Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibffval Structured version   Visualization version   GIF version

Theorem dibffval 39606
Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
dibval.b 𝐡 = (Baseβ€˜πΎ)
dibval.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
dibffval (𝐾 ∈ 𝑉 β†’ (DIsoBβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘€) ↦ ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))}))))
Distinct variable groups:   𝑀,𝐻   𝑀,𝑓,π‘₯,𝐾
Allowed substitution hints:   𝐡(π‘₯,𝑀,𝑓)   𝐻(π‘₯,𝑓)   𝑉(π‘₯,𝑀,𝑓)

Proof of Theorem dibffval
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3464 . 2 (𝐾 ∈ 𝑉 β†’ 𝐾 ∈ V)
2 fveq2 6843 . . . . 5 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = (LHypβ€˜πΎ))
3 dibval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
42, 3eqtr4di 2795 . . . 4 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = 𝐻)
5 fveq2 6843 . . . . . . 7 (π‘˜ = 𝐾 β†’ (DIsoAβ€˜π‘˜) = (DIsoAβ€˜πΎ))
65fveq1d 6845 . . . . . 6 (π‘˜ = 𝐾 β†’ ((DIsoAβ€˜π‘˜)β€˜π‘€) = ((DIsoAβ€˜πΎ)β€˜π‘€))
76dmeqd 5862 . . . . 5 (π‘˜ = 𝐾 β†’ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) = dom ((DIsoAβ€˜πΎ)β€˜π‘€))
86fveq1d 6845 . . . . . 6 (π‘˜ = 𝐾 β†’ (((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) = (((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯))
9 fveq2 6843 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (LTrnβ€˜π‘˜) = (LTrnβ€˜πΎ))
109fveq1d 6845 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ((LTrnβ€˜π‘˜)β€˜π‘€) = ((LTrnβ€˜πΎ)β€˜π‘€))
11 fveq2 6843 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = (Baseβ€˜πΎ))
12 dibval.b . . . . . . . . . 10 𝐡 = (Baseβ€˜πΎ)
1311, 12eqtr4di 2795 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = 𝐡)
1413reseq2d 5938 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ( I β†Ύ (Baseβ€˜π‘˜)) = ( I β†Ύ 𝐡))
1510, 14mpteq12dv 5197 . . . . . . 7 (π‘˜ = 𝐾 β†’ (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜))) = (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡)))
1615sneqd 4599 . . . . . 6 (π‘˜ = 𝐾 β†’ {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))} = {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))})
178, 16xpeq12d 5665 . . . . 5 (π‘˜ = 𝐾 β†’ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))}) = ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))}))
187, 17mpteq12dv 5197 . . . 4 (π‘˜ = 𝐾 β†’ (π‘₯ ∈ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) ↦ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))})) = (π‘₯ ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘€) ↦ ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))})))
194, 18mpteq12dv 5197 . . 3 (π‘˜ = 𝐾 β†’ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) ↦ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))}))) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘€) ↦ ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))}))))
20 df-dib 39605 . . 3 DIsoB = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) ↦ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))}))))
2119, 20, 3mptfvmpt 7179 . 2 (𝐾 ∈ V β†’ (DIsoBβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘€) ↦ ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))}))))
221, 21syl 17 1 (𝐾 ∈ 𝑉 β†’ (DIsoBβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘€) ↦ ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))}))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  Vcvv 3446  {csn 4587   ↦ cmpt 5189   I cid 5531   Γ— cxp 5632  dom cdm 5634   β†Ύ cres 5636  β€˜cfv 6497  Basecbs 17084  LHypclh 38450  LTrncltrn 38567  DIsoAcdia 39494  DIsoBcdib 39604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-dib 39605
This theorem is referenced by:  dibfval  39607
  Copyright terms: Public domain W3C validator