg.2 . . . . . . . 8 · = (.g𝐺)
64, 5syl6eqr 2874 . . . . . . 7 (𝑔 = 𝐺 → (.g𝑔) = · )
76oveqd 7167 . . . . . 6 (𝑔 = 𝐺 → (𝑛(.g𝑔)𝑥) = (𝑛 · 𝑥))
87mpteq2dv 5154 . . . . 5 (𝑔 = 𝐺 → (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)))
98rneqd 5802 . . . 4 (𝑔 = 𝐺 → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)))
109, 3eqeq12d 2837 . . 3 (𝑔 = 𝐺 → (ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (Base‘𝑔) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
113, 10rexeqbidv 3402 . 2 (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (Base‘𝑔) ↔ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
12 df-cyg 18991 . 2 CycGrp = {𝑔 ∈ Grp ∣ ∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (Base‘𝑔)}
1311, 12elrab2 3682 1 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wcel 2110  wrex 3139  cmpt 5138  ran crn 5550  cfv 6349  (class class class)co 7150  cz 11975  Basecbs 16477  Grpcgrp 18097  .gcmg 18218  CycGrpccyg 18990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-cnv 5557  df-dm 5559  df-rn 5560  df-iota 6308  df-fv 6357  df-ov 7153  df-cyg 18991
This theorem is referenced by:  iscyg2  18995  iscyg3  18999  cyggrp  19003  cygctb  19006  ghmcyg  19010  ablfac2  19205  fincygsubgodexd  19229  zncyg  20689
  Copyright terms: Public domain W3C validator