Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibffval Structured version   Visualization version   GIF version

Theorem dibffval 39999
Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
dibval.b 𝐡 = (Baseβ€˜πΎ)
dibval.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
dibffval (𝐾 ∈ 𝑉 β†’ (DIsoBβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘€) ↦ ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))}))))
Distinct variable groups:   𝑀,𝐻   𝑀,𝑓,π‘₯,𝐾
Allowed substitution hints:   𝐡(π‘₯,𝑀,𝑓)   𝐻(π‘₯,𝑓)   𝑉(π‘₯,𝑀,𝑓)

Proof of Theorem dibffval
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾 ∈ 𝑉 β†’ 𝐾 ∈ V)
2 fveq2 6888 . . . . 5 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = (LHypβ€˜πΎ))
3 dibval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
42, 3eqtr4di 2790 . . . 4 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = 𝐻)
5 fveq2 6888 . . . . . . 7 (π‘˜ = 𝐾 β†’ (DIsoAβ€˜π‘˜) = (DIsoAβ€˜πΎ))
65fveq1d 6890 . . . . . 6 (π‘˜ = 𝐾 β†’ ((DIsoAβ€˜π‘˜)β€˜π‘€) = ((DIsoAβ€˜πΎ)β€˜π‘€))
76dmeqd 5903 . . . . 5 (π‘˜ = 𝐾 β†’ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) = dom ((DIsoAβ€˜πΎ)β€˜π‘€))
86fveq1d 6890 . . . . . 6 (π‘˜ = 𝐾 β†’ (((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) = (((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯))
9 fveq2 6888 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (LTrnβ€˜π‘˜) = (LTrnβ€˜πΎ))
109fveq1d 6890 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ((LTrnβ€˜π‘˜)β€˜π‘€) = ((LTrnβ€˜πΎ)β€˜π‘€))
11 fveq2 6888 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = (Baseβ€˜πΎ))
12 dibval.b . . . . . . . . . 10 𝐡 = (Baseβ€˜πΎ)
1311, 12eqtr4di 2790 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = 𝐡)
1413reseq2d 5979 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ( I β†Ύ (Baseβ€˜π‘˜)) = ( I β†Ύ 𝐡))
1510, 14mpteq12dv 5238 . . . . . . 7 (π‘˜ = 𝐾 β†’ (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜))) = (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡)))
1615sneqd 4639 . . . . . 6 (π‘˜ = 𝐾 β†’ {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))} = {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))})
178, 16xpeq12d 5706 . . . . 5 (π‘˜ = 𝐾 β†’ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))}) = ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))}))
187, 17mpteq12dv 5238 . . . 4 (π‘˜ = 𝐾 β†’ (π‘₯ ∈ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) ↦ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))})) = (π‘₯ ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘€) ↦ ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))})))
194, 18mpteq12dv 5238 . . 3 (π‘˜ = 𝐾 β†’ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) ↦ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))}))) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘€) ↦ ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))}))))
20 df-dib 39998 . . 3 DIsoB = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) ↦ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))}))))
2119, 20, 3mptfvmpt 7226 . 2 (𝐾 ∈ V β†’ (DIsoBβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘€) ↦ ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))}))))
221, 21syl 17 1 (𝐾 ∈ 𝑉 β†’ (DIsoBβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘€) ↦ ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))}))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474  {csn 4627   ↦ cmpt 5230   I cid 5572   Γ— cxp 5673  dom cdm 5675   β†Ύ cres 5677  β€˜cfv 6540  Basecbs 17140  LHypclh 38843  LTrncltrn 38960  DIsoAcdia 39887  DIsoBcdib 39997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-dib 39998
This theorem is referenced by:  dibfval  40000
  Copyright terms: Public domain W3C validator