Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibffval Structured version   Visualization version   GIF version

Theorem dibffval 39133
Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
dibval.b 𝐵 = (Base‘𝐾)
dibval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dibffval (𝐾𝑉 → (DIsoB‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))))
Distinct variable groups:   𝑤,𝐻   𝑤,𝑓,𝑥,𝐾
Allowed substitution hints:   𝐵(𝑥,𝑤,𝑓)   𝐻(𝑥,𝑓)   𝑉(𝑥,𝑤,𝑓)

Proof of Theorem dibffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3448 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6768 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 dibval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2797 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6768 . . . . . . 7 (𝑘 = 𝐾 → (DIsoA‘𝑘) = (DIsoA‘𝐾))
65fveq1d 6770 . . . . . 6 (𝑘 = 𝐾 → ((DIsoA‘𝑘)‘𝑤) = ((DIsoA‘𝐾)‘𝑤))
76dmeqd 5811 . . . . 5 (𝑘 = 𝐾 → dom ((DIsoA‘𝑘)‘𝑤) = dom ((DIsoA‘𝐾)‘𝑤))
86fveq1d 6770 . . . . . 6 (𝑘 = 𝐾 → (((DIsoA‘𝑘)‘𝑤)‘𝑥) = (((DIsoA‘𝐾)‘𝑤)‘𝑥))
9 fveq2 6768 . . . . . . . . 9 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
109fveq1d 6770 . . . . . . . 8 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
11 fveq2 6768 . . . . . . . . . 10 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
12 dibval.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
1311, 12eqtr4di 2797 . . . . . . . . 9 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
1413reseq2d 5888 . . . . . . . 8 (𝑘 = 𝐾 → ( I ↾ (Base‘𝑘)) = ( I ↾ 𝐵))
1510, 14mpteq12dv 5169 . . . . . . 7 (𝑘 = 𝐾 → (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵)))
1615sneqd 4578 . . . . . 6 (𝑘 = 𝐾 → {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))} = {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})
178, 16xpeq12d 5619 . . . . 5 (𝑘 = 𝐾 → ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}) = ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))
187, 17mpteq12dv 5169 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})) = (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))
194, 18mpteq12dv 5169 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}))) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))))
20 df-dib 39132 . . 3 DIsoB = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}))))
2119, 20, 3mptfvmpt 7098 . 2 (𝐾 ∈ V → (DIsoB‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))))
221, 21syl 17 1 (𝐾𝑉 → (DIsoB‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  Vcvv 3430  {csn 4566  cmpt 5161   I cid 5487   × cxp 5586  dom cdm 5588  cres 5590  cfv 6430  Basecbs 16893  LHypclh 37977  LTrncltrn 38094  DIsoAcdia 39021  DIsoBcdib 39131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-dib 39132
This theorem is referenced by:  dibfval  39134
  Copyright terms: Public domain W3C validator