| Step | Hyp | Ref
| Expression |
| 1 | | elex 3484 |
. 2
⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) |
| 2 | | fveq2 6886 |
. . . . 5
⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾)) |
| 3 | | dibval.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 4 | 2, 3 | eqtr4di 2787 |
. . . 4
⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻) |
| 5 | | fveq2 6886 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (DIsoA‘𝑘) = (DIsoA‘𝐾)) |
| 6 | 5 | fveq1d 6888 |
. . . . . 6
⊢ (𝑘 = 𝐾 → ((DIsoA‘𝑘)‘𝑤) = ((DIsoA‘𝐾)‘𝑤)) |
| 7 | 6 | dmeqd 5896 |
. . . . 5
⊢ (𝑘 = 𝐾 → dom ((DIsoA‘𝑘)‘𝑤) = dom ((DIsoA‘𝐾)‘𝑤)) |
| 8 | 6 | fveq1d 6888 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (((DIsoA‘𝑘)‘𝑤)‘𝑥) = (((DIsoA‘𝐾)‘𝑤)‘𝑥)) |
| 9 | | fveq2 6886 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾)) |
| 10 | 9 | fveq1d 6888 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤)) |
| 11 | | fveq2 6886 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) |
| 12 | | dibval.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐾) |
| 13 | 11, 12 | eqtr4di 2787 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
| 14 | 13 | reseq2d 5977 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → ( I ↾ (Base‘𝑘)) = ( I ↾ 𝐵)) |
| 15 | 10, 14 | mpteq12dv 5213 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))) |
| 16 | 15 | sneqd 4618 |
. . . . . 6
⊢ (𝑘 = 𝐾 → {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))} = {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}) |
| 17 | 8, 16 | xpeq12d 5696 |
. . . . 5
⊢ (𝑘 = 𝐾 → ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}) = ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})) |
| 18 | 7, 17 | mpteq12dv 5213 |
. . . 4
⊢ (𝑘 = 𝐾 → (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})) = (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))) |
| 19 | 4, 18 | mpteq12dv 5213 |
. . 3
⊢ (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}))) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))) |
| 20 | | df-dib 41116 |
. . 3
⊢ DIsoB =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})))) |
| 21 | 19, 20, 3 | mptfvmpt 7230 |
. 2
⊢ (𝐾 ∈ V →
(DIsoB‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))) |
| 22 | 1, 21 | syl 17 |
1
⊢ (𝐾 ∈ 𝑉 → (DIsoB‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))) |