Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyg Structured version   Visualization version   GIF version

Theorem iscyg 19012
 Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
Assertion
Ref Expression
iscyg (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝐺,𝑥   · ,𝑛,𝑥

Proof of Theorem iscyg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6655 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2 iscyg.1 . . . 4 𝐵 = (Base‘𝐺)
31, 2eqtr4di 2851 . . 3 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
4 fveq2 6655 . . . . . . . 8 (𝑔 = 𝐺 → (.g𝑔) = (.g𝐺))
5 iscyg.2 . . . . . . . 8 · = (.g𝐺)
64, 5eqtr4di 2851 . . . . . . 7 (𝑔 = 𝐺 → (.g𝑔) = · )
76oveqd 7162 . . . . . 6 (𝑔 = 𝐺 → (𝑛(.g𝑔)𝑥) = (𝑛 · 𝑥))
87mpteq2dv 5130 . . . . 5 (𝑔 = 𝐺 → (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)))
98rneqd 5778 . . . 4 (𝑔 = 𝐺 → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)))
109, 3eqeq12d 2814 . . 3 (𝑔 = 𝐺 → (ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (Base‘𝑔) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
113, 10rexeqbidv 3356 . 2 (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (Base‘𝑔) ↔ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
12 df-cyg 19011 . 2 CycGrp = {𝑔 ∈ Grp ∣ ∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (Base‘𝑔)}
1311, 12elrab2 3633 1 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∃wrex 3107   ↦ cmpt 5114  ran crn 5524  ‘cfv 6332  (class class class)co 7145  ℤcz 11989  Basecbs 16495  Grpcgrp 18115  .gcmg 18237  CycGrpccyg 19010 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3444  df-un 3888  df-in 3890  df-ss 3900  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-br 5035  df-opab 5097  df-mpt 5115  df-cnv 5531  df-dm 5533  df-rn 5534  df-iota 6291  df-fv 6340  df-ov 7148  df-cyg 19011 This theorem is referenced by:  iscyg2  19015  iscyg3  19019  cyggrp  19023  cygctb  19026  ghmcyg  19030  ablfac2  19225  fincygsubgodexd  19249  zncyg  20262
 Copyright terms: Public domain W3C validator