| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscyg | Structured version Visualization version GIF version | ||
| Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
| iscyg.2 | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| iscyg | ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6906 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 2 | iscyg.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | 1, 2 | eqtr4di 2795 | . . 3 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
| 4 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = (.g‘𝐺)) | |
| 5 | iscyg.2 | . . . . . . . 8 ⊢ · = (.g‘𝐺) | |
| 6 | 4, 5 | eqtr4di 2795 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = · ) |
| 7 | 6 | oveqd 7448 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑛(.g‘𝑔)𝑥) = (𝑛 · 𝑥)) |
| 8 | 7 | mpteq2dv 5244 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥))) |
| 9 | 8 | rneqd 5949 | . . . 4 ⊢ (𝑔 = 𝐺 → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥))) |
| 10 | 9, 3 | eqeq12d 2753 | . . 3 ⊢ (𝑔 = 𝐺 → (ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
| 11 | 3, 10 | rexeqbidv 3347 | . 2 ⊢ (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔) ↔ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
| 12 | df-cyg 19896 | . 2 ⊢ CycGrp = {𝑔 ∈ Grp ∣ ∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔)} | |
| 13 | 11, 12 | elrab2 3695 | 1 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ↦ cmpt 5225 ran crn 5686 ‘cfv 6561 (class class class)co 7431 ℤcz 12613 Basecbs 17247 Grpcgrp 18951 .gcmg 19085 CycGrpccyg 19895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-cnv 5693 df-dm 5695 df-rn 5696 df-iota 6514 df-fv 6569 df-ov 7434 df-cyg 19896 |
| This theorem is referenced by: iscyg2 19900 iscyg3 19904 cyggrp 19908 cygctb 19910 ghmcyg 19914 ablfac2 20109 fincygsubgodexd 20133 zncyg 21567 |
| Copyright terms: Public domain | W3C validator |