Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscyg | Structured version Visualization version GIF version |
Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscyg.2 | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
iscyg | ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
2 | iscyg.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | eqtr4di 2796 | . . 3 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
4 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = (.g‘𝐺)) | |
5 | iscyg.2 | . . . . . . . 8 ⊢ · = (.g‘𝐺) | |
6 | 4, 5 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = · ) |
7 | 6 | oveqd 7292 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑛(.g‘𝑔)𝑥) = (𝑛 · 𝑥)) |
8 | 7 | mpteq2dv 5176 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥))) |
9 | 8 | rneqd 5847 | . . . 4 ⊢ (𝑔 = 𝐺 → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥))) |
10 | 9, 3 | eqeq12d 2754 | . . 3 ⊢ (𝑔 = 𝐺 → (ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
11 | 3, 10 | rexeqbidv 3337 | . 2 ⊢ (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔) ↔ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
12 | df-cyg 19478 | . 2 ⊢ CycGrp = {𝑔 ∈ Grp ∣ ∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔)} | |
13 | 11, 12 | elrab2 3627 | 1 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ↦ cmpt 5157 ran crn 5590 ‘cfv 6433 (class class class)co 7275 ℤcz 12319 Basecbs 16912 Grpcgrp 18577 .gcmg 18700 CycGrpccyg 19477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-cnv 5597 df-dm 5599 df-rn 5600 df-iota 6391 df-fv 6441 df-ov 7278 df-cyg 19478 |
This theorem is referenced by: iscyg2 19482 iscyg3 19486 cyggrp 19490 cygctb 19493 ghmcyg 19497 ablfac2 19692 fincygsubgodexd 19716 zncyg 20756 |
Copyright terms: Public domain | W3C validator |