Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibffval Structured version   Visualization version   GIF version

Theorem dibffval 40682
Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
dibval.b 𝐡 = (Baseβ€˜πΎ)
dibval.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
dibffval (𝐾 ∈ 𝑉 β†’ (DIsoBβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘€) ↦ ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))}))))
Distinct variable groups:   𝑀,𝐻   𝑀,𝑓,π‘₯,𝐾
Allowed substitution hints:   𝐡(π‘₯,𝑀,𝑓)   𝐻(π‘₯,𝑓)   𝑉(π‘₯,𝑀,𝑓)

Proof of Theorem dibffval
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3482 . 2 (𝐾 ∈ 𝑉 β†’ 𝐾 ∈ V)
2 fveq2 6894 . . . . 5 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = (LHypβ€˜πΎ))
3 dibval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
42, 3eqtr4di 2783 . . . 4 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = 𝐻)
5 fveq2 6894 . . . . . . 7 (π‘˜ = 𝐾 β†’ (DIsoAβ€˜π‘˜) = (DIsoAβ€˜πΎ))
65fveq1d 6896 . . . . . 6 (π‘˜ = 𝐾 β†’ ((DIsoAβ€˜π‘˜)β€˜π‘€) = ((DIsoAβ€˜πΎ)β€˜π‘€))
76dmeqd 5907 . . . . 5 (π‘˜ = 𝐾 β†’ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) = dom ((DIsoAβ€˜πΎ)β€˜π‘€))
86fveq1d 6896 . . . . . 6 (π‘˜ = 𝐾 β†’ (((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) = (((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯))
9 fveq2 6894 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (LTrnβ€˜π‘˜) = (LTrnβ€˜πΎ))
109fveq1d 6896 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ((LTrnβ€˜π‘˜)β€˜π‘€) = ((LTrnβ€˜πΎ)β€˜π‘€))
11 fveq2 6894 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = (Baseβ€˜πΎ))
12 dibval.b . . . . . . . . . 10 𝐡 = (Baseβ€˜πΎ)
1311, 12eqtr4di 2783 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = 𝐡)
1413reseq2d 5984 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ( I β†Ύ (Baseβ€˜π‘˜)) = ( I β†Ύ 𝐡))
1510, 14mpteq12dv 5239 . . . . . . 7 (π‘˜ = 𝐾 β†’ (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜))) = (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡)))
1615sneqd 4641 . . . . . 6 (π‘˜ = 𝐾 β†’ {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))} = {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))})
178, 16xpeq12d 5708 . . . . 5 (π‘˜ = 𝐾 β†’ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))}) = ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))}))
187, 17mpteq12dv 5239 . . . 4 (π‘˜ = 𝐾 β†’ (π‘₯ ∈ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) ↦ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))})) = (π‘₯ ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘€) ↦ ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))})))
194, 18mpteq12dv 5239 . . 3 (π‘˜ = 𝐾 β†’ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) ↦ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))}))) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘€) ↦ ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))}))))
20 df-dib 40681 . . 3 DIsoB = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) ↦ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))}))))
2119, 20, 3mptfvmpt 7238 . 2 (𝐾 ∈ V β†’ (DIsoBβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘€) ↦ ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))}))))
221, 21syl 17 1 (𝐾 ∈ 𝑉 β†’ (DIsoBβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘€) ↦ ((((DIsoAβ€˜πΎ)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ( I β†Ύ 𝐡))}))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  Vcvv 3463  {csn 4629   ↦ cmpt 5231   I cid 5574   Γ— cxp 5675  dom cdm 5677   β†Ύ cres 5679  β€˜cfv 6547  Basecbs 17179  LHypclh 39526  LTrncltrn 39643  DIsoAcdia 40570  DIsoBcdib 40680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-dib 40681
This theorem is referenced by:  dibfval  40683
  Copyright terms: Public domain W3C validator