HomeHome Metamath Proof Explorer
Theorem List (p. 401 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30158)
  Hilbert Space Explorer  Hilbert Space Explorer
(30159-31681)
  Users' Mathboxes  Users' Mathboxes
(31682-47805)
 

Theorem List for Metamath Proof Explorer - 40001-40100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdibval 40001* The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &    0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π½ = ((DIsoAβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) β†’ (πΌβ€˜π‘‹) = ((π½β€˜π‘‹) Γ— { 0 }))
 
TheoremdibopelvalN 40002* Member of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &    0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π½ = ((DIsoAβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹) ↔ (𝐹 ∈ (π½β€˜π‘‹) ∧ 𝑆 = 0 )))
 
Theoremdibval2 40003* Value of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &    0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π½ = ((DIsoAβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) = ((π½β€˜π‘‹) Γ— { 0 }))
 
Theoremdibopelval2 40004* Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.) (Revised by Mario Carneiro, 6-May-2015.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &    0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π½ = ((DIsoAβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹) ↔ (𝐹 ∈ (π½β€˜π‘‹) ∧ 𝑆 = 0 )))
 
Theoremdibval3N 40005* Value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &    0 = (𝑔 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) = ({𝑓 ∈ 𝑇 ∣ (π‘…β€˜π‘“) ≀ 𝑋} Γ— { 0 }))
 
Theoremdibelval3 40006* Member of the partial isomorphism B. (Contributed by NM, 26-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &    0 = (𝑔 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (π‘Œ ∈ (πΌβ€˜π‘‹) ↔ βˆƒπ‘“ ∈ 𝑇 (π‘Œ = βŸ¨π‘“, 0 ⟩ ∧ (π‘…β€˜π‘“) ≀ 𝑋)))
 
Theoremdibopelval3 40007* Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &    0 = (𝑔 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹) ↔ ((𝐹 ∈ 𝑇 ∧ (π‘…β€˜πΉ) ≀ 𝑋) ∧ 𝑆 = 0 )))
 
Theoremdibelval1st 40008 Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π½ = ((DIsoAβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘‹)) β†’ (1st β€˜π‘Œ) ∈ (π½β€˜π‘‹))
 
Theoremdibelval1st1 40009 Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘‹)) β†’ (1st β€˜π‘Œ) ∈ 𝑇)
 
Theoremdibelval1st2N 40010 Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘‹)) β†’ (π‘…β€˜(1st β€˜π‘Œ)) ≀ 𝑋)
 
Theoremdibelval2nd 40011* Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &    0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘‹)) β†’ (2nd β€˜π‘Œ) = 0 )
 
Theoremdibn0 40012 The value of the partial isomorphism B is not empty. (Contributed by NM, 18-Jan-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) β‰  βˆ…)
 
Theoremdibfna 40013 Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π½ = ((DIsoAβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn dom 𝐽)
 
Theoremdibdiadm 40014 Domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π½ = ((DIsoAβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ dom 𝐼 = dom 𝐽)
 
TheoremdibfnN 40015* Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š})
 
TheoremdibdmN 40016* Domain of the partial isomorphism A. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ dom 𝐼 = {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š})
 
TheoremdibeldmN 40017 Member of domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)))
 
Theoremdibord 40018 The isomorphism B for a lattice 𝐾 is order-preserving in the region under co-atom π‘Š. (Contributed by NM, 24-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ↔ 𝑋 ≀ π‘Œ))
 
Theoremdib11N 40019 The isomorphism B for a lattice 𝐾 is one-to-one in the region under co-atom π‘Š. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((πΌβ€˜π‘‹) = (πΌβ€˜π‘Œ) ↔ 𝑋 = π‘Œ))
 
Theoremdibf11N 40020 The partial isomorphism A for a lattice 𝐾 is a one-to-one function. Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼:dom 𝐼–1-1-ontoβ†’ran 𝐼)
 
TheoremdibclN 40021 Closure of partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) β†’ (πΌβ€˜π‘‹) ∈ ran 𝐼)
 
Theoremdibvalrel 40022 The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ Rel (πΌβ€˜π‘‹))
 
Theoremdib0 40023 The value of partial isomorphism B at the lattice zero is the singleton of the zero vector i.e. the zero subspace. (Contributed by NM, 27-Mar-2014.)
0 = (0.β€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (0gβ€˜π‘ˆ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (πΌβ€˜ 0 ) = {𝑂})
 
Theoremdib1dim 40024* Two expressions for the 1-dimensional subspaces of vector space H. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (πΌβ€˜(π‘…β€˜πΉ)) = {𝑔 ∈ (𝑇 Γ— 𝐸) ∣ βˆƒπ‘  ∈ 𝐸 𝑔 = ⟨(π‘ β€˜πΉ), π‘‚βŸ©})
 
TheoremdibglbN 40025* Partial isomorphism B of a lattice glb. (Contributed by NM, 9-Mar-2014.) (New usage is discouraged.)
𝐺 = (glbβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (πΌβ€˜(πΊβ€˜π‘†)) = ∩ π‘₯ ∈ 𝑆 (πΌβ€˜π‘₯))
 
TheoremdibintclN 40026 The intersection of partial isomorphism B closed subspaces is a closed subspace. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑆 ∈ ran 𝐼)
 
Theoremdib1dim2 40027* Two expressions for a 1-dimensional subspace of vector space H (when 𝐹 is a nonzero vector i.e. non-identity translation). (Contributed by NM, 24-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (πΌβ€˜(π‘…β€˜πΉ)) = (π‘β€˜{⟨𝐹, π‘‚βŸ©}))
 
Theoremdibss 40028 The partial isomorphism B maps to a set of vectors in full vector space H. (Contributed by NM, 1-Jan-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) βŠ† 𝑉)
 
Theoremdiblss 40029 The value of partial isomorphism B is a subspace of partial vector space H. TODO: use dib* specific theorems instead of dia* ones to shorten proof? (Contributed by NM, 11-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) ∈ 𝑆)
 
Theoremdiblsmopel 40030* Membership in subspace sum for partial isomorphism B. (Contributed by NM, 21-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘‰ = ((DVecAβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘‰)    &    ✚ = (LSSumβ€˜π‘ˆ)    &   π½ = ((DIsoAβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š))    &   (πœ‘ β†’ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š))    β‡’   (πœ‘ β†’ (⟨𝐹, π‘†βŸ© ∈ ((πΌβ€˜π‘‹) ✚ (πΌβ€˜π‘Œ)) ↔ (𝐹 ∈ ((π½β€˜π‘‹) βŠ• (π½β€˜π‘Œ)) ∧ 𝑆 = 𝑂)))
 
Syntaxcdic 40031 Extend class notation with isomorphism C.
class DIsoC
 
Definitiondf-dic 40032* Isomorphism C has domain of lattice atoms that are not less than or equal to the fiducial co-atom 𝑀. The value is a one-dimensional subspace generated by the pair consisting of the β„© vector below and the endomorphism ring unity. Definition of phi(q) in [Crawley] p. 121. Note that we use the fixed atom ((oc k ) 𝑀) to represent the p in their "Choose an atom p..." on line 21. (Contributed by NM, 15-Dec-2013.)
DIsoC = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘ž ∈ {π‘Ÿ ∈ (Atomsβ€˜π‘˜) ∣ Β¬ π‘Ÿ(leβ€˜π‘˜)𝑀} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€)(π‘”β€˜((ocβ€˜π‘˜)β€˜π‘€)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€))})))
 
Theoremdicffval 40033* The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (𝐾 ∈ 𝑉 β†’ (DIsoCβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘ž ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ 𝑀} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘€)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€))})))
 
Theoremdicfval 40034* The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 = (π‘ž ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ π‘Š} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = π‘ž)) ∧ 𝑠 ∈ 𝐸)}))
 
Theoremdicval 40035* The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 22-Sep-2015.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)})
 
Theoremdicopelval 40036* Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Feb-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   πΉ ∈ V    &   π‘† ∈ V    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘„) ↔ (𝐹 = (π‘†β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑆 ∈ 𝐸)))
 
TheoremdicelvalN 40037* Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (π‘Œ ∈ (πΌβ€˜π‘„) ↔ (π‘Œ ∈ (V Γ— V) ∧ ((1st β€˜π‘Œ) = ((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ (2nd β€˜π‘Œ) ∈ 𝐸))))
 
Theoremdicval2 40038* The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 20-Feb-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   πΊ = (℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)})
 
Theoremdicelval3 40039* Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   πΊ = (℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (π‘Œ ∈ (πΌβ€˜π‘„) ↔ βˆƒπ‘  ∈ 𝐸 π‘Œ = ⟨(π‘ β€˜πΊ), π‘ βŸ©))
 
Theoremdicopelval2 40040* Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 20-Feb-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   πΊ = (℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)    &   πΉ ∈ V    &   π‘† ∈ V    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘„) ↔ (𝐹 = (π‘†β€˜πΊ) ∧ 𝑆 ∈ 𝐸)))
 
Theoremdicelval2N 40041* Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   πΊ = (℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (π‘Œ ∈ (πΌβ€˜π‘„) ↔ (π‘Œ ∈ (V Γ— V) ∧ ((1st β€˜π‘Œ) = ((2nd β€˜π‘Œ)β€˜πΊ) ∧ (2nd β€˜π‘Œ) ∈ 𝐸))))
 
TheoremdicfnN 40042* Functionality and domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š})
 
TheoremdicdmN 40043* Domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ dom 𝐼 = {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š})
 
TheoremdicvalrelN 40044 The value of partial isomorphism C is a relation. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ Rel (πΌβ€˜π‘‹))
 
Theoremdicssdvh 40045 The partial isomorphism C maps to a set of vectors in full vector space H. (Contributed by NM, 19-Jan-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) βŠ† 𝑉)
 
Theoremdicelval1sta 40046* Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 16-Feb-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘„)) β†’ (1st β€˜π‘Œ) = ((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)))
 
Theoremdicelval1stN 40047 Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 16-Feb-2014.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘„)) β†’ (1st β€˜π‘Œ) ∈ 𝑇)
 
Theoremdicelval2nd 40048 Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 16-Feb-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘„)) β†’ (2nd β€˜π‘Œ) ∈ 𝐸)
 
Theoremdicvaddcl 40049 Membership in value of the partial isomorphism C is closed under vector sum. (Contributed by NM, 16-Feb-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑋 + π‘Œ) ∈ (πΌβ€˜π‘„))
 
Theoremdicvscacl 40050 Membership in value of the partial isomorphism C is closed under scalar product. (Contributed by NM, 16-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑋 Β· π‘Œ) ∈ (πΌβ€˜π‘„))
 
Theoremdicn0 40051 The value of the partial isomorphism C is not empty. (Contributed by NM, 15-Feb-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) β‰  βˆ…)
 
Theoremdiclss 40052 The value of partial isomorphism C is a subspace of partial vector space H. (Contributed by NM, 16-Feb-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) ∈ 𝑆)
 
Theoremdiclspsn 40053* The value of isomorphism C is spanned by vector 𝐹. Part of proof of Lemma N of [Crawley] p. 121 line 29. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΉ = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = (π‘β€˜{⟨𝐹, ( I β†Ύ 𝑇)⟩}))
 
Theoremcdlemn2 40054* Part of proof of Lemma N of [Crawley] p. 121 line 30. (Contributed by NM, 21-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΉ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘„) = 𝑆)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) ∧ 𝑆 ≀ (𝑄 ∨ 𝑋)) β†’ (π‘…β€˜πΉ) ≀ 𝑋)
 
Theoremcdlemn2a 40055* Part of proof of Lemma N of [Crawley] p. 121. (Contributed by NM, 24-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΉ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘„) = 𝑆)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) ∧ 𝑆 ≀ (𝑄 ∨ 𝑋)) β†’ (π‘β€˜{⟨𝐹, π‘‚βŸ©}) βŠ† (πΌβ€˜π‘‹))
 
Theoremcdlemn3 40056* Part of proof of Lemma N of [Crawley] p. 121 line 31. (Contributed by NM, 21-Feb-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΉ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑅)    &   π½ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘„) = 𝑅)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝐽 ∘ 𝐹) = 𝐺)
 
Theoremcdlemn4 40057* Part of proof of Lemma N of [Crawley] p. 121 line 31. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΉ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑅)    &   π½ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘„) = 𝑅)    &    + = (+gβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨𝐹, ( I β†Ύ 𝑇)⟩ + ⟨𝐽, π‘‚βŸ©))
 
Theoremcdlemn4a 40058* Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 24-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΉ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑅)    &   π½ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘„) = 𝑅)    &   π‘ = (LSpanβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (π‘β€˜{⟨𝐺, ( I β†Ύ 𝑇)⟩}) βŠ† ((π‘β€˜{⟨𝐹, ( I β†Ύ 𝑇)⟩}) βŠ• (π‘β€˜{⟨𝐽, π‘‚βŸ©})))
 
Theoremcdlemn5pre 40059* Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 25-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΉ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑅)    &   π‘€ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘„) = 𝑅)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) ∧ 𝑅 ≀ (𝑄 ∨ 𝑋)) β†’ (π½β€˜π‘…) βŠ† ((π½β€˜π‘„) βŠ• (πΌβ€˜π‘‹)))
 
Theoremcdlemn5 40060 Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 25-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) ∧ 𝑅 ≀ (𝑄 ∨ 𝑋)) β†’ (π½β€˜π‘…) βŠ† ((π½β€˜π‘„) βŠ• (πΌβ€˜π‘‹)))
 
Theoremcdlemn6 40061* Part of proof of Lemma N of [Crawley] p. 121 line 35. (Contributed by NM, 26-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &   πΉ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) β†’ (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©) = ⟨((π‘ β€˜πΉ) ∘ 𝑔), π‘ βŸ©)
 
Theoremcdlemn7 40062* Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 26-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &   πΉ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑅)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (𝐺 = ((π‘ β€˜πΉ) ∘ 𝑔) ∧ ( I β†Ύ 𝑇) = 𝑠))
 
Theoremcdlemn8 40063* Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 26-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &   πΉ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑅)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ 𝑔 = (𝐺 ∘ ◑𝐹))
 
Theoremcdlemn9 40064* Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &   πΉ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑅)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (π‘”β€˜π‘„) = 𝑅)
 
Theoremcdlemn10 40065 Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) ∧ (𝑔 ∈ 𝑇 ∧ (π‘”β€˜π‘„) = 𝑆 ∧ (π‘…β€˜π‘”) ≀ 𝑋)) β†’ 𝑆 ≀ (𝑄 ∨ 𝑋))
 
Theoremcdlemn11a 40066* Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΉ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑁)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ Β¬ 𝑁 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) ∧ (π½β€˜π‘) βŠ† ((π½β€˜π‘„) βŠ• (πΌβ€˜π‘‹))) β†’ ⟨𝐺, ( I β†Ύ 𝑇)⟩ ∈ (π½β€˜π‘))
 
Theoremcdlemn11b 40067* Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΉ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑁)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ Β¬ 𝑁 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) ∧ (π½β€˜π‘) βŠ† ((π½β€˜π‘„) βŠ• (πΌβ€˜π‘‹))) β†’ ⟨𝐺, ( I β†Ύ 𝑇)⟩ ∈ ((π½β€˜π‘„) βŠ• (πΌβ€˜π‘‹)))
 
Theoremcdlemn11c 40068* Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΉ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑁)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ Β¬ 𝑁 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) ∧ (π½β€˜π‘) βŠ† ((π½β€˜π‘„) βŠ• (πΌβ€˜π‘‹))) β†’ βˆƒπ‘¦ ∈ (π½β€˜π‘„)βˆƒπ‘§ ∈ (πΌβ€˜π‘‹)⟨𝐺, ( I β†Ύ 𝑇)⟩ = (𝑦 + 𝑧))
 
Theoremcdlemn11pre 40069* Part of proof of Lemma N of [Crawley] p. 121 line 37. TODO: combine cdlemn11a 40066, cdlemn11b 40067, cdlemn11c 40068, cdlemn11pre into one? (Contributed by NM, 27-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΉ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑁)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ Β¬ 𝑁 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) ∧ (π½β€˜π‘) βŠ† ((π½β€˜π‘„) βŠ• (πΌβ€˜π‘‹))) β†’ 𝑁 ≀ (𝑄 ∨ 𝑋))
 
Theoremcdlemn11 40070 Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) ∧ (π½β€˜π‘…) βŠ† ((π½β€˜π‘„) βŠ• (πΌβ€˜π‘‹))) β†’ 𝑅 ≀ (𝑄 ∨ 𝑋))
 
Theoremcdlemn 40071 Lemma N of [Crawley] p. 121 line 27. (Contributed by NM, 27-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š))) β†’ (𝑅 ≀ (𝑄 ∨ 𝑋) ↔ (π½β€˜π‘…) βŠ† ((π½β€˜π‘„) βŠ• (πΌβ€˜π‘‹))))
 
Theoremdihordlem6 40072* Part of proof of Lemma N of [Crawley] p. 122 line 35. (Contributed by NM, 3-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑅)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) β†’ (⟨(π‘ β€˜πΊ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©) = ⟨((π‘ β€˜πΊ) ∘ 𝑔), π‘ βŸ©)
 
Theoremdihordlem7 40073* Part of proof of Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑅)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ βŸ¨π‘“, π‘‚βŸ© = (⟨(π‘ β€˜πΊ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (𝑓 = ((π‘ β€˜πΊ) ∘ 𝑔) ∧ 𝑂 = 𝑠))
 
Theoremdihordlem7b 40074* Part of proof of Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑅)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ βŸ¨π‘“, π‘‚βŸ© = (⟨(π‘ β€˜πΊ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (𝑓 = 𝑔 ∧ 𝑂 = 𝑠))
 
Theoremdihjustlem 40075 Part of proof after Lemma N of [Crawley] p. 122 line 4, "the definition of phi(x) is independent of the atom q." (Contributed by NM, 2-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑋 ∈ 𝐡) ∧ (𝑄 ∨ (𝑋 ∧ π‘Š)) = (𝑅 ∨ (𝑋 ∧ π‘Š))) β†’ ((π½β€˜π‘„) βŠ• (πΌβ€˜(𝑋 ∧ π‘Š))) βŠ† ((π½β€˜π‘…) βŠ• (πΌβ€˜(𝑋 ∧ π‘Š))))
 
Theoremdihjust 40076 Part of proof after Lemma N of [Crawley] p. 122 line 4, "the definition of phi(x) is independent of the atom q." (Contributed by NM, 2-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑋 ∈ 𝐡) ∧ (𝑄 ∨ (𝑋 ∧ π‘Š)) = (𝑅 ∨ (𝑋 ∧ π‘Š))) β†’ ((π½β€˜π‘„) βŠ• (πΌβ€˜(𝑋 ∧ π‘Š))) = ((π½β€˜π‘…) βŠ• (πΌβ€˜(𝑋 ∧ π‘Š))))
 
Theoremdihord1 40077 Part of proof after Lemma N of [Crawley] p. 122. Forward ordering property. TODO: change (𝑄 ∨ (𝑋 ∧ π‘Š)) = 𝑋 to 𝑄 ≀ 𝑋 using lhpmcvr3 38884, here and all theorems below. (Contributed by NM, 2-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ ((𝑄 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑅 ∨ (π‘Œ ∧ π‘Š)) = π‘Œ ∧ 𝑋 ≀ π‘Œ)) β†’ ((π½β€˜π‘„) βŠ• (πΌβ€˜(𝑋 ∧ π‘Š))) βŠ† ((π½β€˜π‘…) βŠ• (πΌβ€˜(π‘Œ ∧ π‘Š))))
 
Theoremdihord2a 40078 Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ ((𝑄 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑅 ∨ (π‘Œ ∧ π‘Š)) = π‘Œ ∧ ((π½β€˜π‘„) βŠ• (πΌβ€˜(𝑋 ∧ π‘Š))) βŠ† ((π½β€˜π‘…) βŠ• (πΌβ€˜(π‘Œ ∧ π‘Š))))) β†’ 𝑄 ≀ (𝑅 ∨ (π‘Œ ∧ π‘Š)))
 
Theoremdihord2b 40079 Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ ((π½β€˜π‘„) βŠ• (πΌβ€˜(𝑋 ∧ π‘Š))) βŠ† ((π½β€˜π‘…) βŠ• (πΌβ€˜(π‘Œ ∧ π‘Š)))) β†’ (πΌβ€˜(𝑋 ∧ π‘Š)) βŠ† ((π½β€˜π‘…) βŠ• (πΌβ€˜(π‘Œ ∧ π‘Š))))
 
Theoremdihord2cN 40080* Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. TODO: needed? shorten other proof with it? (Contributed by NM, 3-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ (𝑓 ∈ 𝑇 ∧ (π‘…β€˜π‘“) ≀ (𝑋 ∧ π‘Š))) β†’ βŸ¨π‘“, π‘‚βŸ© ∈ (πΌβ€˜(𝑋 ∧ π‘Š)))
 
Theoremdihord11b 40081* Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑁)    β‡’   (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ Β¬ 𝑁 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ ((π½β€˜π‘„) βŠ• (πΌβ€˜(𝑋 ∧ π‘Š))) βŠ† ((π½β€˜π‘) βŠ• (πΌβ€˜(π‘Œ ∧ π‘Š)))) ∧ (𝑓 ∈ 𝑇 ∧ (π‘…β€˜π‘“) ≀ (𝑋 ∧ π‘Š))) β†’ βŸ¨π‘“, π‘‚βŸ© ∈ ((π½β€˜π‘) βŠ• (πΌβ€˜(π‘Œ ∧ π‘Š))))
 
Theoremdihord10 40082* Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑁)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ Β¬ 𝑁 ≀ π‘Š)) ∧ (𝑓 ∈ 𝑇 ∧ (π‘…β€˜π‘“) ≀ (𝑋 ∧ π‘Š)) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (π‘…β€˜π‘”) ≀ (π‘Œ ∧ π‘Š) ∧ βŸ¨π‘“, π‘‚βŸ© = (⟨(π‘ β€˜πΊ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (π‘…β€˜π‘“) ≀ (π‘Œ ∧ π‘Š))
 
Theoremdihord11c 40083* Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑁)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ Β¬ 𝑁 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (((π½β€˜π‘„) βŠ• (πΌβ€˜(𝑋 ∧ π‘Š))) βŠ† ((π½β€˜π‘) βŠ• (πΌβ€˜(π‘Œ ∧ π‘Š))) ∧ 𝑓 ∈ 𝑇 ∧ (π‘…β€˜π‘“) ≀ (𝑋 ∧ π‘Š))) β†’ βˆƒπ‘¦ ∈ (π½β€˜π‘)βˆƒπ‘§ ∈ (πΌβ€˜(π‘Œ ∧ π‘Š))βŸ¨π‘“, π‘‚βŸ© = (𝑦 + 𝑧))
 
Theoremdihord2pre 40084* Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑁)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ Β¬ 𝑁 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ ((π½β€˜π‘„) βŠ• (πΌβ€˜(𝑋 ∧ π‘Š))) βŠ† ((π½β€˜π‘) βŠ• (πΌβ€˜(π‘Œ ∧ π‘Š)))) β†’ (𝑋 ∧ π‘Š) ≀ (π‘Œ ∧ π‘Š))
 
Theoremdihord2pre2 40085* Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 4-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑁)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ Β¬ 𝑁 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ ((𝑄 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑁 ∨ (π‘Œ ∧ π‘Š)) = π‘Œ ∧ ((π½β€˜π‘„) βŠ• (πΌβ€˜(𝑋 ∧ π‘Š))) βŠ† ((π½β€˜π‘) βŠ• (πΌβ€˜(π‘Œ ∧ π‘Š))))) β†’ (𝑄 ∨ (𝑋 ∧ π‘Š)) ≀ (𝑁 ∨ (π‘Œ ∧ π‘Š)))
 
Theoremdihord2 40086 Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. TODO: do we need Β¬ 𝑋 ≀ π‘Š and Β¬ π‘Œ ≀ π‘Š? (Contributed by NM, 4-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑁 ∈ 𝐴 ∧ Β¬ 𝑁 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ ((𝑄 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑁 ∨ (π‘Œ ∧ π‘Š)) = π‘Œ ∧ ((π½β€˜π‘„) βŠ• (πΌβ€˜(𝑋 ∧ π‘Š))) βŠ† ((π½β€˜π‘) βŠ• (πΌβ€˜(π‘Œ ∧ π‘Š))))) β†’ 𝑋 ≀ π‘Œ)
 
Syntaxcdih 40087 Extend class notation with isomorphism H.
class DIsoH
 
Definitiondf-dih 40088* Define isomorphism H. (Contributed by NM, 28-Jan-2014.)
DIsoH = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ (Baseβ€˜π‘˜) ↦ if(π‘₯(leβ€˜π‘˜)𝑀, (((DIsoBβ€˜π‘˜)β€˜π‘€)β€˜π‘₯), (℩𝑒 ∈ (LSubSpβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))βˆ€π‘ž ∈ (Atomsβ€˜π‘˜)((Β¬ π‘ž(leβ€˜π‘˜)𝑀 ∧ (π‘ž(joinβ€˜π‘˜)(π‘₯(meetβ€˜π‘˜)𝑀)) = π‘₯) β†’ 𝑒 = ((((DIsoCβ€˜π‘˜)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(((DIsoBβ€˜π‘˜)β€˜π‘€)β€˜(π‘₯(meetβ€˜π‘˜)𝑀)))))))))
 
Theoremdihffval 40089* The isomorphism H for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (𝐾 ∈ 𝑉 β†’ (DIsoHβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ 𝑀, (((DIsoBβ€˜πΎ)β€˜π‘€)β€˜π‘₯), (℩𝑒 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€))βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ 𝑀 ∧ (π‘ž ∨ (π‘₯ ∧ 𝑀)) = π‘₯) β†’ 𝑒 = ((((DIsoCβ€˜πΎ)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(((DIsoBβ€˜πΎ)β€˜π‘€)β€˜(π‘₯ ∧ 𝑀)))))))))
 
Theoremdihfval 40090* Isomorphism H for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π· = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   πΆ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 = (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))))))))
 
Theoremdihval 40091* Value of isomorphism H for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 3-Feb-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π· = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   πΆ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡) β†’ (πΌβ€˜π‘‹) = if(𝑋 ≀ π‘Š, (π·β€˜π‘‹), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š)))))))
 
Theoremdihvalc 40092* Value of isomorphism H for a lattice 𝐾 when Β¬ 𝑋 ≀ π‘Š. (Contributed by NM, 4-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π· = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   πΆ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) = (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))))
 
Theoremdihlsscpre 40093 Closure of isomorphism H for a lattice 𝐾 when Β¬ 𝑋 ≀ π‘Š. (Contributed by NM, 6-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π· = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   πΆ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) ∈ 𝑆)
 
Theoremdihvalcqpre 40094 Value of isomorphism H for a lattice 𝐾 when Β¬ 𝑋 ≀ π‘Š, given auxiliary atom 𝑄. (Contributed by NM, 6-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π· = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   πΆ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑄 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (πΌβ€˜π‘‹) = ((πΆβ€˜π‘„) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))
 
Theoremdihvalcq 40095 Value of isomorphism H for a lattice 𝐾 when Β¬ 𝑋 ≀ π‘Š, given auxiliary atom 𝑄. TODO: Use dihvalcq2 40106 (with lhpmcvr3 38884 for (𝑄 ∨ (𝑋 ∧ π‘Š)) = 𝑋 simplification) that changes 𝐢 and 𝐷 to 𝐼 and make this obsolete. Do to other theorems as well. (Contributed by NM, 6-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π· = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   πΆ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑄 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (πΌβ€˜π‘‹) = ((πΆβ€˜π‘„) βŠ• (π·β€˜(𝑋 ∧ π‘Š))))
 
Theoremdihvalb 40096 Value of isomorphism H for a lattice 𝐾 when 𝑋 ≀ π‘Š. (Contributed by NM, 4-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π· = ((DIsoBβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) = (π·β€˜π‘‹))
 
TheoremdihopelvalbN 40097* Ordered pair member of the partial isomorphism H for argument under π‘Š. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (𝑔 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹) ↔ ((𝐹 ∈ 𝑇 ∧ (π‘…β€˜πΉ) ≀ 𝑋) ∧ 𝑆 = 𝑂)))
 
Theoremdihvalcqat 40098 Value of isomorphism H for a lattice 𝐾 at an atom not under π‘Š. (Contributed by NM, 27-Mar-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π½ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = (π½β€˜π‘„))
 
Theoremdih1dimb 40099* Two expressions for a 1-dimensional subspace of vector space H (when 𝐹 is a nonzero vector i.e. non-identity translation). (Contributed by NM, 27-Apr-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (πΌβ€˜(π‘…β€˜πΉ)) = (π‘β€˜{⟨𝐹, π‘‚βŸ©}))
 
Theoremdih1dimb2 40100* Isomorphism H at an atom under π‘Š. (Contributed by NM, 27-Apr-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≀ π‘Š)) β†’ βˆƒπ‘“ ∈ 𝑇 (𝑓 β‰  ( I β†Ύ 𝐡) ∧ (πΌβ€˜π‘„) = (π‘β€˜{βŸ¨π‘“, π‘‚βŸ©})))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47805
  Copyright terms: Public domain < Previous  Next >