| Metamath
Proof Explorer Theorem List (p. 401 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dalawlem12 40001 | Lemma for dalaw 40005. Second part of dalawlem13 40002. (Contributed by NM, 17-Sep-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem13 40002 | Lemma for dalaw 40005. Special case to eliminate the requirement ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 in dalawlem1 39990. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem14 40003 | Lemma for dalaw 40005. Combine dalawlem10 39999 and dalawlem13 40002. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃))) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalawlem15 40004 | Lemma for dalaw 40005. Swap variable triples 𝑃𝑄𝑅 and 𝑆𝑇𝑈 in dalawlem14 40003, to obtain the elimination of the remaining conditions in dalawlem1 39990. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ (((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑆 ∨ 𝑇) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑇 ∨ 𝑈) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑈 ∨ 𝑆))) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
| Theorem | dalaw 40005 | Desargues's law, derived from Desargues's theorem dath 39855 and with no conditions on the atoms. If triples 〈𝑃, 𝑄, 𝑅〉 and 〈𝑆, 𝑇, 𝑈〉 are centrally perspective, i.e., ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈), then they are axially perspective. Theorem 13.3 of [Crawley] p. 110. (Contributed by NM, 7-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))))) | ||
| Syntax | cpclN 40006 | Extend class notation with projective subspace closure. |
| class PCl | ||
| Definition | df-pclN 40007* | Projective subspace closure, which is the smallest projective subspace containing an arbitrary set of atoms. The subspace closure of the union of a set of projective subspaces is their supremum in PSubSp. Related to an analogous definition of closure used in Lemma 3.1.4 of [PtakPulmannova] p. 68. (Note that this closure is not necessarily one of the closed projective subspaces PSubCl of df-psubclN 40054.) (Contributed by NM, 7-Sep-2013.) |
| ⊢ PCl = (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦})) | ||
| Theorem | pclfvalN 40008* | The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) | ||
| Theorem | pclvalN 40009* | Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) | ||
| Theorem | pclclN 40010 | Closure of the projective subspace closure function. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ∈ 𝑆) | ||
| Theorem | elpclN 40011* | Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) & ⊢ 𝑄 ∈ V ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑄 ∈ (𝑈‘𝑋) ↔ ∀𝑦 ∈ 𝑆 (𝑋 ⊆ 𝑦 → 𝑄 ∈ 𝑦))) | ||
| Theorem | elpcliN 40012 | Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) ∧ 𝑄 ∈ (𝑈‘𝑋)) → 𝑄 ∈ 𝑌) | ||
| Theorem | pclssN 40013 | Ordering is preserved by subspace closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘𝑌)) | ||
| Theorem | pclssidN 40014 | A set of atoms is included in its projective subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ (𝑈‘𝑋)) | ||
| Theorem | pclidN 40015 | The projective subspace closure of a projective subspace is itself. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) → (𝑈‘𝑋) = 𝑋) | ||
| Theorem | pclbtwnN 40016 | A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 = (𝑈‘𝑌)) | ||
| Theorem | pclunN 40017 | The projective subspace closure of the union of two sets of atoms equals the closure of their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑈‘(𝑋 + 𝑌))) | ||
| Theorem | pclun2N 40018 | The projective subspace closure of the union of two subspaces equals their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑋 + 𝑌)) | ||
| Theorem | pclfinN 40019* | The projective subspace closure of a set equals the union of the closures of its finite subsets. Analogous to Lemma 3.3.6 of [PtakPulmannova] p. 72. Compare the closed subspace version pclfinclN 40069. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦)) | ||
| Theorem | pclcmpatN 40020* | The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑃 ∈ (𝑈‘𝑋)) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) | ||
| Syntax | cpolN 40021 | Extend class notation with polarity of projective subspace $m$. |
| class ⊥𝑃 | ||
| Definition | df-polarityN 40022* | Define polarity of projective subspace, which is a kind of complement of the subspace. Item 2 in [Holland95] p. 222 bottom. For more generality, we define it for all subsets of atoms, not just projective subspaces. The intersection with Atoms‘𝑙 ensures it is defined when 𝑚 = ∅. (Contributed by NM, 23-Oct-2011.) |
| ⊢ ⊥𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙) ↦ ((Atoms‘𝑙) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘𝑙)‘((oc‘𝑙)‘𝑝))))) | ||
| Theorem | polfvalN 40023* | The projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
| ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) | ||
| Theorem | polvalN 40024* | Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
| ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑃‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝)))) | ||
| Theorem | polval2N 40025 | Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝑈 = (lub‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑃‘𝑋) = (𝑀‘( ⊥ ‘(𝑈‘𝑋)))) | ||
| Theorem | polsubN 40026 | The polarity of a set of atoms is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝑆) | ||
| Theorem | polssatN 40027 | The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) | ||
| Theorem | pol0N 40028 | The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = 𝐴) | ||
| Theorem | pol1N 40029 | The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ( ⊥ ‘𝐴) = ∅) | ||
| Theorem | 2pol0N 40030 | The closed subspace closure of the empty set. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ( ⊥ ‘( ⊥ ‘∅)) = ∅) | ||
| Theorem | polpmapN 40031 | The polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘𝑋))) | ||
| Theorem | 2polpmapN 40032 | Double polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(𝑀‘𝑋))) = (𝑀‘𝑋)) | ||
| Theorem | 2polvalN 40033 | Value of double polarity. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = (𝑀‘(𝑈‘𝑋))) | ||
| Theorem | 2polssN 40034 | A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) | ||
| Theorem | 3polN 40035 | Triple polarity cancels to a single polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) = ( ⊥ ‘𝑆)) | ||
| Theorem | polcon3N 40036 | Contraposition law for polarity. Remark in [Holland95] p. 223. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) | ||
| Theorem | 2polcon4bN 40037 | Contraposition law for polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (( ⊥ ‘( ⊥ ‘𝑋)) ⊆ ( ⊥ ‘( ⊥ ‘𝑌)) ↔ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) | ||
| Theorem | polcon2N 40038 | Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) | ||
| Theorem | polcon2bN 40039 | Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 ⊆ ( ⊥ ‘𝑌) ↔ 𝑌 ⊆ ( ⊥ ‘𝑋))) | ||
| Theorem | pclss2polN 40040 | The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) | ||
| Theorem | pcl0N 40041 | The projective subspace closure of the empty subspace. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → (𝑈‘∅) = ∅) | ||
| Theorem | pcl0bN 40042 | The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → ((𝑈‘𝑃) = ∅ ↔ 𝑃 = ∅)) | ||
| Theorem | pmaplubN 40043 | The LUB of a projective map is the projective map's argument. (Contributed by NM, 13-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘(𝑀‘𝑋)) = 𝑋) | ||
| Theorem | sspmaplubN 40044 | A set of atoms is a subset of the projective map of its LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → 𝑆 ⊆ (𝑀‘(𝑈‘𝑆))) | ||
| Theorem | 2pmaplubN 40045 | Double projective map of an LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘𝑆))) | ||
| Theorem | paddunN 40046 | The closure of the projective sum of two sets of atoms is the same as the closure of their union. (Closure is actually double polarity, which can be trivially inferred from this theorem using fveq2d 6832.) (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘(𝑆 + 𝑇)) = ( ⊥ ‘(𝑆 ∪ 𝑇))) | ||
| Theorem | poldmj1N 40047 | De Morgan's law for polarity of projective sum. (oldmj1 39340 analog.) (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘(𝑆 + 𝑇)) = (( ⊥ ‘𝑆) ∩ ( ⊥ ‘𝑇))) | ||
| Theorem | pmapj2N 40048 | The projective map of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀‘(𝑋 ∨ 𝑌)) = ( ⊥ ‘( ⊥ ‘((𝑀‘𝑋) + (𝑀‘𝑌))))) | ||
| Theorem | pmapocjN 40049 | The projective map of the orthocomplement of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ 𝑁 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘( ⊥ ‘(𝑋 ∨ 𝑌))) = (𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌)))) | ||
| Theorem | polatN 40050 | The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
| ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝑀‘( ⊥ ‘𝑄))) | ||
| Theorem | 2polatN 40051 | Double polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄}) | ||
| Theorem | pnonsingN 40052 | The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in [Holland95] p. 214. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∩ (𝑃‘𝑋)) = ∅) | ||
| Syntax | cpscN 40053 | Extend class notation with set of all closed projective subspaces for a Hilbert lattice. |
| class PSubCl | ||
| Definition | df-psubclN 40054* | Define set of all closed projective subspaces, which are those sets of atoms that equal their double polarity. Based on definition in [Holland95] p. 223. (Contributed by NM, 23-Jan-2012.) |
| ⊢ PSubCl = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠)}) | ||
| Theorem | psubclsetN 40055* | The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → 𝐶 = {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑠)) = 𝑠)}) | ||
| Theorem | ispsubclN 40056 | The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) | ||
| Theorem | psubcliN 40057 | Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) | ||
| Theorem | psubcli2N 40058 | Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | ||
| Theorem | psubclsubN 40059 | A closed projective subspace is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝑆) | ||
| Theorem | psubclssatN 40060 | A closed projective subspace is a set of atoms. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ 𝐴) | ||
| Theorem | pmapidclN 40061 | Projective map of the LUB of a closed subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
| ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → (𝑀‘(𝑈‘𝑋)) = 𝑋) | ||
| Theorem | 0psubclN 40062 | The empty set is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∅ ∈ 𝐶) | ||
| Theorem | 1psubclN 40063 | The set of all atoms is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → 𝐴 ∈ 𝐶) | ||
| Theorem | atpsubclN 40064 | A point (singleton of an atom) is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → {𝑄} ∈ 𝐶) | ||
| Theorem | pmapsubclN 40065 | A projective map value is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ∈ 𝐶) | ||
| Theorem | ispsubcl2N 40066* | Alternate predicate for "is a closed projective subspace". Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑋 = (𝑀‘𝑦))) | ||
| Theorem | psubclinN 40067 | The intersection of two closed subspaces is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → (𝑋 ∩ 𝑌) ∈ 𝐶) | ||
| Theorem | paddatclN 40068 | The projective sum of a closed subspace and an atom is a closed projective subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑄 ∈ 𝐴) → (𝑋 + {𝑄}) ∈ 𝐶) | ||
| Theorem | pclfinclN 40069 | The projective subspace closure of a finite set of atoms is a closed subspace. Compare the (non-closed) subspace version pclfinN 40019 and also pclcmpatN 40020. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) & ⊢ 𝑆 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (𝑈‘𝑋) ∈ 𝑆) | ||
| Theorem | linepsubclN 40070 | A line is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐶) | ||
| Theorem | polsubclN 40071 | A polarity is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝐶) | ||
| Theorem | poml4N 40072 | Orthomodular law for projective lattices. Lemma 3.3(1) in [Holland95] p. 215. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥ ‘𝑋)))) | ||
| Theorem | poml5N 40073 | Orthomodular law for projective lattices. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) ∩ ( ⊥ ‘𝑌)) = ( ⊥ ‘( ⊥ ‘𝑋))) | ||
| Theorem | poml6N 40074 | Orthomodular law for projective lattices. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋) | ||
| Theorem | osumcllem1N 40075 | Lemma for osumclN 40086. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → (𝑈 ∩ 𝑀) = 𝑀) | ||
| Theorem | osumcllem2N 40076 | Lemma for osumclN 40086. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ (𝑈 ∩ 𝑀)) | ||
| Theorem | osumcllem3N 40077 | Lemma for osumclN 40086. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘𝑋) ∩ 𝑈) = 𝑌) | ||
| Theorem | osumcllem4N 40078 | Lemma for osumclN 40086. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → 𝑞 ≠ 𝑟) | ||
| Theorem | osumcllem5N 40079 | Lemma for osumclN 40086. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴 ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ∈ (𝑋 + 𝑌)) | ||
| Theorem | osumcllem6N 40080 | Lemma for osumclN 40086. Use atom exchange hlatexch1 39514 to swap 𝑝 and 𝑞. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑝 ∈ (𝑋 + 𝑌)) | ||
| Theorem | osumcllem7N 40081* | Lemma for osumclN 40086. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → 𝑝 ∈ (𝑋 + 𝑌)) | ||
| Theorem | osumcllem8N 40082 | Lemma for osumclN 40086. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌 ∩ 𝑀) = ∅) | ||
| Theorem | osumcllem9N 40083 | Lemma for osumclN 40086. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 = 𝑋) | ||
| Theorem | osumcllem10N 40084 | Lemma for osumclN 40086. Contradict osumcllem9N 40083. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 ≠ 𝑋) | ||
| Theorem | osumcllem11N 40085 | Lemma for osumclN 40086. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
| ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌)))) | ||
| Theorem | osumclN 40086 | Closure of orthogonal sum. If 𝑋 and 𝑌 are orthogonal closed projective subspaces, then their sum is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
| ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑋 + 𝑌) ∈ 𝐶) | ||
| Theorem | pmapojoinN 40087 | For orthogonal elements, projective map of join equals projective sum. Compare pmapjoin 39971 where only one direction holds. (Contributed by NM, 11-Apr-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ ( ⊥ ‘𝑌)) → (𝑀‘(𝑋 ∨ 𝑌)) = ((𝑀‘𝑋) + (𝑀‘𝑌))) | ||
| Theorem | pexmidN 40088 | Excluded middle law for closed projective subspaces, which can be shown to be equivalent to (and derivable from) the orthomodular law poml4N 40072. Lemma 3.3(2) in [Holland95] p. 215, which we prove as a special case of osumclN 40086. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) | ||
| Theorem | pexmidlem1N 40089 | Lemma for pexmidN 40088. Holland's proof implicitly requires 𝑞 ≠ 𝑟, which we prove here. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ≠ 𝑟) | ||
| Theorem | pexmidlem2N 40090 | Lemma for pexmidN 40088. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) | ||
| Theorem | pexmidlem3N 40091 | Lemma for pexmidN 40088. Use atom exchange hlatexch1 39514 to swap 𝑝 and 𝑞. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋)) ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) | ||
| Theorem | pexmidlem4N 40092* | Lemma for pexmidN 40088. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) | ||
| Theorem | pexmidlem5N 40093 | Lemma for pexmidN 40088. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (( ⊥ ‘𝑋) ∩ 𝑀) = ∅) | ||
| Theorem | pexmidlem6N 40094 | Lemma for pexmidN 40088. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑀 = 𝑋) | ||
| Theorem | pexmidlem7N 40095 | Lemma for pexmidN 40088. Contradict pexmidlem6N 40094. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑀 ≠ 𝑋) | ||
| Theorem | pexmidlem8N 40096 | Lemma for pexmidN 40088. The contradiction of pexmidlem6N 40094 and pexmidlem7N 40095 shows that there can be no atom 𝑝 that is not in 𝑋 + ( ⊥ ‘𝑋), which is therefore the whole atom space. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) | ||
| Theorem | pexmidALTN 40097 | Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 40072. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, 𝑞, 𝑟 in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) | ||
| Theorem | pl42lem1N 40098 | Lemma for pl42N 40102. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → ((𝑋 ≤ ( ⊥ ‘𝑌) ∧ 𝑍 ≤ ( ⊥ ‘𝑊)) → (𝐹‘((((𝑋 ∨ 𝑌) ∧ 𝑍) ∨ 𝑊) ∧ 𝑉)) = (((((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) + (𝐹‘𝑊)) ∩ (𝐹‘𝑉)))) | ||
| Theorem | pl42lem2N 40099 | Lemma for pl42N 40102. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → (((𝐹‘𝑋) + (𝐹‘𝑌)) + (((𝐹‘𝑋) + (𝐹‘𝑊)) ∩ ((𝐹‘𝑌) + (𝐹‘𝑉)))) ⊆ (𝐹‘((𝑋 ∨ 𝑌) ∨ ((𝑋 ∨ 𝑊) ∧ (𝑌 ∨ 𝑉))))) | ||
| Theorem | pl42lem3N 40100 | Lemma for pl42N 40102. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → (((((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) + (𝐹‘𝑊)) ∩ (𝐹‘𝑉)) ⊆ ((((𝐹‘𝑋) + (𝐹‘𝑌)) + (𝐹‘𝑊)) ∩ (((𝐹‘𝑋) + (𝐹‘𝑌)) + (𝐹‘𝑉)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |