MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyg Structured version   Visualization version   GIF version

Theorem iscyg 19897
Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
Assertion
Ref Expression
iscyg (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝐺,𝑥   · ,𝑛,𝑥

Proof of Theorem iscyg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2 iscyg.1 . . . 4 𝐵 = (Base‘𝐺)
31, 2eqtr4di 2795 . . 3 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
4 fveq2 6906 . . . . . . . 8 (𝑔 = 𝐺 → (.g𝑔) = (.g𝐺))
5 iscyg.2 . . . . . . . 8 · = (.g𝐺)
64, 5eqtr4di 2795 . . . . . . 7 (𝑔 = 𝐺 → (.g𝑔) = · )
76oveqd 7448 . . . . . 6 (𝑔 = 𝐺 → (𝑛(.g𝑔)𝑥) = (𝑛 · 𝑥))
87mpteq2dv 5244 . . . . 5 (𝑔 = 𝐺 → (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)))
98rneqd 5949 . . . 4 (𝑔 = 𝐺 → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)))
109, 3eqeq12d 2753 . . 3 (𝑔 = 𝐺 → (ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (Base‘𝑔) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
113, 10rexeqbidv 3347 . 2 (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (Base‘𝑔) ↔ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
12 df-cyg 19896 . 2 CycGrp = {𝑔 ∈ Grp ∣ ∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (Base‘𝑔)}
1311, 12elrab2 3695 1 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  cmpt 5225  ran crn 5686  cfv 6561  (class class class)co 7431  cz 12613  Basecbs 17247  Grpcgrp 18951  .gcmg 19085  CycGrpccyg 19895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-cnv 5693  df-dm 5695  df-rn 5696  df-iota 6514  df-fv 6569  df-ov 7434  df-cyg 19896
This theorem is referenced by:  iscyg2  19900  iscyg3  19904  cyggrp  19908  cygctb  19910  ghmcyg  19914  ablfac2  20109  fincygsubgodexd  20133  zncyg  21567
  Copyright terms: Public domain W3C validator