Detailed syntax breakdown of Definition df-dib
Step | Hyp | Ref
| Expression |
1 | | cdib 39194 |
. 2
class
DIsoB |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3437 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
6 | | clh 38040 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6458 |
. . . 4
class
(LHyp‘𝑘) |
8 | | vx |
. . . . 5
setvar 𝑥 |
9 | 4 | cv 1538 |
. . . . . . 7
class 𝑤 |
10 | | cdia 39084 |
. . . . . . . 8
class
DIsoA |
11 | 5, 10 | cfv 6458 |
. . . . . . 7
class
(DIsoA‘𝑘) |
12 | 9, 11 | cfv 6458 |
. . . . . 6
class
((DIsoA‘𝑘)‘𝑤) |
13 | 12 | cdm 5600 |
. . . . 5
class dom
((DIsoA‘𝑘)‘𝑤) |
14 | 8 | cv 1538 |
. . . . . . 7
class 𝑥 |
15 | 14, 12 | cfv 6458 |
. . . . . 6
class
(((DIsoA‘𝑘)‘𝑤)‘𝑥) |
16 | | vf |
. . . . . . . 8
setvar 𝑓 |
17 | | cltrn 38157 |
. . . . . . . . . 10
class
LTrn |
18 | 5, 17 | cfv 6458 |
. . . . . . . . 9
class
(LTrn‘𝑘) |
19 | 9, 18 | cfv 6458 |
. . . . . . . 8
class
((LTrn‘𝑘)‘𝑤) |
20 | | cid 5499 |
. . . . . . . . 9
class
I |
21 | | cbs 16957 |
. . . . . . . . . 10
class
Base |
22 | 5, 21 | cfv 6458 |
. . . . . . . . 9
class
(Base‘𝑘) |
23 | 20, 22 | cres 5602 |
. . . . . . . 8
class ( I
↾ (Base‘𝑘)) |
24 | 16, 19, 23 | cmpt 5164 |
. . . . . . 7
class (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘))) |
25 | 24 | csn 4565 |
. . . . . 6
class {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))} |
26 | 15, 25 | cxp 5598 |
. . . . 5
class
((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}) |
27 | 8, 13, 26 | cmpt 5164 |
. . . 4
class (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})) |
28 | 4, 7, 27 | cmpt 5164 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}))) |
29 | 2, 3, 28 | cmpt 5164 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})))) |
30 | 1, 29 | wceq 1539 |
1
wff DIsoB =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})))) |