| Metamath
Proof Explorer Theorem List (p. 198 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | frgpinv 19701* | The inverse of an element of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) ⇒ ⊢ (𝐴 ∈ 𝑊 → (𝑁‘[𝐴] ∼ ) = [(𝑀 ∘ (reverse‘𝐴))] ∼ ) | ||
| Theorem | frgpmhm 19702* | The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) & ⊢ 𝑊 = (Base‘𝑀) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐹 = (𝑥 ∈ 𝑊 ↦ [𝑥] ∼ ) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐹 ∈ (𝑀 MndHom 𝐺)) | ||
| Theorem | vrgpfval 19703* | The canonical injection from the generating set 𝐼 to the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑈 = (varFGrp‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) | ||
| Theorem | vrgpval 19704 | The value of the generating elements of a free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑈 = (varFGrp‘𝐼) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) | ||
| Theorem | vrgpf 19705 | The mapping from the index set to the generators is a function into the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶𝑋) | ||
| Theorem | vrgpinv 19706 | The inverse of a generating element is represented by 〈𝐴, 1〉 instead of 〈𝐴, 0〉. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = [〈“〈𝐴, 1o〉”〉] ∼ ) | ||
| Theorem | frgpuptf 19707* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) ⇒ ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) | ||
| Theorem | frgpuptinv 19708* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐼 × 2o)) → (𝑇‘(𝑀‘𝐴)) = (𝑁‘(𝑇‘𝐴))) | ||
| Theorem | frgpuplem 19709* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∼ 𝐶) → (𝐻 Σg (𝑇 ∘ 𝐴)) = (𝐻 Σg (𝑇 ∘ 𝐶))) | ||
| Theorem | frgpupf 19710* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) ⇒ ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) | ||
| Theorem | frgpupval 19711* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑊) → (𝐸‘[𝐴] ∼ ) = (𝐻 Σg (𝑇 ∘ 𝐴))) | ||
| Theorem | frgpup1 19712* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐺 GrpHom 𝐻)) | ||
| Theorem | frgpup2 19713* | The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ (𝜑 → 𝐴 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐹‘𝐴)) | ||
| Theorem | frgpup3lem 19714* | The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ (𝜑 → 𝐾 ∈ (𝐺 GrpHom 𝐻)) & ⊢ (𝜑 → (𝐾 ∘ 𝑈) = 𝐹) ⇒ ⊢ (𝜑 → 𝐾 = 𝐸) | ||
| Theorem | frgpup3 19715* | Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑈 = (varFGrp‘𝐼) ⇒ ⊢ ((𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝐺 GrpHom 𝐻)(𝑚 ∘ 𝑈) = 𝐹) | ||
| Theorem | 0frgp 19716 | The free group on zero generators is trivial. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐺 = (freeGrp‘∅) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 ≈ 1o | ||
| Syntax | ccmn 19717 | Extend class notation with class of all commutative monoids. |
| class CMnd | ||
| Syntax | cabl 19718 | Extend class notation with class of all Abelian groups. |
| class Abel | ||
| Definition | df-cmn 19719* | Define class of all commutative monoids. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| ⊢ CMnd = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g‘𝑔)𝑏) = (𝑏(+g‘𝑔)𝑎)} | ||
| Definition | df-abl 19720 | Define class of all Abelian groups. (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| ⊢ Abel = (Grp ∩ CMnd) | ||
| Theorem | isabl 19721 | The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) |
| ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | ||
| Theorem | ablgrp 19722 | An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
| ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | ||
| Theorem | ablgrpd 19723 | An Abelian group is a group, deduction form of ablgrp 19722. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Abel) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) | ||
| Theorem | ablcmn 19724 | An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | ||
| Theorem | ablcmnd 19725 | An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.) |
| ⊢ (𝜑 → 𝐺 ∈ Abel) ⇒ ⊢ (𝜑 → 𝐺 ∈ CMnd) | ||
| Theorem | iscmn 19726* | The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | ||
| Theorem | isabl2 19727* | The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | ||
| Theorem | cmnpropd 19728* | If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd)) | ||
| Theorem | ablpropd 19729* | If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) | ||
| Theorem | ablprop 19730 | If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 11-Oct-2013.) |
| ⊢ (Base‘𝐾) = (Base‘𝐿) & ⊢ (+g‘𝐾) = (+g‘𝐿) ⇒ ⊢ (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel) | ||
| Theorem | iscmnd 19731* | Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) ⇒ ⊢ (𝜑 → 𝐺 ∈ CMnd) | ||
| Theorem | isabld 19732* | Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) ⇒ ⊢ (𝜑 → 𝐺 ∈ Abel) | ||
| Theorem | isabli 19733* | Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.) |
| ⊢ 𝐺 ∈ Grp & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) ⇒ ⊢ 𝐺 ∈ Abel | ||
| Theorem | cmnmnd 19734 | A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | ||
| Theorem | cmncom 19735 | A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| Theorem | ablcom 19736 | An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| Theorem | cmn32 19737 | Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) | ||
| Theorem | cmn4 19738 | Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) | ||
| Theorem | cmn12 19739 | Commutative/associative law for commutative monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) | ||
| Theorem | abl32 19740 | Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) | ||
| Theorem | cmnmndd 19741 | A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.) |
| ⊢ (𝜑 → 𝐺 ∈ CMnd) ⇒ ⊢ (𝜑 → 𝐺 ∈ Mnd) | ||
| Theorem | cmnbascntr 19742 | The base set of a commutative monoid is its center. (Contributed by SN, 21-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑍 = (Cntr‘𝐺) ⇒ ⊢ (𝐺 ∈ CMnd → 𝐵 = 𝑍) | ||
| Theorem | rinvmod 19743* | Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovmo 7629. (Contributed by AV, 31-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 ) | ||
| Theorem | ablinvadd 19744 | The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑋) + (𝑁‘𝑌))) | ||
| Theorem | ablsub2inv 19745 | Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = (𝑌 − 𝑋)) | ||
| Theorem | ablsubadd 19746 | Relationship between Abelian group subtraction and addition. (Contributed by NM, 31-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) = 𝑍 ↔ (𝑌 + 𝑍) = 𝑋)) | ||
| Theorem | ablsub4 19747 | Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑍 + 𝑊)) = ((𝑋 − 𝑍) + (𝑌 − 𝑊))) | ||
| Theorem | abladdsub4 19748 | Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) = (𝑍 + 𝑊) ↔ (𝑋 − 𝑍) = (𝑊 − 𝑌))) | ||
| Theorem | abladdsub 19749 | Associative-type law for group subtraction and addition. (Contributed by NM, 19-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑍) = ((𝑋 − 𝑍) + 𝑌)) | ||
| Theorem | ablsubadd23 19750 | Commutative/associative law for addition and subtraction in abelian groups. (subadd23d 11562 analog.) (Contributed by AV, 2-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) + 𝑍) = (𝑋 + (𝑍 − 𝑌))) | ||
| Theorem | ablsubaddsub 19751 | Double subtraction and addition in abelian groups. (cnambpcma 47299 analog.) (Contributed by AV, 3-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 − 𝑌) + 𝑍) − 𝑋) = (𝑍 − 𝑌)) | ||
| Theorem | ablpncan2 19752 | Cancellation law for subtraction in an Abelian group. (Contributed by NM, 2-Oct-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) − 𝑋) = 𝑌) | ||
| Theorem | ablpncan3 19753 | A cancellation law for Abelian groups. (Contributed by NM, 23-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 + (𝑌 − 𝑋)) = 𝑌) | ||
| Theorem | ablsubsub 19754 | Law for double subtraction. (Contributed by NM, 7-Apr-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 − (𝑌 − 𝑍)) = ((𝑋 − 𝑌) + 𝑍)) | ||
| Theorem | ablsubsub4 19755 | Law for double subtraction. (Contributed by NM, 7-Apr-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑌 + 𝑍))) | ||
| Theorem | ablpnpcan 19756 | Cancellation law for mixed addition and subtraction. (pnpcan 11468 analog.) (Contributed by NM, 29-May-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = (𝑌 − 𝑍)) | ||
| Theorem | ablnncan 19757 | Cancellation law for group subtraction. (nncan 11458 analog.) (Contributed by NM, 7-Apr-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 − (𝑋 − 𝑌)) = 𝑌) | ||
| Theorem | ablsub32 19758 | Swap the second and third terms in a double group subtraction. (Contributed by NM, 7-Apr-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑍) − 𝑌)) | ||
| Theorem | ablnnncan 19759 | Cancellation law for group subtraction. (nnncan 11464 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − 𝑌)) | ||
| Theorem | ablnnncan1 19760 | Cancellation law for group subtraction. (nnncan1 11465 analog.) (Contributed by NM, 7-Apr-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) − (𝑋 − 𝑍)) = (𝑍 − 𝑌)) | ||
| Theorem | ablsubsub23 19761 | Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.) |
| ⊢ 𝑉 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) | ||
| Theorem | mulgnn0di 19762 | Group multiple of a sum, for nonnegative multiples. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) | ||
| Theorem | mulgdi 19763 | Group multiple of a sum. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) | ||
| Theorem | mulgmhm 19764* | The map from 𝑥 to 𝑛𝑥 for a fixed positive integer 𝑛 is a monoid homomorphism if the monoid is commutative. (Contributed by Mario Carneiro, 4-May-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺)) | ||
| Theorem | mulgghm 19765* | The map from 𝑥 to 𝑛𝑥 for a fixed integer 𝑛 is a group homomorphism if the group is commutative. (Contributed by Mario Carneiro, 4-May-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 GrpHom 𝐺)) | ||
| Theorem | mulgsubdi 19766 | Group multiple of a difference. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 − 𝑌)) = ((𝑀 · 𝑋) − (𝑀 · 𝑌))) | ||
| Theorem | ghmfghm 19767* | The function fulfilling the conditions of ghmgrp 19005 is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | ||
| Theorem | ghmcmn 19768* | The image of a commutative monoid 𝐺 under a group homomorphism 𝐹 is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ CMnd) ⇒ ⊢ (𝜑 → 𝐻 ∈ CMnd) | ||
| Theorem | ghmabl 19769* | The image of an abelian group 𝐺 under a group homomorphism 𝐹 is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ Abel) ⇒ ⊢ (𝜑 → 𝐻 ∈ Abel) | ||
| Theorem | invghm 19770 | The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺)) | ||
| Theorem | eqgabl 19771 | Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑆) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆))) | ||
| Theorem | qusecsub 19772 | Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑆) ⇒ ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ = [𝑌] ∼ ↔ (𝑌 − 𝑋) ∈ 𝑆)) | ||
| Theorem | subgabl 19773 | A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel) | ||
| Theorem | subcmn 19774 | A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd) | ||
| Theorem | submcmn 19775 | A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ CMnd) | ||
| Theorem | submcmn2 19776 | A submonoid is commutative iff it is a subset of its own centralizer. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ 𝑆 ⊆ (𝑍‘𝑆))) | ||
| Theorem | cntzcmn 19777 | The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) = 𝐵) | ||
| Theorem | cntzcmnss 19778 | Any subset in a commutative monoid is a subset of its centralizer. (Contributed by AV, 12-Jan-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → 𝑆 ⊆ (𝑍‘𝑆)) | ||
| Theorem | cntrcmnd 19779 | The center of a monoid is a commutative submonoid. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝑍 = (𝑀 ↾s (Cntr‘𝑀)) ⇒ ⊢ (𝑀 ∈ Mnd → 𝑍 ∈ CMnd) | ||
| Theorem | cntrabl 19780 | The center of a group is an abelian group. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝑍 = (𝑀 ↾s (Cntr‘𝑀)) ⇒ ⊢ (𝑀 ∈ Grp → 𝑍 ∈ Abel) | ||
| Theorem | cntzspan 19781 | If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) & ⊢ 𝐻 = (𝐺 ↾s (𝐾‘𝑆)) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝐻 ∈ CMnd) | ||
| Theorem | cntzcmnf 19782 | Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | ||
| Theorem | ghmplusg 19783 | The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ + = (+g‘𝑁) ⇒ ⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹 ∘f + 𝐺) ∈ (𝑀 GrpHom 𝑁)) | ||
| Theorem | ablnsg 19784 | Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) | ||
| Theorem | odadd1 19785 | The order of a product in an abelian group divides the LCM of the orders of the factors. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂‘𝐴) gcd (𝑂‘𝐵))) ∥ ((𝑂‘𝐴) · (𝑂‘𝐵))) | ||
| Theorem | odadd2 19786 | The order of a product in an abelian group is divisible by the LCM of the orders of the factors divided by the GCD. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑂‘𝐴) · (𝑂‘𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂‘𝐴) gcd (𝑂‘𝐵))↑2))) | ||
| Theorem | odadd 19787 | The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂‘𝐴) · (𝑂‘𝐵))) | ||
| Theorem | gex2abl 19788 | A group with exponent 2 (or 1) is abelian. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Abel) | ||
| Theorem | gexexlem 19789* | Lemma for gexex 19790. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐸 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑂‘𝑦) ≤ (𝑂‘𝐴)) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) | ||
| Theorem | gexex 19790* | In an abelian group with finite exponent, there is an element in the group with order equal to the exponent. In other words, all orders of elements divide the largest order of an element of the group. This fails if 𝐸 = 0, for example in an infinite p-group, where there are elements of arbitrarily large orders (so 𝐸 is zero) but no elements of infinite order. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥 ∈ 𝑋 (𝑂‘𝑥) = 𝐸) | ||
| Theorem | torsubg 19791 | The set of all elements of finite order forms a subgroup of any abelian group, called the torsion subgroup. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel → (◡𝑂 “ ℕ) ∈ (SubGrp‘𝐺)) | ||
| Theorem | oddvdssubg 19792* | The set of all elements whose order divides a fixed integer is a subgroup of any abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) | ||
| Theorem | lsmcomx 19793 | Subgroup sum commutes (extended domain version). (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) | ||
| Theorem | ablcntzd 19794 | All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | ||
| Theorem | lsmcom 19795 | Subgroup sum commutes. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
| ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) | ||
| Theorem | lsmsubg2 19796 | The sum of two subgroups is a subgroup. (Contributed by NM, 4-Feb-2014.) (Proof shortened by Mario Carneiro, 19-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) ∈ (SubGrp‘𝐺)) | ||
| Theorem | lsm4 19797 | Commutative/associative law for subgroup sum. (Contributed by NM, 26-Sep-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑄 ∈ (SubGrp‘𝐺) ∧ 𝑅 ∈ (SubGrp‘𝐺)) ∧ (𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺))) → ((𝑄 ⊕ 𝑅) ⊕ (𝑇 ⊕ 𝑈)) = ((𝑄 ⊕ 𝑇) ⊕ (𝑅 ⊕ 𝑈))) | ||
| Theorem | prdscmnd 19798 | The product of a family of commutative monoids is commutative. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶CMnd) ⇒ ⊢ (𝜑 → 𝑌 ∈ CMnd) | ||
| Theorem | prdsabld 19799 | The product of a family of Abelian groups is an Abelian group. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Abel) ⇒ ⊢ (𝜑 → 𝑌 ∈ Abel) | ||
| Theorem | pwscmn 19800 | The structure power on a commutative monoid is commutative. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ CMnd ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ CMnd) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |