Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibffval Structured version   Visualization version   GIF version

Theorem dibffval 41134
Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
dibval.b 𝐵 = (Base‘𝐾)
dibval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dibffval (𝐾𝑉 → (DIsoB‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))))
Distinct variable groups:   𝑤,𝐻   𝑤,𝑓,𝑥,𝐾
Allowed substitution hints:   𝐵(𝑥,𝑤,𝑓)   𝐻(𝑥,𝑓)   𝑉(𝑥,𝑤,𝑓)

Proof of Theorem dibffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3468 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6858 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 dibval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2782 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6858 . . . . . . 7 (𝑘 = 𝐾 → (DIsoA‘𝑘) = (DIsoA‘𝐾))
65fveq1d 6860 . . . . . 6 (𝑘 = 𝐾 → ((DIsoA‘𝑘)‘𝑤) = ((DIsoA‘𝐾)‘𝑤))
76dmeqd 5869 . . . . 5 (𝑘 = 𝐾 → dom ((DIsoA‘𝑘)‘𝑤) = dom ((DIsoA‘𝐾)‘𝑤))
86fveq1d 6860 . . . . . 6 (𝑘 = 𝐾 → (((DIsoA‘𝑘)‘𝑤)‘𝑥) = (((DIsoA‘𝐾)‘𝑤)‘𝑥))
9 fveq2 6858 . . . . . . . . 9 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
109fveq1d 6860 . . . . . . . 8 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
11 fveq2 6858 . . . . . . . . . 10 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
12 dibval.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
1311, 12eqtr4di 2782 . . . . . . . . 9 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
1413reseq2d 5950 . . . . . . . 8 (𝑘 = 𝐾 → ( I ↾ (Base‘𝑘)) = ( I ↾ 𝐵))
1510, 14mpteq12dv 5194 . . . . . . 7 (𝑘 = 𝐾 → (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵)))
1615sneqd 4601 . . . . . 6 (𝑘 = 𝐾 → {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))} = {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})
178, 16xpeq12d 5669 . . . . 5 (𝑘 = 𝐾 → ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}) = ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))
187, 17mpteq12dv 5194 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})) = (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))
194, 18mpteq12dv 5194 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}))) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))))
20 df-dib 41133 . . 3 DIsoB = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}))))
2119, 20, 3mptfvmpt 7202 . 2 (𝐾 ∈ V → (DIsoB‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))))
221, 21syl 17 1 (𝐾𝑉 → (DIsoB‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cmpt 5188   I cid 5532   × cxp 5636  dom cdm 5638  cres 5640  cfv 6511  Basecbs 17179  LHypclh 39978  LTrncltrn 40095  DIsoAcdia 41022  DIsoBcdib 41132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-dib 41133
This theorem is referenced by:  dibfval  41135
  Copyright terms: Public domain W3C validator