Home | Metamath
Proof Explorer Theorem List (p. 401 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | addcomnni 40001 | Commutative law for addition. (Contributed by metakunt, 25-Apr-2024.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) | ||
Theorem | mulassnni 40002 | Associative law for multiplication. (Contributed by metakunt, 25-Apr-2024.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ & ⊢ 𝐶 ∈ ℕ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) | ||
Theorem | mulcomnni 40003 | Commutative law for multiplication. (Contributed by metakunt, 25-Apr-2024.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) | ||
Theorem | gcdcomnni 40004 | Commutative law for gcd. (Contributed by metakunt, 25-Apr-2024.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀) | ||
Theorem | gcdnegnni 40005 | Negation invariance for gcd. (Contributed by metakunt, 25-Apr-2024.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁) | ||
Theorem | neggcdnni 40006 | Negation invariance for gcd. (Contributed by metakunt, 25-Apr-2024.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (-𝑀 gcd 𝑁) = (𝑀 gcd 𝑁) | ||
Theorem | bccl2d 40007 | Closure of the binomial coefficient, a deduction version. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ≤ 𝑁) ⇒ ⊢ (𝜑 → (𝑁C𝐾) ∈ ℕ) | ||
Theorem | recbothd 40008 | Take reciprocal on both sides. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶))) | ||
Theorem | gcdmultiplei 40009 | The GCD of a multiple of a positive integer is the positive integer itself. (Contributed by metakunt, 25-Apr-2024.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝑀 gcd (𝑀 · 𝑁)) = 𝑀 | ||
Theorem | gcdaddmzz2nni 40010 | Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by metakunt, 25-Apr-2024.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))) | ||
Theorem | gcdaddmzz2nncomi 40011 | Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by metakunt, 25-Apr-2024.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) | ||
Theorem | gcdnncli 40012 | Closure of the gcd operator. (Contributed by metakunt, 25-Apr-2024.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝑀 gcd 𝑁) ∈ ℕ | ||
Theorem | muldvds1d 40013 | If a product divides an integer, so does one of its factors, a deduction version. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝐾 · 𝑀) ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∥ 𝑁) | ||
Theorem | muldvds2d 40014 | If a product divides an integer, so does one of its factors, a deduction version. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝐾 · 𝑀) ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝑀 ∥ 𝑁) | ||
Theorem | nndivdvdsd 40015 | A positive integer divides a natural number if and only if the quotient is a positive integer, a deduction version of nndivdvds 15981. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℕ)) | ||
Theorem | nnproddivdvdsd 40016 | A product of natural numbers divides a natural number if and only if a factor divides the quotient, a deduction version. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐾 · 𝑀) ∥ 𝑁 ↔ 𝐾 ∥ (𝑁 / 𝑀))) | ||
Theorem | coprmdvds2d 40017 | If an integer is divisible by two coprime integers, then it is divisible by their product, a deduction version. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝐾 gcd 𝑀) = 1) & ⊢ (𝜑 → 𝐾 ∥ 𝑁) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) ⇒ ⊢ (𝜑 → (𝐾 · 𝑀) ∥ 𝑁) | ||
Theorem | 12gcd5e1 40018 | The gcd of 12 and 5 is 1. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (;12 gcd 5) = 1 | ||
Theorem | 60gcd6e6 40019 | The gcd of 60 and 6 is 6. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (;60 gcd 6) = 6 | ||
Theorem | 60gcd7e1 40020 | The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (;60 gcd 7) = 1 | ||
Theorem | 420gcd8e4 40021 | The gcd of 420 and 8 is 4. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (;;420 gcd 8) = 4 | ||
Theorem | lcmeprodgcdi 40022 | Calculate the least common multiple of two natural numbers. (Contributed by metakunt, 25-Apr-2024.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐺 ∈ ℕ & ⊢ 𝐻 ∈ ℕ & ⊢ (𝑀 gcd 𝑁) = 𝐺 & ⊢ (𝐺 · 𝐻) = 𝐴 & ⊢ (𝑀 · 𝑁) = 𝐴 ⇒ ⊢ (𝑀 lcm 𝑁) = 𝐻 | ||
Theorem | 12lcm5e60 40023 | The lcm of 12 and 5 is 60. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (;12 lcm 5) = ;60 | ||
Theorem | 60lcm6e60 40024 | The lcm of 60 and 6 is 60. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (;60 lcm 6) = ;60 | ||
Theorem | 60lcm7e420 40025 | The lcm of 60 and 7 is 420. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (;60 lcm 7) = ;;420 | ||
Theorem | 420lcm8e840 40026 | The lcm of 420 and 8 is 840. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (;;420 lcm 8) = ;;840 | ||
Theorem | lcmfunnnd 40027 | Useful equation to calculate the least common multiple of 1 to n. (Contributed by metakunt, 29-Apr-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) | ||
Theorem | lcm1un 40028 | Least common multiple of natural numbers up to 1 equals 1. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (lcm‘(1...1)) = 1 | ||
Theorem | lcm2un 40029 | Least common multiple of natural numbers up to 2 equals 2. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (lcm‘(1...2)) = 2 | ||
Theorem | lcm3un 40030 | Least common multiple of natural numbers up to 3 equals 6. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (lcm‘(1...3)) = 6 | ||
Theorem | lcm4un 40031 | Least common multiple of natural numbers up to 4 equals 12. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (lcm‘(1...4)) = ;12 | ||
Theorem | lcm5un 40032 | Least common multiple of natural numbers up to 5 equals 60. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (lcm‘(1...5)) = ;60 | ||
Theorem | lcm6un 40033 | Least common multiple of natural numbers up to 6 equals 60. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (lcm‘(1...6)) = ;60 | ||
Theorem | lcm7un 40034 | Least common multiple of natural numbers up to 7 equals 420. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (lcm‘(1...7)) = ;;420 | ||
Theorem | lcm8un 40035 | Least common multiple of natural numbers up to 8 equals 840. (Contributed by metakunt, 25-Apr-2024.) |
⊢ (lcm‘(1...8)) = ;;840 | ||
Theorem | 3factsumint1 40036* | Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.) |
⊢ 𝐴 = (𝐿[,]𝑈) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ)) ⇒ ⊢ (𝜑 → ∫𝐴Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥) | ||
Theorem | 3factsumint2 40037* | Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐵 ∫𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥) | ||
Theorem | 3factsumint3 40038* | Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.) |
⊢ 𝐴 = (𝐿[,]𝑈) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐵 ∫𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥)) | ||
Theorem | 3factsumint4 40039* | Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.) |
⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) ⇒ ⊢ (𝜑 → ∫𝐴Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = ∫𝐴(𝐹 · Σ𝑘 ∈ 𝐵 (𝐺 · 𝐻)) d𝑥) | ||
Theorem | 3factsumint 40040* | Helpful equation for lcm inequality proof. (Contributed by metakunt, 26-Apr-2024.) |
⊢ 𝐴 = (𝐿[,]𝑈) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ)) ⇒ ⊢ (𝜑 → ∫𝐴(𝐹 · Σ𝑘 ∈ 𝐵 (𝐺 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥)) | ||
Theorem | resopunitintvd 40041 | Restrict continuous function on open unit interval. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ (0(,)1) ↦ 𝐴) ∈ ((0(,)1)–cn→ℂ)) | ||
Theorem | resclunitintvd 40042 | Restrict continuous function on closed unit interval. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝐴) ∈ ((0[,]1)–cn→ℂ)) | ||
Theorem | resdvopclptsd 40043* | Restrict derivative on unit interval. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ 𝐴)) = (𝑥 ∈ (0(,)1) ↦ 𝐵)) | ||
Theorem | lcmineqlem1 40044* | Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.) |
⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (𝑥↑𝑘))) d𝑥) | ||
Theorem | lcmineqlem2 40045* | Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.) |
⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) | ||
Theorem | lcmineqlem3 40046* | Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 30-Apr-2024.) |
⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) | ||
Theorem | lcmineqlem4 40047 | Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. F is found in lcmineqlem6 40049. (Contributed by metakunt, 10-May-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) & ⊢ (𝜑 → 𝐾 ∈ (0...(𝑁 − 𝑀))) ⇒ ⊢ (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℤ) | ||
Theorem | lcmineqlem5 40048 | Technical lemma for reciprocal multiplication in deduction form. (Contributed by metakunt, 10-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 · (1 / 𝐶))) = (𝐵 · (𝐴 / 𝐶))) | ||
Theorem | lcmineqlem6 40049* | Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 10-May-2024.) |
⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℤ) | ||
Theorem | lcmineqlem7 40050 | Derivative of 1-x for chain rule application. (Contributed by metakunt, 12-May-2024.) |
⊢ (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1) | ||
Theorem | lcmineqlem8 40051* | Derivative of (1-x)^(N-M). (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 < 𝑁) ⇒ ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))))) | ||
Theorem | lcmineqlem9 40052* | (1-x)^(N-M) is continuous. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 𝑀))) ∈ (ℂ–cn→ℂ)) | ||
Theorem | lcmineqlem10 40053* | Induction step of lcmineqlem13 40056 (deduction form). (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 < 𝑁) ⇒ ⊢ (𝜑 → ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥 = ((𝑀 / (𝑁 − 𝑀)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥)) | ||
Theorem | lcmineqlem11 40054 | Induction step, continuation for binomial coefficients. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 < 𝑁) ⇒ ⊢ (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = ((𝑀 / (𝑁 − 𝑀)) · (1 / (𝑀 · (𝑁C𝑀))))) | ||
Theorem | lcmineqlem12 40055* | Base case for induction. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = (1 / (1 · (𝑁C1)))) | ||
Theorem | lcmineqlem13 40056* | Induction proof for lcm integral. (Contributed by metakunt, 12-May-2024.) |
⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝐹 = (1 / (𝑀 · (𝑁C𝑀)))) | ||
Theorem | lcmineqlem14 40057 | Technical lemma for inequality estimate. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → 𝐸 ∈ ℕ) & ⊢ (𝜑 → (𝐴 · 𝐶) ∥ 𝐷) & ⊢ (𝜑 → (𝐵 · 𝐶) ∥ 𝐸) & ⊢ (𝜑 → 𝐷 ∥ 𝐸) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) ∥ 𝐸) | ||
Theorem | lcmineqlem15 40058* | F times the least common multiple of 1 to n is a natural number. (Contributed by metakunt, 10-May-2024.) |
⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℕ) | ||
Theorem | lcmineqlem16 40059 | Technical divisibility lemma. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ (𝜑 → (𝑀 · (𝑁C𝑀)) ∥ (lcm‘(1...𝑁))) | ||
Theorem | lcmineqlem17 40060 | Inequality of 2^{2n}. (Contributed by metakunt, 29-Apr-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (2↑(2 · 𝑁)) ≤ (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁))) | ||
Theorem | lcmineqlem18 40061 | Technical lemma to shift factors in binomial coefficient. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁))) | ||
Theorem | lcmineqlem19 40062 | Dividing implies inequality for lcm inequality lemma. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝑁 · ((2 · 𝑁) + 1)) · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...((2 · 𝑁) + 1)))) | ||
Theorem | lcmineqlem20 40063 | Inequality for lcm lemma. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑁 · (2↑(2 · 𝑁))) ≤ (lcm‘(1...((2 · 𝑁) + 1)))) | ||
Theorem | lcmineqlem21 40064 | The lcm inequality lemma without base cases 7 and 8. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 4 ≤ 𝑁) ⇒ ⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 1)))) | ||
Theorem | lcmineqlem22 40065 | The lcm inequality lemma without base cases 7 and 8. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 4 ≤ 𝑁) ⇒ ⊢ (𝜑 → ((2↑((2 · 𝑁) + 1)) ≤ (lcm‘(1...((2 · 𝑁) + 1))) ∧ (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 2))))) | ||
Theorem | lcmineqlem23 40066 | Penultimate step to the lcm inequality lemma. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 9 ≤ 𝑁) ⇒ ⊢ (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁))) | ||
Theorem | lcmineqlem 40067 | The least common multiple inequality lemma, a central result for future use. Theorem 3.1 from https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 16-May-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 7 ≤ 𝑁) ⇒ ⊢ (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁))) | ||
Theorem | 3exp7 40068 | 3 to the power of 7 equals 2187. (Contributed by metakunt, 21-Aug-2024.) |
⊢ (3↑7) = ;;;2187 | ||
Theorem | 3lexlogpow5ineq1 40069 | First inequality in inequality chain, proposed by Mario Carneiro (Contributed by metakunt, 22-May-2024.) |
⊢ 9 < ((;11 / 7)↑5) | ||
Theorem | 3lexlogpow5ineq2 40070 | Second inequality in inequality chain, proposed by Mario Carneiro. (Contributed by metakunt, 22-May-2024.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 3 ≤ 𝑋) ⇒ ⊢ (𝜑 → ((;11 / 7)↑5) ≤ ((2 logb 𝑋)↑5)) | ||
Theorem | 3lexlogpow5ineq4 40071 | Sharper logarithm inequality chain. (Contributed by metakunt, 21-Aug-2024.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 3 ≤ 𝑋) ⇒ ⊢ (𝜑 → 9 < ((2 logb 𝑋)↑5)) | ||
Theorem | 3lexlogpow5ineq3 40072 | Combined inequality chain for a specific power of the binary logarithm, proposed by Mario Carneiro. (Contributed by metakunt, 22-May-2024.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 3 ≤ 𝑋) ⇒ ⊢ (𝜑 → 7 < ((2 logb 𝑋)↑5)) | ||
Theorem | 3lexlogpow2ineq1 40073 | Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024.) |
⊢ ((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5 / 3)) | ||
Theorem | 3lexlogpow2ineq2 40074 | Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024.) |
⊢ (2 < ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < 3) | ||
Theorem | 3lexlogpow5ineq5 40075 | Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024.) |
⊢ ((2 logb 3)↑5) ≤ ;15 | ||
Theorem | intlewftc 40076* | Inequality inference by invoking fundamental theorem of calculus. (Contributed by metakunt, 22-Jul-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → 𝐷 = (ℝ D 𝐹)) & ⊢ (𝜑 → 𝐸 = (ℝ D 𝐺)) & ⊢ (𝜑 → 𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ)) & ⊢ (𝜑 → 𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ)) & ⊢ (𝜑 → 𝐷 ∈ 𝐿1) & ⊢ (𝜑 → 𝐸 ∈ 𝐿1) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)) & ⊢ (𝜑 → 𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑃 ≤ 𝑄) & ⊢ (𝜑 → (𝐹‘𝐴) ≤ (𝐺‘𝐴)) ⇒ ⊢ (𝜑 → (𝐹‘𝐵) ≤ (𝐺‘𝐵)) | ||
Theorem | aks4d1lem1 40077 | Technical lemma to reduce proof size. (Contributed by metakunt, 14-Nov-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) ⇒ ⊢ (𝜑 → (𝐵 ∈ ℕ ∧ 9 < 𝐵)) | ||
Theorem | aks4d1p1p1 40078* | Exponential law for finite products, special case. (Contributed by metakunt, 22-Jul-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ (1...𝑁)(𝐴↑𝑐𝑘) = (𝐴↑𝑐Σ𝑘 ∈ (1...𝑁)𝑘)) | ||
Theorem | dvrelog2 40079* | The derivative of the logarithm, ftc2 25217 version. (Contributed by metakunt, 11-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) ⇒ ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) | ||
Theorem | dvrelog3 40080* | The derivative of the logarithm on an open interval. (Contributed by metakunt, 11-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) ⇒ ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) | ||
Theorem | dvrelog2b 40081* | Derivative of the binary logarithm. (Contributed by metakunt, 11-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))) ⇒ ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) | ||
Theorem | 0nonelalab 40082 | Technical lemma for open interval. (Contributed by metakunt, 12-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) ⇒ ⊢ (𝜑 → 0 ≠ 𝐶) | ||
Theorem | dvrelogpow2b 40083* | Derivative of the power of the binary logarithm. (Contributed by metakunt, 12-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥))) & ⊢ 𝐶 = (𝑁 / ((log‘2)↑𝑁)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) | ||
Theorem | aks4d1p1p3 40084 | Bound of a ceiling of the binary logarithm to the fifth power. (Contributed by metakunt, 19-Aug-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ (𝜑 → 3 ≤ 𝑁) ⇒ ⊢ (𝜑 → (𝑁↑𝑐(⌊‘(2 logb 𝐵))) < (𝑁↑𝑐(2 logb (((2 logb 𝑁)↑5) + 1)))) | ||
Theorem | aks4d1p1p2 40085* | Rewrite 𝐴 in more suitable form. (Contributed by metakunt, 19-Aug-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ (𝜑 → 3 ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝐴 < (𝑁↑𝑐(((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2)))) | ||
Theorem | aks4d1p1p4 40086* | Technical step for inequality. The hard work is in to prove the final hypothesis. (Contributed by metakunt, 19-Aug-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ (𝜑 → 3 ≤ 𝑁) & ⊢ 𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1)) & ⊢ 𝐷 = ((2 logb 𝑁)↑2) & ⊢ 𝐸 = ((2 logb 𝑁)↑4) & ⊢ (𝜑 → ((2 · 𝐶) + 𝐷) ≤ 𝐸) ⇒ ⊢ (𝜑 → 𝐴 < (2↑𝐵)) | ||
Theorem | dvle2 40087* | Collapsed dvle 25180. (Contributed by metakunt, 19-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐸)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐹)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐺)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐻)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐹 ≤ 𝐻) & ⊢ (𝑥 = 𝐴 → 𝐸 = 𝑃) & ⊢ (𝑥 = 𝐴 → 𝐺 = 𝑄) & ⊢ (𝑥 = 𝐵 → 𝐸 = 𝑅) & ⊢ (𝑥 = 𝐵 → 𝐺 = 𝑆) & ⊢ (𝜑 → 𝑃 ≤ 𝑄) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝑅 ≤ 𝑆) | ||
Theorem | aks4d1p1p6 40088* | Inequality lift to differentiable functions for a term in AKS inequality lemma. (Contributed by metakunt, 19-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 3 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))))) | ||
Theorem | aks4d1p1p7 40089 | Bound of intermediary of inequality step. (Contributed by metakunt, 19-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 4 ≤ 𝐴) ⇒ ⊢ (𝜑 → ((2 · ((1 / ((((2 logb 𝐴)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝐴)↑4)) · (1 / (𝐴 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝐴)↑(2 − 1)) / 𝐴))) ≤ ((4 / ((log‘2)↑4)) · (((log‘𝐴)↑3) / 𝐴))) | ||
Theorem | aks4d1p1p5 40090* | Show inequality for existence of a non-divisor. (Contributed by metakunt, 19-Aug-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ (𝜑 → 4 ≤ 𝑁) & ⊢ 𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1)) & ⊢ 𝐷 = ((2 logb 𝑁)↑2) & ⊢ 𝐸 = ((2 logb 𝑁)↑4) ⇒ ⊢ (𝜑 → 𝐴 < (2↑𝐵)) | ||
Theorem | aks4d1p1 40091* | Show inequality for existence of a non-divisor. (Contributed by metakunt, 21-Aug-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) ⇒ ⊢ (𝜑 → 𝐴 < (2↑𝐵)) | ||
Theorem | aks4d1p2 40092 | Technical lemma for existence of non-divisor. (Contributed by metakunt, 27-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) ⇒ ⊢ (𝜑 → (2↑𝐵) ≤ (lcm‘(1...𝐵))) | ||
Theorem | aks4d1p3 40093* | There exists a small enough number such that it does not divide 𝐴. (Contributed by metakunt, 27-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟 ∥ 𝐴) | ||
Theorem | aks4d1p4 40094* | There exists a small enough number such that it does not divide 𝐴. (Contributed by metakunt, 28-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) ⇒ ⊢ (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅 ∥ 𝐴)) | ||
Theorem | aks4d1p5 40095* | Show that 𝑁 and 𝑅 are coprime for AKS existence theorem. Precondition will be eliminated in further theorem. (Contributed by metakunt, 30-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) & ⊢ (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) ⇒ ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | ||
Theorem | aks4d1p6 40096* | The maximal prime power exponent is smaller than the binary logarithm floor of 𝐵. (Contributed by metakunt, 30-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑃 ∥ 𝑅) & ⊢ 𝐾 = (𝑃 pCnt 𝑅) ⇒ ⊢ (𝜑 → 𝐾 ≤ (⌊‘(2 logb 𝐵))) | ||
Theorem | aks4d1p7d1 40097* | Technical step in AKS lemma 4.1 (Contributed by metakunt, 31-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) & ⊢ (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁)) ⇒ ⊢ (𝜑 → 𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵)))) | ||
Theorem | aks4d1p7 40098* | Technical step in AKS lemma 4.1 (Contributed by metakunt, 31-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ ℙ (𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁)) | ||
Theorem | aks4d1p8d1 40099 | If a prime divides one number 𝑀, but not another number 𝑁, then it divides the quotient of 𝑀 and the gcd of 𝑀 and 𝑁. (Contributed by Thierry Arnoux, 10-Nov-2024.) |
⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∥ 𝑀) & ⊢ (𝜑 → ¬ 𝑃 ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝑃 ∥ (𝑀 / (𝑀 gcd 𝑁))) | ||
Theorem | aks4d1p8d2 40100 | Any prime power dividing a positive integer is less than that integer if that integer has another prime factor. (Contributed by metakunt, 13-Nov-2024.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑄 ∈ ℙ) & ⊢ (𝜑 → 𝑃 ∥ 𝑅) & ⊢ (𝜑 → 𝑄 ∥ 𝑅) & ⊢ (𝜑 → ¬ 𝑃 ∥ 𝑁) & ⊢ (𝜑 → 𝑄 ∥ 𝑁) ⇒ ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < 𝑅) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |