Step | Hyp | Ref
| Expression |
1 | | cdib 40009 |
. 2
class
DIsoB |
2 | | vk |
. . 3
setvar π |
3 | | cvv 3475 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar π€ |
5 | 2 | cv 1541 |
. . . . 5
class π |
6 | | clh 38855 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6544 |
. . . 4
class
(LHypβπ) |
8 | | vx |
. . . . 5
setvar π₯ |
9 | 4 | cv 1541 |
. . . . . . 7
class π€ |
10 | | cdia 39899 |
. . . . . . . 8
class
DIsoA |
11 | 5, 10 | cfv 6544 |
. . . . . . 7
class
(DIsoAβπ) |
12 | 9, 11 | cfv 6544 |
. . . . . 6
class
((DIsoAβπ)βπ€) |
13 | 12 | cdm 5677 |
. . . . 5
class dom
((DIsoAβπ)βπ€) |
14 | 8 | cv 1541 |
. . . . . . 7
class π₯ |
15 | 14, 12 | cfv 6544 |
. . . . . 6
class
(((DIsoAβπ)βπ€)βπ₯) |
16 | | vf |
. . . . . . . 8
setvar π |
17 | | cltrn 38972 |
. . . . . . . . . 10
class
LTrn |
18 | 5, 17 | cfv 6544 |
. . . . . . . . 9
class
(LTrnβπ) |
19 | 9, 18 | cfv 6544 |
. . . . . . . 8
class
((LTrnβπ)βπ€) |
20 | | cid 5574 |
. . . . . . . . 9
class
I |
21 | | cbs 17144 |
. . . . . . . . . 10
class
Base |
22 | 5, 21 | cfv 6544 |
. . . . . . . . 9
class
(Baseβπ) |
23 | 20, 22 | cres 5679 |
. . . . . . . 8
class ( I
βΎ (Baseβπ)) |
24 | 16, 19, 23 | cmpt 5232 |
. . . . . . 7
class (π β ((LTrnβπ)βπ€) β¦ ( I βΎ (Baseβπ))) |
25 | 24 | csn 4629 |
. . . . . 6
class {(π β ((LTrnβπ)βπ€) β¦ ( I βΎ (Baseβπ)))} |
26 | 15, 25 | cxp 5675 |
. . . . 5
class
((((DIsoAβπ)βπ€)βπ₯) Γ {(π β ((LTrnβπ)βπ€) β¦ ( I βΎ (Baseβπ)))}) |
27 | 8, 13, 26 | cmpt 5232 |
. . . 4
class (π₯ β dom ((DIsoAβπ)βπ€) β¦ ((((DIsoAβπ)βπ€)βπ₯) Γ {(π β ((LTrnβπ)βπ€) β¦ ( I βΎ (Baseβπ)))})) |
28 | 4, 7, 27 | cmpt 5232 |
. . 3
class (π€ β (LHypβπ) β¦ (π₯ β dom ((DIsoAβπ)βπ€) β¦ ((((DIsoAβπ)βπ€)βπ₯) Γ {(π β ((LTrnβπ)βπ€) β¦ ( I βΎ (Baseβπ)))}))) |
29 | 2, 3, 28 | cmpt 5232 |
. 2
class (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β dom ((DIsoAβπ)βπ€) β¦ ((((DIsoAβπ)βπ€)βπ₯) Γ {(π β ((LTrnβπ)βπ€) β¦ ( I βΎ (Baseβπ)))})))) |
30 | 1, 29 | wceq 1542 |
1
wff DIsoB =
(π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β dom ((DIsoAβπ)βπ€) β¦ ((((DIsoAβπ)βπ€)βπ₯) Γ {(π β ((LTrnβπ)βπ€) β¦ ( I βΎ (Baseβπ)))})))) |