Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibffval Structured version   Visualization version   GIF version

Theorem dibffval 36950
 Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
dibval.b 𝐵 = (Base‘𝐾)
dibval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dibffval (𝐾𝑉 → (DIsoB‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))))
Distinct variable groups:   𝑤,𝐻   𝑤,𝑓,𝑥,𝐾
Allowed substitution hints:   𝐵(𝑥,𝑤,𝑓)   𝐻(𝑥,𝑓)   𝑉(𝑥,𝑤,𝑓)

Proof of Theorem dibffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3364 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6332 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 dibval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3syl6eqr 2823 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6332 . . . . . . 7 (𝑘 = 𝐾 → (DIsoA‘𝑘) = (DIsoA‘𝐾))
65fveq1d 6334 . . . . . 6 (𝑘 = 𝐾 → ((DIsoA‘𝑘)‘𝑤) = ((DIsoA‘𝐾)‘𝑤))
76dmeqd 5464 . . . . 5 (𝑘 = 𝐾 → dom ((DIsoA‘𝑘)‘𝑤) = dom ((DIsoA‘𝐾)‘𝑤))
86fveq1d 6334 . . . . . 6 (𝑘 = 𝐾 → (((DIsoA‘𝑘)‘𝑤)‘𝑥) = (((DIsoA‘𝐾)‘𝑤)‘𝑥))
9 fveq2 6332 . . . . . . . . 9 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
109fveq1d 6334 . . . . . . . 8 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
11 fveq2 6332 . . . . . . . . . 10 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
12 dibval.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
1311, 12syl6eqr 2823 . . . . . . . . 9 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
1413reseq2d 5534 . . . . . . . 8 (𝑘 = 𝐾 → ( I ↾ (Base‘𝑘)) = ( I ↾ 𝐵))
1510, 14mpteq12dv 4867 . . . . . . 7 (𝑘 = 𝐾 → (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵)))
1615sneqd 4328 . . . . . 6 (𝑘 = 𝐾 → {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))} = {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})
178, 16xpeq12d 5280 . . . . 5 (𝑘 = 𝐾 → ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}) = ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))
187, 17mpteq12dv 4867 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})) = (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))
194, 18mpteq12dv 4867 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}))) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))))
20 df-dib 36949 . . 3 DIsoB = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}))))
21 fvex 6342 . . . . 5 (LHyp‘𝐾) ∈ V
223, 21eqeltri 2846 . . . 4 𝐻 ∈ V
2322mptex 6630 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))) ∈ V
2419, 20, 23fvmpt 6424 . 2 (𝐾 ∈ V → (DIsoB‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))))
251, 24syl 17 1 (𝐾𝑉 → (DIsoB‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1631   ∈ wcel 2145  Vcvv 3351  {csn 4316   ↦ cmpt 4863   I cid 5156   × cxp 5247  dom cdm 5249   ↾ cres 5251  ‘cfv 6031  Basecbs 16064  LHypclh 35792  LTrncltrn 35909  DIsoAcdia 36838  DIsoBcdib 36948 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-dib 36949 This theorem is referenced by:  dibfval  36951
 Copyright terms: Public domain W3C validator