Detailed syntax breakdown of Definition df-dib
| Step | Hyp | Ref
| Expression |
| 1 | | cdib 41081 |
. 2
class
DIsoB |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | | vw |
. . . 4
setvar 𝑤 |
| 5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
| 6 | | clh 39927 |
. . . . 5
class
LHyp |
| 7 | 5, 6 | cfv 6542 |
. . . 4
class
(LHyp‘𝑘) |
| 8 | | vx |
. . . . 5
setvar 𝑥 |
| 9 | 4 | cv 1538 |
. . . . . . 7
class 𝑤 |
| 10 | | cdia 40971 |
. . . . . . . 8
class
DIsoA |
| 11 | 5, 10 | cfv 6542 |
. . . . . . 7
class
(DIsoA‘𝑘) |
| 12 | 9, 11 | cfv 6542 |
. . . . . 6
class
((DIsoA‘𝑘)‘𝑤) |
| 13 | 12 | cdm 5667 |
. . . . 5
class dom
((DIsoA‘𝑘)‘𝑤) |
| 14 | 8 | cv 1538 |
. . . . . . 7
class 𝑥 |
| 15 | 14, 12 | cfv 6542 |
. . . . . 6
class
(((DIsoA‘𝑘)‘𝑤)‘𝑥) |
| 16 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 17 | | cltrn 40044 |
. . . . . . . . . 10
class
LTrn |
| 18 | 5, 17 | cfv 6542 |
. . . . . . . . 9
class
(LTrn‘𝑘) |
| 19 | 9, 18 | cfv 6542 |
. . . . . . . 8
class
((LTrn‘𝑘)‘𝑤) |
| 20 | | cid 5559 |
. . . . . . . . 9
class
I |
| 21 | | cbs 17230 |
. . . . . . . . . 10
class
Base |
| 22 | 5, 21 | cfv 6542 |
. . . . . . . . 9
class
(Base‘𝑘) |
| 23 | 20, 22 | cres 5669 |
. . . . . . . 8
class ( I
↾ (Base‘𝑘)) |
| 24 | 16, 19, 23 | cmpt 5207 |
. . . . . . 7
class (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘))) |
| 25 | 24 | csn 4608 |
. . . . . 6
class {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))} |
| 26 | 15, 25 | cxp 5665 |
. . . . 5
class
((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}) |
| 27 | 8, 13, 26 | cmpt 5207 |
. . . 4
class (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})) |
| 28 | 4, 7, 27 | cmpt 5207 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}))) |
| 29 | 2, 3, 28 | cmpt 5207 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})))) |
| 30 | 1, 29 | wceq 1539 |
1
wff DIsoB =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})))) |