MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyg Structured version   Visualization version   GIF version

Theorem iscyg 19789
Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
Assertion
Ref Expression
iscyg (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝐺,𝑥   · ,𝑛,𝑥

Proof of Theorem iscyg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2 iscyg.1 . . . 4 𝐵 = (Base‘𝐺)
31, 2eqtr4di 2784 . . 3 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
4 fveq2 6822 . . . . . . . 8 (𝑔 = 𝐺 → (.g𝑔) = (.g𝐺))
5 iscyg.2 . . . . . . . 8 · = (.g𝐺)
64, 5eqtr4di 2784 . . . . . . 7 (𝑔 = 𝐺 → (.g𝑔) = · )
76oveqd 7363 . . . . . 6 (𝑔 = 𝐺 → (𝑛(.g𝑔)𝑥) = (𝑛 · 𝑥))
87mpteq2dv 5185 . . . . 5 (𝑔 = 𝐺 → (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)))
98rneqd 5878 . . . 4 (𝑔 = 𝐺 → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)))
109, 3eqeq12d 2747 . . 3 (𝑔 = 𝐺 → (ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (Base‘𝑔) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
113, 10rexeqbidv 3313 . 2 (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (Base‘𝑔) ↔ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
12 df-cyg 19788 . 2 CycGrp = {𝑔 ∈ Grp ∣ ∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (Base‘𝑔)}
1311, 12elrab2 3650 1 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  cmpt 5172  ran crn 5617  cfv 6481  (class class class)co 7346  cz 12465  Basecbs 17117  Grpcgrp 18843  .gcmg 18977  CycGrpccyg 19787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-cnv 5624  df-dm 5626  df-rn 5627  df-iota 6437  df-fv 6489  df-ov 7349  df-cyg 19788
This theorem is referenced by:  iscyg2  19792  iscyg3  19796  cyggrp  19800  cygctb  19802  ghmcyg  19806  ablfac2  20001  fincygsubgodexd  20025  zncyg  21483
  Copyright terms: Public domain W3C validator