Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-dib Structured version   Visualization version   GIF version

Definition df-dib 40010
Description: Isomorphism B is isomorphism A extended with an extra dimension set to the zero vector component i.e. the zero endormorphism. Its domain is lattice elements less than or equal to the fiducial co-atom 𝑀. (Contributed by NM, 8-Dec-2013.)
Assertion
Ref Expression
df-dib DIsoB = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) ↦ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))}))))
Distinct variable group:   𝑀,π‘˜,π‘₯,𝑓

Detailed syntax breakdown of Definition df-dib
StepHypRef Expression
1 cdib 40009 . 2 class DIsoB
2 vk . . 3 setvar π‘˜
3 cvv 3475 . . 3 class V
4 vw . . . 4 setvar 𝑀
52cv 1541 . . . . 5 class π‘˜
6 clh 38855 . . . . 5 class LHyp
75, 6cfv 6544 . . . 4 class (LHypβ€˜π‘˜)
8 vx . . . . 5 setvar π‘₯
94cv 1541 . . . . . . 7 class 𝑀
10 cdia 39899 . . . . . . . 8 class DIsoA
115, 10cfv 6544 . . . . . . 7 class (DIsoAβ€˜π‘˜)
129, 11cfv 6544 . . . . . 6 class ((DIsoAβ€˜π‘˜)β€˜π‘€)
1312cdm 5677 . . . . 5 class dom ((DIsoAβ€˜π‘˜)β€˜π‘€)
148cv 1541 . . . . . . 7 class π‘₯
1514, 12cfv 6544 . . . . . 6 class (((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯)
16 vf . . . . . . . 8 setvar 𝑓
17 cltrn 38972 . . . . . . . . . 10 class LTrn
185, 17cfv 6544 . . . . . . . . 9 class (LTrnβ€˜π‘˜)
199, 18cfv 6544 . . . . . . . 8 class ((LTrnβ€˜π‘˜)β€˜π‘€)
20 cid 5574 . . . . . . . . 9 class I
21 cbs 17144 . . . . . . . . . 10 class Base
225, 21cfv 6544 . . . . . . . . 9 class (Baseβ€˜π‘˜)
2320, 22cres 5679 . . . . . . . 8 class ( I β†Ύ (Baseβ€˜π‘˜))
2416, 19, 23cmpt 5232 . . . . . . 7 class (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))
2524csn 4629 . . . . . 6 class {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))}
2615, 25cxp 5675 . . . . 5 class ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))})
278, 13, 26cmpt 5232 . . . 4 class (π‘₯ ∈ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) ↦ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))}))
284, 7, 27cmpt 5232 . . 3 class (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) ↦ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))})))
292, 3, 28cmpt 5232 . 2 class (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) ↦ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))}))))
301, 29wceq 1542 1 wff DIsoB = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) ↦ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))}))))
Colors of variables: wff setvar class
This definition is referenced by:  dibffval  40011
  Copyright terms: Public domain W3C validator