![]() |
Metamath
Proof Explorer Theorem List (p. 401 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30158) |
![]() (30159-31681) |
![]() (31682-47805) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dibval 40001* | The partial isomorphism B for a lattice πΎ. (Contributed by NM, 8-Dec-2013.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ 0 = (π β π β¦ ( I βΎ π΅)) & β’ π½ = ((DIsoAβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ π β dom π½) β (πΌβπ) = ((π½βπ) Γ { 0 })) | ||
Theorem | dibopelvalN 40002* | Member of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ 0 = (π β π β¦ ( I βΎ π΅)) & β’ π½ = ((DIsoAβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ π β dom π½) β (β¨πΉ, πβ© β (πΌβπ) β (πΉ β (π½βπ) β§ π = 0 ))) | ||
Theorem | dibval2 40003* | Value of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ 0 = (π β π β¦ ( I βΎ π΅)) & β’ π½ = ((DIsoAβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) = ((π½βπ) Γ { 0 })) | ||
Theorem | dibopelval2 40004* | Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ 0 = (π β π β¦ ( I βΎ π΅)) & β’ π½ = ((DIsoAβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (β¨πΉ, πβ© β (πΌβπ) β (πΉ β (π½βπ) β§ π = 0 ))) | ||
Theorem | dibval3N 40005* | Value of the partial isomorphism B for a lattice πΎ. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ 0 = (π β π β¦ ( I βΎ π΅)) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) = ({π β π β£ (π βπ) β€ π} Γ { 0 })) | ||
Theorem | dibelval3 40006* | Member of the partial isomorphism B. (Contributed by NM, 26-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ 0 = (π β π β¦ ( I βΎ π΅)) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (π β (πΌβπ) β βπ β π (π = β¨π, 0 β© β§ (π βπ) β€ π))) | ||
Theorem | dibopelval3 40007* | Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ 0 = (π β π β¦ ( I βΎ π΅)) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (β¨πΉ, πβ© β (πΌβπ) β ((πΉ β π β§ (π βπΉ) β€ π) β§ π = 0 ))) | ||
Theorem | dibelval1st 40008 | Membership in value of the partial isomorphism B for a lattice πΎ. (Contributed by NM, 13-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π½ = ((DIsoAβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π) β§ π β (πΌβπ)) β (1st βπ) β (π½βπ)) | ||
Theorem | dibelval1st1 40009 | Membership in value of the partial isomorphism B for a lattice πΎ. (Contributed by NM, 13-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π) β§ π β (πΌβπ)) β (1st βπ) β π) | ||
Theorem | dibelval1st2N 40010 | Membership in value of the partial isomorphism B for a lattice πΎ. (Contributed by NM, 13-Feb-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π) β§ π β (πΌβπ)) β (π β(1st βπ)) β€ π) | ||
Theorem | dibelval2nd 40011* | Membership in value of the partial isomorphism B for a lattice πΎ. (Contributed by NM, 13-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ 0 = (π β π β¦ ( I βΎ π΅)) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π) β§ π β (πΌβπ)) β (2nd βπ) = 0 ) | ||
Theorem | dibn0 40012 | The value of the partial isomorphism B is not empty. (Contributed by NM, 18-Jan-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) β β ) | ||
Theorem | dibfna 40013 | Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) |
β’ π» = (LHypβπΎ) & β’ π½ = ((DIsoAβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β πΌ Fn dom π½) | ||
Theorem | dibdiadm 40014 | Domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) |
β’ π» = (LHypβπΎ) & β’ π½ = ((DIsoAβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β dom πΌ = dom π½) | ||
Theorem | dibfnN 40015* | Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β πΌ Fn {π₯ β π΅ β£ π₯ β€ π}) | ||
Theorem | dibdmN 40016* | Domain of the partial isomorphism A. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β dom πΌ = {π₯ β π΅ β£ π₯ β€ π}) | ||
Theorem | dibeldmN 40017 | Member of domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β (π β dom πΌ β (π β π΅ β§ π β€ π))) | ||
Theorem | dibord 40018 | The isomorphism B for a lattice πΎ is order-preserving in the region under co-atom π. (Contributed by NM, 24-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β ((πΌβπ) β (πΌβπ) β π β€ π)) | ||
Theorem | dib11N 40019 | The isomorphism B for a lattice πΎ is one-to-one in the region under co-atom π. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β ((πΌβπ) = (πΌβπ) β π = π)) | ||
Theorem | dibf11N 40020 | The partial isomorphism A for a lattice πΎ is a one-to-one function. Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ ((πΎ β HL β§ π β π») β πΌ:dom πΌβ1-1-ontoβran πΌ) | ||
Theorem | dibclN 40021 | Closure of partial isomorphism B for a lattice πΎ. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β dom πΌ) β (πΌβπ) β ran πΌ) | ||
Theorem | dibvalrel 40022 | The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β Rel (πΌβπ)) | ||
Theorem | dib0 40023 | The value of partial isomorphism B at the lattice zero is the singleton of the zero vector i.e. the zero subspace. (Contributed by NM, 27-Mar-2014.) |
β’ 0 = (0.βπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (0gβπ) β β’ ((πΎ β HL β§ π β π») β (πΌβ 0 ) = {π}) | ||
Theorem | dib1dim 40024* | Two expressions for the 1-dimensional subspaces of vector space H. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (πΌβ(π βπΉ)) = {π β (π Γ πΈ) β£ βπ β πΈ π = β¨(π βπΉ), πβ©}) | ||
Theorem | dibglbN 40025* | Partial isomorphism B of a lattice glb. (Contributed by NM, 9-Mar-2014.) (New usage is discouraged.) |
β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β dom πΌ β§ π β β )) β (πΌβ(πΊβπ)) = β© π₯ β π (πΌβπ₯)) | ||
Theorem | dibintclN 40026 | The intersection of partial isomorphism B closed subspaces is a closed subspace. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β ran πΌ β§ π β β )) β β© π β ran πΌ) | ||
Theorem | dib1dim2 40027* | Two expressions for a 1-dimensional subspace of vector space H (when πΉ is a nonzero vector i.e. non-identity translation). (Contributed by NM, 24-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π = (LSpanβπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (πΌβ(π βπΉ)) = (πβ{β¨πΉ, πβ©})) | ||
Theorem | dibss 40028 | The partial isomorphism B maps to a set of vectors in full vector space H. (Contributed by NM, 1-Jan-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) β π) | ||
Theorem | diblss 40029 | The value of partial isomorphism B is a subspace of partial vector space H. TODO: use dib* specific theorems instead of dia* ones to shorten proof? (Contributed by NM, 11-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π = (LSubSpβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) β π) | ||
Theorem | diblsmopel 40030* | Membership in subspace sum for partial isomorphism B. (Contributed by NM, 21-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = (π β π β¦ ( I βΎ π΅)) & β’ π = ((DVecAβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ β = (LSSumβπ) & β’ π½ = ((DIsoAβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΅ β§ π β€ π)) & β’ (π β (π β π΅ β§ π β€ π)) β β’ (π β (β¨πΉ, πβ© β ((πΌβπ) β (πΌβπ)) β (πΉ β ((π½βπ) β (π½βπ)) β§ π = π))) | ||
Syntax | cdic 40031 | Extend class notation with isomorphism C. |
class DIsoC | ||
Definition | df-dic 40032* | Isomorphism C has domain of lattice atoms that are not less than or equal to the fiducial co-atom π€. The value is a one-dimensional subspace generated by the pair consisting of the β© vector below and the endomorphism ring unity. Definition of phi(q) in [Crawley] p. 121. Note that we use the fixed atom ((oc k ) π€) to represent the p in their "Choose an atom p..." on line 21. (Contributed by NM, 15-Dec-2013.) |
β’ DIsoC = (π β V β¦ (π€ β (LHypβπ) β¦ (π β {π β (Atomsβπ) β£ Β¬ π(leβπ)π€} β¦ {β¨π, π β© β£ (π = (π β(β©π β ((LTrnβπ)βπ€)(πβ((ocβπ)βπ€)) = π)) β§ π β ((TEndoβπ)βπ€))}))) | ||
Theorem | dicffval 40033* | The partial isomorphism C for a lattice πΎ. (Contributed by NM, 15-Dec-2013.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (πΎ β π β (DIsoCβπΎ) = (π€ β π» β¦ (π β {π β π΄ β£ Β¬ π β€ π€} β¦ {β¨π, π β© β£ (π = (π β(β©π β ((LTrnβπΎ)βπ€)(πβ((ocβπΎ)βπ€)) = π)) β§ π β ((TEndoβπΎ)βπ€))}))) | ||
Theorem | dicfval 40034* | The partial isomorphism C for a lattice πΎ. (Contributed by NM, 15-Dec-2013.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoCβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β πΌ = (π β {π β π΄ β£ Β¬ π β€ π} β¦ {β¨π, π β© β£ (π = (π β(β©π β π (πβπ) = π)) β§ π β πΈ)})) | ||
Theorem | dicval 40035* | The partial isomorphism C for a lattice πΎ. (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 22-Sep-2015.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoCβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = {β¨π, π β© β£ (π = (π β(β©π β π (πβπ) = π)) β§ π β πΈ)}) | ||
Theorem | dicopelval 40036* | Membership in value of the partial isomorphism C for a lattice πΎ. (Contributed by NM, 15-Feb-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoCβπΎ)βπ) & β’ πΉ β V & β’ π β V β β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (β¨πΉ, πβ© β (πΌβπ) β (πΉ = (πβ(β©π β π (πβπ) = π)) β§ π β πΈ))) | ||
Theorem | dicelvalN 40037* | Membership in value of the partial isomorphism C for a lattice πΎ. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoCβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β (πΌβπ) β (π β (V Γ V) β§ ((1st βπ) = ((2nd βπ)β(β©π β π (πβπ) = π)) β§ (2nd βπ) β πΈ)))) | ||
Theorem | dicval2 40038* | The partial isomorphism C for a lattice πΎ. (Contributed by NM, 20-Feb-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoCβπΎ)βπ) & β’ πΊ = (β©π β π (πβπ) = π) β β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = {β¨π, π β© β£ (π = (π βπΊ) β§ π β πΈ)}) | ||
Theorem | dicelval3 40039* | Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoCβπΎ)βπ) & β’ πΊ = (β©π β π (πβπ) = π) β β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β (πΌβπ) β βπ β πΈ π = β¨(π βπΊ), π β©)) | ||
Theorem | dicopelval2 40040* | Membership in value of the partial isomorphism C for a lattice πΎ. (Contributed by NM, 20-Feb-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoCβπΎ)βπ) & β’ πΊ = (β©π β π (πβπ) = π) & β’ πΉ β V & β’ π β V β β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (β¨πΉ, πβ© β (πΌβπ) β (πΉ = (πβπΊ) β§ π β πΈ))) | ||
Theorem | dicelval2N 40041* | Membership in value of the partial isomorphism C for a lattice πΎ. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoCβπΎ)βπ) & β’ πΊ = (β©π β π (πβπ) = π) β β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β (πΌβπ) β (π β (V Γ V) β§ ((1st βπ) = ((2nd βπ)βπΊ) β§ (2nd βπ) β πΈ)))) | ||
Theorem | dicfnN 40042* | Functionality and domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoCβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β πΌ Fn {π β π΄ β£ Β¬ π β€ π}) | ||
Theorem | dicdmN 40043* | Domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoCβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β dom πΌ = {π β π΄ β£ Β¬ π β€ π}) | ||
Theorem | dicvalrelN 40044 | The value of partial isomorphism C is a relation. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoCβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β Rel (πΌβπ)) | ||
Theorem | dicssdvh 40045 | The partial isomorphism C maps to a set of vectors in full vector space H. (Contributed by NM, 19-Jan-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) β π) | ||
Theorem | dicelval1sta 40046* | Membership in value of the partial isomorphism C for a lattice πΎ. (Contributed by NM, 16-Feb-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΌ = ((DIsoCβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β (πΌβπ)) β (1st βπ) = ((2nd βπ)β(β©π β π (πβπ) = π))) | ||
Theorem | dicelval1stN 40047 | Membership in value of the partial isomorphism C for a lattice πΎ. (Contributed by NM, 16-Feb-2014.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΌ = ((DIsoCβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β (πΌβπ)) β (1st βπ) β π) | ||
Theorem | dicelval2nd 40048 | Membership in value of the partial isomorphism C for a lattice πΎ. (Contributed by NM, 16-Feb-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoCβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β (πΌβπ)) β (2nd βπ) β πΈ) | ||
Theorem | dicvaddcl 40049 | Membership in value of the partial isomorphism C is closed under vector sum. (Contributed by NM, 16-Feb-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoCβπΎ)βπ) & β’ + = (+gβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β (πΌβπ) β§ π β (πΌβπ))) β (π + π) β (πΌβπ)) | ||
Theorem | dicvscacl 40050 | Membership in value of the partial isomorphism C is closed under scalar product. (Contributed by NM, 16-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoCβπΎ)βπ) & β’ Β· = ( Β·π βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β πΈ β§ π β (πΌβπ))) β (π Β· π) β (πΌβπ)) | ||
Theorem | dicn0 40051 | The value of the partial isomorphism C is not empty. (Contributed by NM, 15-Feb-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoCβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) β β ) | ||
Theorem | diclss 40052 | The value of partial isomorphism C is a subspace of partial vector space H. (Contributed by NM, 16-Feb-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoCβπΎ)βπ) & β’ π = (LSubSpβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) β π) | ||
Theorem | diclspsn 40053* | The value of isomorphism C is spanned by vector πΉ. Part of proof of Lemma N of [Crawley] p. 121 line 29. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΌ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSpanβπ) & β’ πΉ = (β©π β π (πβπ) = π) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = (πβ{β¨πΉ, ( I βΎ π)β©})) | ||
Theorem | cdlemn2 40054* | Part of proof of Lemma N of [Crawley] p. 121 line 30. (Contributed by NM, 21-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΉ = (β©β β π (ββπ) = π) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ π β€ (π β¨ π)) β (π βπΉ) β€ π) | ||
Theorem | cdlemn2a 40055* | Part of proof of Lemma N of [Crawley] p. 121. (Contributed by NM, 24-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = (π β π β¦ ( I βΎ π΅)) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSpanβπ) & β’ πΉ = (β©β β π (ββπ) = π) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ π β€ (π β¨ π)) β (πβ{β¨πΉ, πβ©}) β (πΌβπ)) | ||
Theorem | cdlemn3 40056* | Part of proof of Lemma N of [Crawley] p. 121 line 31. (Contributed by NM, 21-Feb-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΉ = (β©β β π (ββπ) = π) & β’ πΊ = (β©β β π (ββπ) = π ) & β’ π½ = (β©β β π (ββπ) = π ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β (π½ β πΉ) = πΊ) | ||
Theorem | cdlemn4 40057* | Part of proof of Lemma N of [Crawley] p. 121 line 31. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((DVecHβπΎ)βπ) & β’ πΉ = (β©β β π (ββπ) = π) & β’ πΊ = (β©β β π (ββπ) = π ) & β’ π½ = (β©β β π (ββπ) = π ) & β’ + = (+gβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β β¨πΊ, ( I βΎ π)β© = (β¨πΉ, ( I βΎ π)β© + β¨π½, πβ©)) | ||
Theorem | cdlemn4a 40058* | Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 24-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((DVecHβπΎ)βπ) & β’ πΉ = (β©β β π (ββπ) = π) & β’ πΊ = (β©β β π (ββπ) = π ) & β’ π½ = (β©β β π (ββπ) = π ) & β’ π = (LSpanβπ) & β’ β = (LSSumβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β (πβ{β¨πΊ, ( I βΎ π)β©}) β ((πβ{β¨πΉ, ( I βΎ π)β©}) β (πβ{β¨π½, πβ©}))) | ||
Theorem | cdlemn5pre 40059* | Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 25-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((ocβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = (LSpanβπ) & β’ πΉ = (β©β β π (ββπ) = π) & β’ πΊ = (β©β β π (ββπ) = π ) & β’ π = (β©β β π (ββπ) = π ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ π β€ (π β¨ π)) β (π½βπ ) β ((π½βπ) β (πΌβπ))) | ||
Theorem | cdlemn5 40060 | Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 25-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ π β€ (π β¨ π)) β (π½βπ ) β ((π½βπ) β (πΌβπ))) | ||
Theorem | cdlemn6 40061* | Part of proof of Lemma N of [Crawley] p. 121 line 35. (Contributed by NM, 26-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ + = (+gβπ) & β’ πΉ = (β©β β π (ββπ) = π) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β πΈ β§ π β π)) β (β¨(π βπΉ), π β© + β¨π, πβ©) = β¨((π βπΉ) β π), π β©) | ||
Theorem | cdlemn7 40062* | Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 26-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ + = (+gβπ) & β’ πΉ = (β©β β π (ββπ) = π) & β’ πΊ = (β©β β π (ββπ) = π ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β πΈ β§ π β π β§ β¨πΊ, ( I βΎ π)β© = (β¨(π βπΉ), π β© + β¨π, πβ©))) β (πΊ = ((π βπΉ) β π) β§ ( I βΎ π) = π )) | ||
Theorem | cdlemn8 40063* | Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 26-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ + = (+gβπ) & β’ πΉ = (β©β β π (ββπ) = π) & β’ πΊ = (β©β β π (ββπ) = π ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β πΈ β§ π β π β§ β¨πΊ, ( I βΎ π)β© = (β¨(π βπΉ), π β© + β¨π, πβ©))) β π = (πΊ β β‘πΉ)) | ||
Theorem | cdlemn9 40064* | Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ + = (+gβπ) & β’ πΉ = (β©β β π (ββπ) = π) & β’ πΊ = (β©β β π (ββπ) = π ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β πΈ β§ π β π β§ β¨πΊ, ( I βΎ π)β© = (β¨(π βπΉ), π β© + β¨π, πβ©))) β (πβπ) = π ) | ||
Theorem | cdlemn10 40065 | Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ (π β π β§ (πβπ) = π β§ (π βπ) β€ π)) β π β€ (π β¨ π)) | ||
Theorem | cdlemn11a 40066* | Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ + = (+gβπ) & β’ β = (LSSumβπ) & β’ πΉ = (β©β β π (ββπ) = π) & β’ πΊ = (β©β β π (ββπ) = π) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ (π½βπ) β ((π½βπ) β (πΌβπ))) β β¨πΊ, ( I βΎ π)β© β (π½βπ)) | ||
Theorem | cdlemn11b 40067* | Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ + = (+gβπ) & β’ β = (LSSumβπ) & β’ πΉ = (β©β β π (ββπ) = π) & β’ πΊ = (β©β β π (ββπ) = π) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ (π½βπ) β ((π½βπ) β (πΌβπ))) β β¨πΊ, ( I βΎ π)β© β ((π½βπ) β (πΌβπ))) | ||
Theorem | cdlemn11c 40068* | Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ + = (+gβπ) & β’ β = (LSSumβπ) & β’ πΉ = (β©β β π (ββπ) = π) & β’ πΊ = (β©β β π (ββπ) = π) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ (π½βπ) β ((π½βπ) β (πΌβπ))) β βπ¦ β (π½βπ)βπ§ β (πΌβπ)β¨πΊ, ( I βΎ π)β© = (π¦ + π§)) | ||
Theorem | cdlemn11pre 40069* | Part of proof of Lemma N of [Crawley] p. 121 line 37. TODO: combine cdlemn11a 40066, cdlemn11b 40067, cdlemn11c 40068, cdlemn11pre into one? (Contributed by NM, 27-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ + = (+gβπ) & β’ β = (LSSumβπ) & β’ πΉ = (β©β β π (ββπ) = π) & β’ πΊ = (β©β β π (ββπ) = π) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ (π½βπ) β ((π½βπ) β (πΌβπ))) β π β€ (π β¨ π)) | ||
Theorem | cdlemn11 40070 | Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ (π½βπ ) β ((π½βπ) β (πΌβπ))) β π β€ (π β¨ π)) | ||
Theorem | cdlemn 40071 | Lemma N of [Crawley] p. 121 line 27. (Contributed by NM, 27-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π))) β (π β€ (π β¨ π) β (π½βπ ) β ((π½βπ) β (πΌβπ)))) | ||
Theorem | dihordlem6 40072* | Part of proof of Lemma N of [Crawley] p. 122 line 35. (Contributed by NM, 3-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ + = (+gβπ) & β’ πΊ = (β©β β π (ββπ) = π ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β πΈ β§ π β π)) β (β¨(π βπΊ), π β© + β¨π, πβ©) = β¨((π βπΊ) β π), π β©) | ||
Theorem | dihordlem7 40073* | Part of proof of Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ + = (+gβπ) & β’ πΊ = (β©β β π (ββπ) = π ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β πΈ β§ π β π β§ β¨π, πβ© = (β¨(π βπΊ), π β© + β¨π, πβ©))) β (π = ((π βπΊ) β π) β§ π = π )) | ||
Theorem | dihordlem7b 40074* | Part of proof of Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ + = (+gβπ) & β’ πΊ = (β©β β π (ββπ) = π ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β πΈ β§ π β π β§ β¨π, πβ© = (β¨(π βπΊ), π β© + β¨π, πβ©))) β (π = π β§ π = π )) | ||
Theorem | dihjustlem 40075 | Part of proof after Lemma N of [Crawley] p. 122 line 4, "the definition of phi(x) is independent of the atom q." (Contributed by NM, 2-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΅) β§ (π β¨ (π β§ π)) = (π β¨ (π β§ π))) β ((π½βπ) β (πΌβ(π β§ π))) β ((π½βπ ) β (πΌβ(π β§ π)))) | ||
Theorem | dihjust 40076 | Part of proof after Lemma N of [Crawley] p. 122 line 4, "the definition of phi(x) is independent of the atom q." (Contributed by NM, 2-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΅) β§ (π β¨ (π β§ π)) = (π β¨ (π β§ π))) β ((π½βπ) β (πΌβ(π β§ π))) = ((π½βπ ) β (πΌβ(π β§ π)))) | ||
Theorem | dihord1 40077 | Part of proof after Lemma N of [Crawley] p. 122. Forward ordering property. TODO: change (π β¨ (π β§ π)) = π to π β€ π using lhpmcvr3 38884, here and all theorems below. (Contributed by NM, 2-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅) β§ ((π β¨ (π β§ π)) = π β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β ((π½βπ) β (πΌβ(π β§ π))) β ((π½βπ ) β (πΌβ(π β§ π)))) | ||
Theorem | dihord2a 40078 | Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅) β§ ((π β¨ (π β§ π)) = π β§ (π β¨ (π β§ π)) = π β§ ((π½βπ) β (πΌβ(π β§ π))) β ((π½βπ ) β (πΌβ(π β§ π))))) β π β€ (π β¨ (π β§ π))) | ||
Theorem | dihord2b 40079 | Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅) β§ ((π½βπ) β (πΌβ(π β§ π))) β ((π½βπ ) β (πΌβ(π β§ π)))) β (πΌβ(π β§ π)) β ((π½βπ ) β (πΌβ(π β§ π)))) | ||
Theorem | dihord2cN 40080* | Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. TODO: needed? shorten other proof with it? (Contributed by NM, 3-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) β β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ (π β π β§ (π βπ) β€ (π β§ π))) β β¨π, πβ© β (πΌβ(π β§ π))) | ||
Theorem | dihord11b 40081* | Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((ocβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ + = (+gβπ) & β’ πΊ = (β©β β π (ββπ) = π) β β’ (((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅) β§ ((π½βπ) β (πΌβ(π β§ π))) β ((π½βπ) β (πΌβ(π β§ π)))) β§ (π β π β§ (π βπ) β€ (π β§ π))) β β¨π, πβ© β ((π½βπ) β (πΌβ(π β§ π)))) | ||
Theorem | dihord10 40082* | Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((ocβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ + = (+gβπ) & β’ πΊ = (β©β β π (ββπ) = π) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π βπ) β€ (π β§ π)) β§ ((π β πΈ β§ π β π) β§ (π βπ) β€ (π β§ π) β§ β¨π, πβ© = (β¨(π βπΊ), π β© + β¨π, πβ©))) β (π βπ) β€ (π β§ π)) | ||
Theorem | dihord11c 40083* | Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((ocβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ + = (+gβπ) & β’ πΊ = (β©β β π (ββπ) = π) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅) β§ (((π½βπ) β (πΌβ(π β§ π))) β ((π½βπ) β (πΌβ(π β§ π))) β§ π β π β§ (π βπ) β€ (π β§ π))) β βπ¦ β (π½βπ)βπ§ β (πΌβ(π β§ π))β¨π, πβ© = (π¦ + π§)) | ||
Theorem | dihord2pre 40084* | Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((ocβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ + = (+gβπ) & β’ πΊ = (β©β β π (ββπ) = π) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅) β§ ((π½βπ) β (πΌβ(π β§ π))) β ((π½βπ) β (πΌβ(π β§ π)))) β (π β§ π) β€ (π β§ π)) | ||
Theorem | dihord2pre2 40085* | Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 4-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((ocβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ + = (+gβπ) & β’ πΊ = (β©β β π (ββπ) = π) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅) β§ ((π β¨ (π β§ π)) = π β§ (π β¨ (π β§ π)) = π β§ ((π½βπ) β (πΌβ(π β§ π))) β ((π½βπ) β (πΌβ(π β§ π))))) β (π β¨ (π β§ π)) β€ (π β¨ (π β§ π))) | ||
Theorem | dihord2 40086 | Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. TODO: do we need Β¬ π β€ π and Β¬ π β€ π? (Contributed by NM, 4-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅) β§ ((π β¨ (π β§ π)) = π β§ (π β¨ (π β§ π)) = π β§ ((π½βπ) β (πΌβ(π β§ π))) β ((π½βπ) β (πΌβ(π β§ π))))) β π β€ π) | ||
Syntax | cdih 40087 | Extend class notation with isomorphism H. |
class DIsoH | ||
Definition | df-dih 40088* | Define isomorphism H. (Contributed by NM, 28-Jan-2014.) |
β’ DIsoH = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β (Baseβπ) β¦ if(π₯(leβπ)π€, (((DIsoBβπ)βπ€)βπ₯), (β©π’ β (LSubSpβ((DVecHβπ)βπ€))βπ β (Atomsβπ)((Β¬ π(leβπ)π€ β§ (π(joinβπ)(π₯(meetβπ)π€)) = π₯) β π’ = ((((DIsoCβπ)βπ€)βπ)(LSSumβ((DVecHβπ)βπ€))(((DIsoBβπ)βπ€)β(π₯(meetβπ)π€))))))))) | ||
Theorem | dihffval 40089* | The isomorphism H for a lattice πΎ. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (πΎ β π β (DIsoHβπΎ) = (π€ β π» β¦ (π₯ β π΅ β¦ if(π₯ β€ π€, (((DIsoBβπΎ)βπ€)βπ₯), (β©π’ β (LSubSpβ((DVecHβπΎ)βπ€))βπ β π΄ ((Β¬ π β€ π€ β§ (π β¨ (π₯ β§ π€)) = π₯) β π’ = ((((DIsoCβπΎ)βπ€)βπ)(LSSumβ((DVecHβπΎ)βπ€))(((DIsoBβπΎ)βπ€)β(π₯ β§ π€))))))))) | ||
Theorem | dihfval 40090* | Isomorphism H for a lattice πΎ. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π· = ((DIsoBβπΎ)βπ) & β’ πΆ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) β β’ ((πΎ β π β§ π β π») β πΌ = (π₯ β π΅ β¦ if(π₯ β€ π, (π·βπ₯), (β©π’ β π βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π’ = ((πΆβπ) β (π·β(π₯ β§ π)))))))) | ||
Theorem | dihval 40091* | Value of isomorphism H for a lattice πΎ. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 3-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π· = ((DIsoBβπΎ)βπ) & β’ πΆ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) β β’ (((πΎ β π β§ π β π») β§ π β π΅) β (πΌβπ) = if(π β€ π, (π·βπ), (β©π’ β π βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π β§ π)) = π) β π’ = ((πΆβπ) β (π·β(π β§ π))))))) | ||
Theorem | dihvalc 40092* | Value of isomorphism H for a lattice πΎ when Β¬ π β€ π. (Contributed by NM, 4-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π· = ((DIsoBβπΎ)βπ) & β’ πΆ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) β β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π)) β (πΌβπ) = (β©π’ β π βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π β§ π)) = π) β π’ = ((πΆβπ) β (π·β(π β§ π)))))) | ||
Theorem | dihlsscpre 40093 | Closure of isomorphism H for a lattice πΎ when Β¬ π β€ π. (Contributed by NM, 6-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π· = ((DIsoBβπΎ)βπ) & β’ πΆ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π)) β (πΌβπ) β π) | ||
Theorem | dihvalcqpre 40094 | Value of isomorphism H for a lattice πΎ when Β¬ π β€ π, given auxiliary atom π. (Contributed by NM, 6-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π· = ((DIsoBβπΎ)βπ) & β’ πΆ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β (πΌβπ) = ((πΆβπ) β (π·β(π β§ π)))) | ||
Theorem | dihvalcq 40095 | Value of isomorphism H for a lattice πΎ when Β¬ π β€ π, given auxiliary atom π. TODO: Use dihvalcq2 40106 (with lhpmcvr3 38884 for (π β¨ (π β§ π)) = π simplification) that changes πΆ and π· to πΌ and make this obsolete. Do to other theorems as well. (Contributed by NM, 6-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π· = ((DIsoBβπΎ)βπ) & β’ πΆ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β (πΌβπ) = ((πΆβπ) β (π·β(π β§ π)))) | ||
Theorem | dihvalb 40096 | Value of isomorphism H for a lattice πΎ when π β€ π. (Contributed by NM, 4-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π· = ((DIsoBβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) = (π·βπ)) | ||
Theorem | dihopelvalbN 40097* | Ordered pair member of the partial isomorphism H for argument under π. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = (π β π β¦ ( I βΎ π΅)) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (β¨πΉ, πβ© β (πΌβπ) β ((πΉ β π β§ (π βπΉ) β€ π) β§ π = π))) | ||
Theorem | dihvalcqat 40098 | Value of isomorphism H for a lattice πΎ at an atom not under π. (Contributed by NM, 27-Mar-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π½ = ((DIsoCβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = (π½βπ)) | ||
Theorem | dih1dimb 40099* | Two expressions for a 1-dimensional subspace of vector space H (when πΉ is a nonzero vector i.e. non-identity translation). (Contributed by NM, 27-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = (LSpanβπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (πΌβ(π βπΉ)) = (πβ{β¨πΉ, πβ©})) | ||
Theorem | dih1dimb2 40100* | Isomorphism H at an atom under π. (Contributed by NM, 27-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = (LSpanβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β€ π)) β βπ β π (π β ( I βΎ π΅) β§ (πΌβπ) = (πβ{β¨π, πβ©}))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |