| Metamath
Proof Explorer Theorem List (p. 198 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lsmdisj3 19701 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = { 0 }) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) ⇒ ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) | ||
| Theorem | lsmdisjr 19702 | Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) ⇒ ⊢ (𝜑 → ((𝑆 ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) | ||
| Theorem | lsmdisj2r 19703 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) ⇒ ⊢ (𝜑 → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) | ||
| Theorem | lsmdisj3r 19704 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) | ||
| Theorem | lsmdisj2a 19705 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }))) | ||
| Theorem | lsmdisj2b 19706 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) | ||
| Theorem | lsmdisj3a 19707 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) | ||
| Theorem | lsmdisj3b 19708 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) | ||
| Theorem | subgdisj1 19709 | Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
| Theorem | subgdisj2 19710 | Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 12-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐷) | ||
| Theorem | subgdisjb 19711 | Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. Analogous to opth 5481, this theorem shows a way of representing a pair of vectors. (Contributed by NM, 5-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | pj1fval 19712* | The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)))) | ||
| Theorem | pj1val 19713* | The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑋 = (𝑥 + 𝑦))) | ||
| Theorem | pj1eu 19714* | Uniqueness of a left projection. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → ∃!𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑋 = (𝑥 + 𝑦)) | ||
| Theorem | pj1f 19715 | The left projection function maps a direct subspace sum onto the left factor. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶𝑇) | ||
| Theorem | pj2f 19716 | The right projection function maps a direct subspace sum onto the right factor. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈) | ||
| Theorem | pj1id 19717 | Any element of a direct subspace sum can be decomposed into projections onto the left and right factors. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋))) | ||
| Theorem | pj1eq 19718 | Any element of a direct subspace sum can be decomposed uniquely into projections onto the left and right factors. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ (𝑇 ⊕ 𝑈)) & ⊢ (𝜑 → 𝐵 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝐵 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝐶))) | ||
| Theorem | pj1lid 19719 | The left projection function is the identity on the left subspace. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → ((𝑇𝑃𝑈)‘𝑋) = 𝑋) | ||
| Theorem | pj1rid 19720 | The left projection function is the zero operator on the right subspace. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → ((𝑇𝑃𝑈)‘𝑋) = 0 ) | ||
| Theorem | pj1ghm 19721 | The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺 ↾s (𝑇 ⊕ 𝑈)) GrpHom 𝐺)) | ||
| Theorem | pj1ghm2 19722 | The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺 ↾s (𝑇 ⊕ 𝑈)) GrpHom (𝐺 ↾s 𝑇))) | ||
| Theorem | lsmhash 19723 | The order of the direct product of groups. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ (𝜑 → 𝑇 ∈ Fin) & ⊢ (𝜑 → 𝑈 ∈ Fin) ⇒ ⊢ (𝜑 → (♯‘(𝑇 ⊕ 𝑈)) = ((♯‘𝑇) · (♯‘𝑈))) | ||
| Syntax | cefg 19724 | Extend class notation with the free group equivalence relation. |
| class ~FG | ||
| Syntax | cfrgp 19725 | Extend class notation with the free group construction. |
| class freeGrp | ||
| Syntax | cvrgp 19726 | Extend class notation with free group injection. |
| class varFGrp | ||
| Definition | df-efg 19727* | Define the free group equivalence relation, which is the smallest equivalence relation ≈ such that for any words 𝐴, 𝐵 and formal symbol 𝑥 with inverse invg𝑥, 𝐴𝐵 ≈ 𝐴𝑥(invg𝑥)𝐵. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ ~FG = (𝑖 ∈ V ↦ ∩ {𝑟 ∣ (𝑟 Er Word (𝑖 × 2o) ∧ ∀𝑥 ∈ Word (𝑖 × 2o)∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))}) | ||
| Definition | df-frgp 19728 | Define the free group on a set 𝐼 of generators, defined as the quotient of the free monoid on 𝐼 × 2o (representing the generator elements and their formal inverses) by the free group equivalence relation df-efg 19727. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖))) | ||
| Definition | df-vrgp 19729* | Define the canonical injection from the generating set 𝐼 into the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ varFGrp = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ [〈“〈𝑗, ∅〉”〉]( ~FG ‘𝑖))) | ||
| Theorem | efgmval 19730* | Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) ⇒ ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 2o) → (𝐴𝑀𝐵) = 〈𝐴, (1o ∖ 𝐵)〉) | ||
| Theorem | efgmf 19731* | The formal inverse operation is an endofunction on the generating set. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) ⇒ ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) | ||
| Theorem | efgmnvl 19732* | The inversion function on the generators is an involution. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) ⇒ ⊢ (𝐴 ∈ (𝐼 × 2o) → (𝑀‘(𝑀‘𝐴)) = 𝐴) | ||
| Theorem | efgrcl 19733 | Lemma for efgval 19735. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) ⇒ ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) | ||
| Theorem | efglem 19734* | Lemma for efgval 19735. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) ⇒ ⊢ ∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉)) | ||
| Theorem | efgval 19735* | Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ ∼ = ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))} | ||
| Theorem | efger 19736 | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ ∼ Er 𝑊 | ||
| Theorem | efgi 19737 | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽 ∈ 𝐼 ∧ 𝐾 ∈ 2o)) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 𝐾〉〈𝐽, (1o ∖ 𝐾)〉”〉〉)) | ||
| Theorem | efgi0 19738 | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉〉)) | ||
| Theorem | efgi1 19739 | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉)) | ||
| Theorem | efgtf 19740* | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ (𝑋 ∈ 𝑊 → ((𝑇‘𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∧ (𝑇‘𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊)) | ||
| Theorem | efgtval 19741* | Value of the extension function, which maps a word (a representation of the group element as a sequence of elements and their inverses) to its direct extensions, defined as the original representation with an element and its inverse inserted somewhere in the string. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝑋)) ∧ 𝐴 ∈ (𝐼 × 2o)) → (𝑁(𝑇‘𝑋)𝐴) = (𝑋 splice 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉)) | ||
| Theorem | efgval2 19742* | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ ∼ = ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ran (𝑇‘𝑥) ⊆ [𝑥]𝑟)} | ||
| Theorem | efgi2 19743* | Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 𝐴 ∼ 𝐵) | ||
| Theorem | efgtlen 19744* | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ ((𝑋 ∈ 𝑊 ∧ 𝐴 ∈ ran (𝑇‘𝑋)) → (♯‘𝐴) = ((♯‘𝑋) + 2)) | ||
| Theorem | efginvrel2 19745* | The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ (𝐴 ∈ 𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∼ ∅) | ||
| Theorem | efginvrel1 19746* | The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∼ ∅) | ||
| Theorem | efgsf 19747* | Value of the auxiliary function 𝑆 defining a sequence of extensions starting at some irreducible word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊 | ||
| Theorem | efgsdm 19748* | Elementhood in the domain of 𝑆, the set of sequences of extensions starting at an irreducible word. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) | ||
| Theorem | efgsval 19749* | Value of the auxiliary function 𝑆 defining a sequence of extensions. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐹 ∈ dom 𝑆 → (𝑆‘𝐹) = (𝐹‘((♯‘𝐹) − 1))) | ||
| Theorem | efgsdmi 19750* | Property of the last link in the chain of extensions. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝑆‘𝐹) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1)))) | ||
| Theorem | efgsval2 19751* | Value of the auxiliary function 𝑆 defining a sequence of extensions. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) | ||
| Theorem | efgsrel 19752* | The start and end of any extension sequence are related (i.e. evaluate to the same element of the quotient group to be created). (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐹 ∈ dom 𝑆 → (𝐹‘0) ∼ (𝑆‘𝐹)) | ||
| Theorem | efgs1 19753* | A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ dom 𝑆) | ||
| Theorem | efgs1b 19754* | Every extension sequence ending in an irreducible word is trivial. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐴 ∈ dom 𝑆 → ((𝑆‘𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1)) | ||
| Theorem | efgsp1 19755* | If 𝐹 is an extension sequence and 𝐴 is an extension of the last element of 𝐹, then 𝐹 + 〈“𝐴”〉 is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹 ++ 〈“𝐴”〉) ∈ dom 𝑆) | ||
| Theorem | efgsres 19756* | An initial segment of an extension sequence is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 3-Nov-2022.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆) | ||
| Theorem | efgsfo 19757* | For any word, there is a sequence of extensions starting at a reduced word and ending at the target word, such that each word in the chain is an extension of the previous (inserting an element and its inverse at adjacent indices somewhere in the sequence). (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ 𝑆:dom 𝑆–onto→𝑊 | ||
| Theorem | efgredlema 19758* | The reduced word that forms the base of the sequence in efgsval 19749 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) ⇒ ⊢ (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ)) | ||
| Theorem | efgredlemf 19759* | Lemma for efgredleme 19761. (Contributed by Mario Carneiro, 4-Jun-2016.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) ⇒ ⊢ (𝜑 → ((𝐴‘𝐾) ∈ 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊)) | ||
| Theorem | efgredlemg 19760* | Lemma for efgred 19766. (Contributed by Mario Carneiro, 4-Jun-2016.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) & ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) & ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) & ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) & ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) ⇒ ⊢ (𝜑 → (♯‘(𝐴‘𝐾)) = (♯‘(𝐵‘𝐿))) | ||
| Theorem | efgredleme 19761* | Lemma for efgred 19766. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) & ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) & ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) & ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) & ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) & ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) & ⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘(𝑄 + 2))) & ⊢ (𝜑 → 𝐶 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐶) = (((𝐵‘𝐿) prefix 𝑄) ++ ((𝐴‘𝐾) substr 〈(𝑄 + 2), (♯‘(𝐴‘𝐾))〉))) ⇒ ⊢ (𝜑 → ((𝐴‘𝐾) ∈ ran (𝑇‘(𝑆‘𝐶)) ∧ (𝐵‘𝐿) ∈ ran (𝑇‘(𝑆‘𝐶)))) | ||
| Theorem | efgredlemd 19762* | The reduced word that forms the base of the sequence in efgsval 19749 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) & ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) & ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) & ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) & ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) & ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) & ⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘(𝑄 + 2))) & ⊢ (𝜑 → 𝐶 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐶) = (((𝐵‘𝐿) prefix 𝑄) ++ ((𝐴‘𝐾) substr 〈(𝑄 + 2), (♯‘(𝐴‘𝐾))〉))) ⇒ ⊢ (𝜑 → (𝐴‘0) = (𝐵‘0)) | ||
| Theorem | efgredlemc 19763* | The reduced word that forms the base of the sequence in efgsval 19749 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) & ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) & ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) & ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) & ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) & ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) ⇒ ⊢ (𝜑 → (𝑃 ∈ (ℤ≥‘𝑄) → (𝐴‘0) = (𝐵‘0))) | ||
| Theorem | efgredlemb 19764* | The reduced word that forms the base of the sequence in efgsval 19749 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) & ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) & ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) & ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) & ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) & ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | efgredlem 19765* | The reduced word that forms the base of the sequence in efgsval 19749 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.) (Proof shortened by AV, 3-Nov-2022.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | efgred 19766* | The reduced word that forms the base of the sequence in efgsval 19749 is uniquely determined, given the terminal point. (Contributed by Mario Carneiro, 28-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ∧ (𝑆‘𝐴) = (𝑆‘𝐵)) → (𝐴‘0) = (𝐵‘0)) | ||
| Theorem | efgrelexlema 19767* | If two words 𝐴, 𝐵 are related under the free group equivalence, then there exist two extension sequences 𝑎, 𝑏 such that 𝑎 ends at 𝐴, 𝑏 ends at 𝐵, and 𝑎 and 𝐵 have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ∃𝑐 ∈ (◡𝑆 “ {𝑖})∃𝑑 ∈ (◡𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)} ⇒ ⊢ (𝐴𝐿𝐵 ↔ ∃𝑎 ∈ (◡𝑆 “ {𝐴})∃𝑏 ∈ (◡𝑆 “ {𝐵})(𝑎‘0) = (𝑏‘0)) | ||
| Theorem | efgrelexlemb 19768* | If two words 𝐴, 𝐵 are related under the free group equivalence, then there exist two extension sequences 𝑎, 𝑏 such that 𝑎 ends at 𝐴, 𝑏 ends at 𝐵, and 𝑎 and 𝐵 have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ∃𝑐 ∈ (◡𝑆 “ {𝑖})∃𝑑 ∈ (◡𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)} ⇒ ⊢ ∼ ⊆ 𝐿 | ||
| Theorem | efgrelex 19769* | If two words 𝐴, 𝐵 are related under the free group equivalence, then there exist two extension sequences 𝑎, 𝑏 such that 𝑎 ends at 𝐴, 𝑏 ends at 𝐵, and 𝑎 and 𝐵 have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐴 ∼ 𝐵 → ∃𝑎 ∈ (◡𝑆 “ {𝐴})∃𝑏 ∈ (◡𝑆 “ {𝐵})(𝑎‘0) = (𝑏‘0)) | ||
| Theorem | efgredeu 19770* | There is a unique reduced word equivalent to a given word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐴 ∈ 𝑊 → ∃!𝑑 ∈ 𝐷 𝑑 ∼ 𝐴) | ||
| Theorem | efgred2 19771* | Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) → ((𝑆‘𝐴) ∼ (𝑆‘𝐵) ↔ (𝐴‘0) = (𝐵‘0))) | ||
| Theorem | efgcpbllema 19772* | Lemma for efgrelex 19769. Define an auxiliary equivalence relation 𝐿 such that 𝐴𝐿𝐵 if there are sequences from 𝐴 to 𝐵 passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} ⇒ ⊢ (𝑋𝐿𝑌 ↔ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) | ||
| Theorem | efgcpbllemb 19773* | Lemma for efgrelex 19769. Show that 𝐿 is an equivalence relation containing all direct extensions of a word, so is closed under ∼. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → ∼ ⊆ 𝐿) | ||
| Theorem | efgcpbl 19774* | Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∼ 𝑌) → ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵)) | ||
| Theorem | efgcpbl2 19775* | Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝑋 ++ 𝑌)) | ||
| Theorem | frgpval 19776 | Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐺 = (𝑀 /s ∼ )) | ||
| Theorem | frgpcpbl 19777 | Compatibility of the group operation with the free group equivalence relation. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 + 𝐵) ∼ (𝐶 + 𝐷)) | ||
| Theorem | frgp0 19778 | The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝐺 ∈ Grp ∧ [∅] ∼ = (0g‘𝐺))) | ||
| Theorem | frgpeccl 19779 | Closure of the quotient map in a free group. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑊 → [𝑋] ∼ ∈ 𝐵) | ||
| Theorem | frgpgrp 19780 | The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐺 ∈ Grp) | ||
| Theorem | frgpadd 19781 | Addition in the free group is given by concatenation. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → ([𝐴] ∼ + [𝐵] ∼ ) = [(𝐴 ++ 𝐵)] ∼ ) | ||
| Theorem | frgpinv 19782* | The inverse of an element of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) ⇒ ⊢ (𝐴 ∈ 𝑊 → (𝑁‘[𝐴] ∼ ) = [(𝑀 ∘ (reverse‘𝐴))] ∼ ) | ||
| Theorem | frgpmhm 19783* | The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) & ⊢ 𝑊 = (Base‘𝑀) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐹 = (𝑥 ∈ 𝑊 ↦ [𝑥] ∼ ) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐹 ∈ (𝑀 MndHom 𝐺)) | ||
| Theorem | vrgpfval 19784* | The canonical injection from the generating set 𝐼 to the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑈 = (varFGrp‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) | ||
| Theorem | vrgpval 19785 | The value of the generating elements of a free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑈 = (varFGrp‘𝐼) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) | ||
| Theorem | vrgpf 19786 | The mapping from the index set to the generators is a function into the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶𝑋) | ||
| Theorem | vrgpinv 19787 | The inverse of a generating element is represented by 〈𝐴, 1〉 instead of 〈𝐴, 0〉. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = [〈“〈𝐴, 1o〉”〉] ∼ ) | ||
| Theorem | frgpuptf 19788* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) ⇒ ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) | ||
| Theorem | frgpuptinv 19789* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐼 × 2o)) → (𝑇‘(𝑀‘𝐴)) = (𝑁‘(𝑇‘𝐴))) | ||
| Theorem | frgpuplem 19790* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∼ 𝐶) → (𝐻 Σg (𝑇 ∘ 𝐴)) = (𝐻 Σg (𝑇 ∘ 𝐶))) | ||
| Theorem | frgpupf 19791* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) ⇒ ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) | ||
| Theorem | frgpupval 19792* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑊) → (𝐸‘[𝐴] ∼ ) = (𝐻 Σg (𝑇 ∘ 𝐴))) | ||
| Theorem | frgpup1 19793* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐺 GrpHom 𝐻)) | ||
| Theorem | frgpup2 19794* | The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ (𝜑 → 𝐴 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐹‘𝐴)) | ||
| Theorem | frgpup3lem 19795* | The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
| ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ (𝜑 → 𝐾 ∈ (𝐺 GrpHom 𝐻)) & ⊢ (𝜑 → (𝐾 ∘ 𝑈) = 𝐹) ⇒ ⊢ (𝜑 → 𝐾 = 𝐸) | ||
| Theorem | frgpup3 19796* | Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑈 = (varFGrp‘𝐼) ⇒ ⊢ ((𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝐺 GrpHom 𝐻)(𝑚 ∘ 𝑈) = 𝐹) | ||
| Theorem | 0frgp 19797 | The free group on zero generators is trivial. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐺 = (freeGrp‘∅) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 ≈ 1o | ||
| Syntax | ccmn 19798 | Extend class notation with class of all commutative monoids. |
| class CMnd | ||
| Syntax | cabl 19799 | Extend class notation with class of all Abelian groups. |
| class Abel | ||
| Definition | df-cmn 19800* | Define class of all commutative monoids. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| ⊢ CMnd = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g‘𝑔)𝑏) = (𝑏(+g‘𝑔)𝑎)} | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |