HomeHome Metamath Proof Explorer
Theorem List (p. 401 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 40001-40100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaddcomnni 40001 Commutative law for addition. (Contributed by metakunt, 25-Apr-2024.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ       (𝐴 + 𝐵) = (𝐵 + 𝐴)
 
Theoremmulassnni 40002 Associative law for multiplication. (Contributed by metakunt, 25-Apr-2024.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ    &   𝐶 ∈ ℕ       ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
 
Theoremmulcomnni 40003 Commutative law for multiplication. (Contributed by metakunt, 25-Apr-2024.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ       (𝐴 · 𝐵) = (𝐵 · 𝐴)
 
Theoremgcdcomnni 40004 Commutative law for gcd. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ       (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)
 
Theoremgcdnegnni 40005 Negation invariance for gcd. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ       (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁)
 
Theoremneggcdnni 40006 Negation invariance for gcd. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ       (-𝑀 gcd 𝑁) = (𝑀 gcd 𝑁)
 
Theorembccl2d 40007 Closure of the binomial coefficient, a deduction version. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑𝐾𝑁)       (𝜑 → (𝑁C𝐾) ∈ ℕ)
 
Theoremrecbothd 40008 Take reciprocal on both sides. (Contributed by metakunt, 12-May-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 ≠ 0)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐷 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶)))
 
Theoremgcdmultiplei 40009 The GCD of a multiple of a positive integer is the positive integer itself. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ       (𝑀 gcd (𝑀 · 𝑁)) = 𝑀
 
Theoremgcdaddmzz2nni 40010 Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝐾 ∈ ℤ       (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀)))
 
Theoremgcdaddmzz2nncomi 40011 Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝐾 ∈ ℤ       (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))
 
Theoremgcdnncli 40012 Closure of the gcd operator. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ       (𝑀 gcd 𝑁) ∈ ℕ
 
Theoremmuldvds1d 40013 If a product divides an integer, so does one of its factors, a deduction version. (Contributed by metakunt, 12-May-2024.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → (𝐾 · 𝑀) ∥ 𝑁)       (𝜑𝐾𝑁)
 
Theoremmuldvds2d 40014 If a product divides an integer, so does one of its factors, a deduction version. (Contributed by metakunt, 12-May-2024.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → (𝐾 · 𝑀) ∥ 𝑁)       (𝜑𝑀𝑁)
 
Theoremnndivdvdsd 40015 A positive integer divides a natural number if and only if the quotient is a positive integer, a deduction version of nndivdvds 15981. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℕ))
 
Theoremnnproddivdvdsd 40016 A product of natural numbers divides a natural number if and only if a factor divides the quotient, a deduction version. (Contributed by metakunt, 12-May-2024.)
(𝜑𝐾 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → ((𝐾 · 𝑀) ∥ 𝑁𝐾 ∥ (𝑁 / 𝑀)))
 
Theoremcoprmdvds2d 40017 If an integer is divisible by two coprime integers, then it is divisible by their product, a deduction version. (Contributed by metakunt, 12-May-2024.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → (𝐾 gcd 𝑀) = 1)    &   (𝜑𝐾𝑁)    &   (𝜑𝑀𝑁)       (𝜑 → (𝐾 · 𝑀) ∥ 𝑁)
 
20.25.2  Some gcd and lcm results
 
Theorem12gcd5e1 40018 The gcd of 12 and 5 is 1. (Contributed by metakunt, 25-Apr-2024.)
(12 gcd 5) = 1
 
Theorem60gcd6e6 40019 The gcd of 60 and 6 is 6. (Contributed by metakunt, 25-Apr-2024.)
(60 gcd 6) = 6
 
Theorem60gcd7e1 40020 The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024.)
(60 gcd 7) = 1
 
Theorem420gcd8e4 40021 The gcd of 420 and 8 is 4. (Contributed by metakunt, 25-Apr-2024.)
(420 gcd 8) = 4
 
Theoremlcmeprodgcdi 40022 Calculate the least common multiple of two natural numbers. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝐺 ∈ ℕ    &   𝐻 ∈ ℕ    &   (𝑀 gcd 𝑁) = 𝐺    &   (𝐺 · 𝐻) = 𝐴    &   (𝑀 · 𝑁) = 𝐴       (𝑀 lcm 𝑁) = 𝐻
 
Theorem12lcm5e60 40023 The lcm of 12 and 5 is 60. (Contributed by metakunt, 25-Apr-2024.)
(12 lcm 5) = 60
 
Theorem60lcm6e60 40024 The lcm of 60 and 6 is 60. (Contributed by metakunt, 25-Apr-2024.)
(60 lcm 6) = 60
 
Theorem60lcm7e420 40025 The lcm of 60 and 7 is 420. (Contributed by metakunt, 25-Apr-2024.)
(60 lcm 7) = 420
 
Theorem420lcm8e840 40026 The lcm of 420 and 8 is 840. (Contributed by metakunt, 25-Apr-2024.)
(420 lcm 8) = 840
 
Theoremlcmfunnnd 40027 Useful equation to calculate the least common multiple of 1 to n. (Contributed by metakunt, 29-Apr-2024.)
(𝜑𝑁 ∈ ℕ)       (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
 
Theoremlcm1un 40028 Least common multiple of natural numbers up to 1 equals 1. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...1)) = 1
 
Theoremlcm2un 40029 Least common multiple of natural numbers up to 2 equals 2. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...2)) = 2
 
Theoremlcm3un 40030 Least common multiple of natural numbers up to 3 equals 6. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...3)) = 6
 
Theoremlcm4un 40031 Least common multiple of natural numbers up to 4 equals 12. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...4)) = 12
 
Theoremlcm5un 40032 Least common multiple of natural numbers up to 5 equals 60. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...5)) = 60
 
Theoremlcm6un 40033 Least common multiple of natural numbers up to 6 equals 60. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...6)) = 60
 
Theoremlcm7un 40034 Least common multiple of natural numbers up to 7 equals 420. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...7)) = 420
 
Theoremlcm8un 40035 Least common multiple of natural numbers up to 8 equals 840. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...8)) = 840
 
20.25.3  Least common multiple inequality theorem
 
Theorem3factsumint1 40036* Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
𝐴 = (𝐿[,]𝑈)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)    &   (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))    &   ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)    &   ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)    &   ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))       (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
 
Theorem3factsumint2 40037* Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)    &   ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)    &   ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)       (𝜑 → Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥)
 
Theorem3factsumint3 40038* Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
𝐴 = (𝐿[,]𝑈)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)    &   (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))    &   ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)    &   ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)    &   ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))       (𝜑 → Σ𝑘𝐵𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥 = Σ𝑘𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥))
 
Theorem3factsumint4 40039* Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
(𝜑𝐵 ∈ Fin)    &   ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)    &   ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)    &   ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)       (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = ∫𝐴(𝐹 · Σ𝑘𝐵 (𝐺 · 𝐻)) d𝑥)
 
Theorem3factsumint 40040* Helpful equation for lcm inequality proof. (Contributed by metakunt, 26-Apr-2024.)
𝐴 = (𝐿[,]𝑈)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))    &   ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)    &   ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))       (𝜑 → ∫𝐴(𝐹 · Σ𝑘𝐵 (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥))
 
Theoremresopunitintvd 40041 Restrict continuous function on open unit interval. (Contributed by metakunt, 12-May-2024.)
(𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ))       (𝜑 → (𝑥 ∈ (0(,)1) ↦ 𝐴) ∈ ((0(,)1)–cn→ℂ))
 
Theoremresclunitintvd 40042 Restrict continuous function on closed unit interval. (Contributed by metakunt, 12-May-2024.)
(𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ))       (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝐴) ∈ ((0[,]1)–cn→ℂ))
 
Theoremresdvopclptsd 40043* Restrict derivative on unit interval. (Contributed by metakunt, 12-May-2024.)
(𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))    &   ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)       (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ 𝐴)) = (𝑥 ∈ (0(,)1) ↦ 𝐵))
 
Theoremlcmineqlem1 40044* Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.)
𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
 
Theoremlcmineqlem2 40045* Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.)
𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
 
Theoremlcmineqlem3 40046* Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 30-Apr-2024.)
𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
 
Theoremlcmineqlem4 40047 Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. F is found in lcmineqlem6 40049. (Contributed by metakunt, 10-May-2024.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑀𝑁)    &   (𝜑𝐾 ∈ (0...(𝑁𝑀)))       (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℤ)
 
Theoremlcmineqlem5 40048 Technical lemma for reciprocal multiplication in deduction form. (Contributed by metakunt, 10-May-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 ≠ 0)       (𝜑 → (𝐴 · (𝐵 · (1 / 𝐶))) = (𝐵 · (𝐴 / 𝐶)))
 
Theoremlcmineqlem6 40049* Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 10-May-2024.)
𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℤ)
 
Theoremlcmineqlem7 40050 Derivative of 1-x for chain rule application. (Contributed by metakunt, 12-May-2024.)
(ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1)
 
Theoremlcmineqlem8 40051* Derivative of (1-x)^(N-M). (Contributed by metakunt, 12-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 < 𝑁)       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
 
Theoremlcmineqlem9 40052* (1-x)^(N-M) is continuous. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀))) ∈ (ℂ–cn→ℂ))
 
Theoremlcmineqlem10 40053* Induction step of lcmineqlem13 40056 (deduction form). (Contributed by metakunt, 12-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 < 𝑁)       (𝜑 → ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥 = ((𝑀 / (𝑁𝑀)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
 
Theoremlcmineqlem11 40054 Induction step, continuation for binomial coefficients. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 < 𝑁)       (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = ((𝑀 / (𝑁𝑀)) · (1 / (𝑀 · (𝑁C𝑀)))))
 
Theoremlcmineqlem12 40055* Base case for induction. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)       (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = (1 / (1 · (𝑁C1))))
 
Theoremlcmineqlem13 40056* Induction proof for lcm integral. (Contributed by metakunt, 12-May-2024.)
𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑𝐹 = (1 / (𝑀 · (𝑁C𝑀))))
 
Theoremlcmineqlem14 40057 Technical lemma for inequality estimate. (Contributed by metakunt, 12-May-2024.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐶 ∈ ℕ)    &   (𝜑𝐷 ∈ ℕ)    &   (𝜑𝐸 ∈ ℕ)    &   (𝜑 → (𝐴 · 𝐶) ∥ 𝐷)    &   (𝜑 → (𝐵 · 𝐶) ∥ 𝐸)    &   (𝜑𝐷𝐸)    &   (𝜑 → (𝐴 gcd 𝐵) = 1)       (𝜑 → ((𝐴 · 𝐵) · 𝐶) ∥ 𝐸)
 
Theoremlcmineqlem15 40058* F times the least common multiple of 1 to n is a natural number. (Contributed by metakunt, 10-May-2024.)
𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℕ)
 
Theoremlcmineqlem16 40059 Technical divisibility lemma. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑 → (𝑀 · (𝑁C𝑀)) ∥ (lcm‘(1...𝑁)))
 
Theoremlcmineqlem17 40060 Inequality of 2^{2n}. (Contributed by metakunt, 29-Apr-2024.)
(𝜑𝑁 ∈ ℕ0)       (𝜑 → (2↑(2 · 𝑁)) ≤ (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
 
Theoremlcmineqlem18 40061 Technical lemma to shift factors in binomial coefficient. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)       (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
 
Theoremlcmineqlem19 40062 Dividing implies inequality for lcm inequality lemma. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)       (𝜑 → ((𝑁 · ((2 · 𝑁) + 1)) · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...((2 · 𝑁) + 1))))
 
Theoremlcmineqlem20 40063 Inequality for lcm lemma. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)       (𝜑 → (𝑁 · (2↑(2 · 𝑁))) ≤ (lcm‘(1...((2 · 𝑁) + 1))))
 
Theoremlcmineqlem21 40064 The lcm inequality lemma without base cases 7 and 8. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑 → 4 ≤ 𝑁)       (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 1))))
 
Theoremlcmineqlem22 40065 The lcm inequality lemma without base cases 7 and 8. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑 → 4 ≤ 𝑁)       (𝜑 → ((2↑((2 · 𝑁) + 1)) ≤ (lcm‘(1...((2 · 𝑁) + 1))) ∧ (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 2)))))
 
Theoremlcmineqlem23 40066 Penultimate step to the lcm inequality lemma. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑 → 9 ≤ 𝑁)       (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
 
Theoremlcmineqlem 40067 The least common multiple inequality lemma, a central result for future use. Theorem 3.1 from https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 16-May-2024.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑 → 7 ≤ 𝑁)       (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
 
20.25.4  Logarithm inequalities
 
Theorem3exp7 40068 3 to the power of 7 equals 2187. (Contributed by metakunt, 21-Aug-2024.)
(3↑7) = 2187
 
Theorem3lexlogpow5ineq1 40069 First inequality in inequality chain, proposed by Mario Carneiro (Contributed by metakunt, 22-May-2024.)
9 < ((11 / 7)↑5)
 
Theorem3lexlogpow5ineq2 40070 Second inequality in inequality chain, proposed by Mario Carneiro. (Contributed by metakunt, 22-May-2024.)
(𝜑𝑋 ∈ ℝ)    &   (𝜑 → 3 ≤ 𝑋)       (𝜑 → ((11 / 7)↑5) ≤ ((2 logb 𝑋)↑5))
 
Theorem3lexlogpow5ineq4 40071 Sharper logarithm inequality chain. (Contributed by metakunt, 21-Aug-2024.)
(𝜑𝑋 ∈ ℝ)    &   (𝜑 → 3 ≤ 𝑋)       (𝜑 → 9 < ((2 logb 𝑋)↑5))
 
Theorem3lexlogpow5ineq3 40072 Combined inequality chain for a specific power of the binary logarithm, proposed by Mario Carneiro. (Contributed by metakunt, 22-May-2024.)
(𝜑𝑋 ∈ ℝ)    &   (𝜑 → 3 ≤ 𝑋)       (𝜑 → 7 < ((2 logb 𝑋)↑5))
 
Theorem3lexlogpow2ineq1 40073 Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024.)
((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5 / 3))
 
Theorem3lexlogpow2ineq2 40074 Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024.)
(2 < ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < 3)
 
Theorem3lexlogpow5ineq5 40075 Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024.)
((2 logb 3)↑5) ≤ 15
 
20.25.5  Miscellaneous results for AKS formalisation
 
Theoremintlewftc 40076* Inequality inference by invoking fundamental theorem of calculus. (Contributed by metakunt, 22-Jul-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))    &   (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))    &   (𝜑𝐷 = (ℝ D 𝐹))    &   (𝜑𝐸 = (ℝ D 𝐺))    &   (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ))    &   (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ))    &   (𝜑𝐷 ∈ 𝐿1)    &   (𝜑𝐸 ∈ 𝐿1)    &   (𝜑𝐷 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃))    &   (𝜑𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))    &   ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃𝑄)    &   (𝜑 → (𝐹𝐴) ≤ (𝐺𝐴))       (𝜑 → (𝐹𝐵) ≤ (𝐺𝐵))
 
Theoremaks4d1lem1 40077 Technical lemma to reduce proof size. (Contributed by metakunt, 14-Nov-2024.)
(𝜑𝑁 ∈ (ℤ‘3))    &   𝐵 = (⌈‘((2 logb 𝑁)↑5))       (𝜑 → (𝐵 ∈ ℕ ∧ 9 < 𝐵))
 
Theoremaks4d1p1p1 40078* Exponential law for finite products, special case. (Contributed by metakunt, 22-Jul-2024.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → ∏𝑘 ∈ (1...𝑁)(𝐴𝑐𝑘) = (𝐴𝑐Σ𝑘 ∈ (1...𝑁)𝑘))
 
Theoremdvrelog2 40079* The derivative of the logarithm, ftc2 25217 version. (Contributed by metakunt, 11-Aug-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)    &   (𝜑𝐴𝐵)    &   𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))    &   𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))       (𝜑 → (ℝ D 𝐹) = 𝐺)
 
Theoremdvrelog3 40080* The derivative of the logarithm on an open interval. (Contributed by metakunt, 11-Aug-2024.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴𝐵)    &   𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))    &   𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))       (𝜑 → (ℝ D 𝐹) = 𝐺)
 
Theoremdvrelog2b 40081* Derivative of the binary logarithm. (Contributed by metakunt, 11-Aug-2024.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴𝐵)    &   𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))    &   𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))       (𝜑 → (ℝ D 𝐹) = 𝐺)
 
Theorem0nonelalab 40082 Technical lemma for open interval. (Contributed by metakunt, 12-Aug-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶 ∈ (𝐴(,)𝐵))       (𝜑 → 0 ≠ 𝐶)
 
Theoremdvrelogpow2b 40083* Derivative of the power of the binary logarithm. (Contributed by metakunt, 12-Aug-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)    &   (𝜑𝐴𝐵)    &   𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))    &   𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)))    &   𝐶 = (𝑁 / ((log‘2)↑𝑁))    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (ℝ D 𝐹) = 𝐺)
 
Theoremaks4d1p1p3 40084 Bound of a ceiling of the binary logarithm to the fifth power. (Contributed by metakunt, 19-Aug-2024.)
(𝜑𝑁 ∈ ℕ)    &   𝐵 = (⌈‘((2 logb 𝑁)↑5))    &   (𝜑 → 3 ≤ 𝑁)       (𝜑 → (𝑁𝑐(⌊‘(2 logb 𝐵))) < (𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))))
 
Theoremaks4d1p1p2 40085* Rewrite 𝐴 in more suitable form. (Contributed by metakunt, 19-Aug-2024.)
(𝜑𝑁 ∈ ℕ)    &   𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))    &   𝐵 = (⌈‘((2 logb 𝑁)↑5))    &   (𝜑 → 3 ≤ 𝑁)       (𝜑𝐴 < (𝑁𝑐(((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2))))
 
Theoremaks4d1p1p4 40086* Technical step for inequality. The hard work is in to prove the final hypothesis. (Contributed by metakunt, 19-Aug-2024.)
(𝜑𝑁 ∈ ℕ)    &   𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))    &   𝐵 = (⌈‘((2 logb 𝑁)↑5))    &   (𝜑 → 3 ≤ 𝑁)    &   𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1))    &   𝐷 = ((2 logb 𝑁)↑2)    &   𝐸 = ((2 logb 𝑁)↑4)    &   (𝜑 → ((2 · 𝐶) + 𝐷) ≤ 𝐸)       (𝜑𝐴 < (2↑𝐵))
 
Theoremdvle2 40087* Collapsed dvle 25180. (Contributed by metakunt, 19-Aug-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ))    &   (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ))    &   (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐸)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐹))    &   (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐺)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐻))    &   ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐹𝐻)    &   (𝑥 = 𝐴𝐸 = 𝑃)    &   (𝑥 = 𝐴𝐺 = 𝑄)    &   (𝑥 = 𝐵𝐸 = 𝑅)    &   (𝑥 = 𝐵𝐺 = 𝑆)    &   (𝜑𝑃𝑄)    &   (𝜑𝐴𝐵)       (𝜑𝑅𝑆)
 
Theoremaks4d1p1p6 40088* Inequality lift to differentiable functions for a term in AKS inequality lemma. (Contributed by metakunt, 19-Aug-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 3 ≤ 𝐴)    &   (𝜑𝐴𝐵)       (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))))
 
Theoremaks4d1p1p7 40089 Bound of intermediary of inequality step. (Contributed by metakunt, 19-Aug-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 4 ≤ 𝐴)       (𝜑 → ((2 · ((1 / ((((2 logb 𝐴)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝐴)↑4)) · (1 / (𝐴 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝐴)↑(2 − 1)) / 𝐴))) ≤ ((4 / ((log‘2)↑4)) · (((log‘𝐴)↑3) / 𝐴)))
 
Theoremaks4d1p1p5 40090* Show inequality for existence of a non-divisor. (Contributed by metakunt, 19-Aug-2024.)
(𝜑𝑁 ∈ ℕ)    &   𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))    &   𝐵 = (⌈‘((2 logb 𝑁)↑5))    &   (𝜑 → 4 ≤ 𝑁)    &   𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1))    &   𝐷 = ((2 logb 𝑁)↑2)    &   𝐸 = ((2 logb 𝑁)↑4)       (𝜑𝐴 < (2↑𝐵))
 
Theoremaks4d1p1 40091* Show inequality for existence of a non-divisor. (Contributed by metakunt, 21-Aug-2024.)
(𝜑𝑁 ∈ (ℤ‘3))    &   𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))    &   𝐵 = (⌈‘((2 logb 𝑁)↑5))       (𝜑𝐴 < (2↑𝐵))
 
Theoremaks4d1p2 40092 Technical lemma for existence of non-divisor. (Contributed by metakunt, 27-Oct-2024.)
(𝜑𝑁 ∈ (ℤ‘3))    &   𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))    &   𝐵 = (⌈‘((2 logb 𝑁)↑5))       (𝜑 → (2↑𝐵) ≤ (lcm‘(1...𝐵)))
 
Theoremaks4d1p3 40093* There exists a small enough number such that it does not divide 𝐴. (Contributed by metakunt, 27-Oct-2024.)
(𝜑𝑁 ∈ (ℤ‘3))    &   𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))    &   𝐵 = (⌈‘((2 logb 𝑁)↑5))       (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
 
Theoremaks4d1p4 40094* There exists a small enough number such that it does not divide 𝐴. (Contributed by metakunt, 28-Oct-2024.)
(𝜑𝑁 ∈ (ℤ‘3))    &   𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))    &   𝐵 = (⌈‘((2 logb 𝑁)↑5))    &   𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )       (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
 
Theoremaks4d1p5 40095* Show that 𝑁 and 𝑅 are coprime for AKS existence theorem. Precondition will be eliminated in further theorem. (Contributed by metakunt, 30-Oct-2024.)
(𝜑𝑁 ∈ (ℤ‘3))    &   𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))    &   𝐵 = (⌈‘((2 logb 𝑁)↑5))    &   𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )    &   (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)       (𝜑 → (𝑁 gcd 𝑅) = 1)
 
Theoremaks4d1p6 40096* The maximal prime power exponent is smaller than the binary logarithm floor of 𝐵. (Contributed by metakunt, 30-Oct-2024.)
(𝜑𝑁 ∈ (ℤ‘3))    &   𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))    &   𝐵 = (⌈‘((2 logb 𝑁)↑5))    &   𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝑃𝑅)    &   𝐾 = (𝑃 pCnt 𝑅)       (𝜑𝐾 ≤ (⌊‘(2 logb 𝐵)))
 
Theoremaks4d1p7d1 40097* Technical step in AKS lemma 4.1 (Contributed by metakunt, 31-Oct-2024.)
(𝜑𝑁 ∈ (ℤ‘3))    &   𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))    &   𝐵 = (⌈‘((2 logb 𝑁)↑5))    &   𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )    &   (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁))       (𝜑𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))))
 
Theoremaks4d1p7 40098* Technical step in AKS lemma 4.1 (Contributed by metakunt, 31-Oct-2024.)
(𝜑𝑁 ∈ (ℤ‘3))    &   𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))    &   𝐵 = (⌈‘((2 logb 𝑁)↑5))    &   𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )       (𝜑 → ∃𝑝 ∈ ℙ (𝑝𝑅 ∧ ¬ 𝑝𝑁))
 
Theoremaks4d1p8d1 40099 If a prime divides one number 𝑀, but not another number 𝑁, then it divides the quotient of 𝑀 and the gcd of 𝑀 and 𝑁. (Contributed by Thierry Arnoux, 10-Nov-2024.)
(𝜑𝑃 ∈ ℙ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃𝑀)    &   (𝜑 → ¬ 𝑃𝑁)       (𝜑𝑃 ∥ (𝑀 / (𝑀 gcd 𝑁)))
 
Theoremaks4d1p8d2 40100 Any prime power dividing a positive integer is less than that integer if that integer has another prime factor. (Contributed by metakunt, 13-Nov-2024.)
(𝜑𝑅 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝑄 ∈ ℙ)    &   (𝜑𝑃𝑅)    &   (𝜑𝑄𝑅)    &   (𝜑 → ¬ 𝑃𝑁)    &   (𝜑𝑄𝑁)       (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < 𝑅)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >