MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-dip Structured version   Visualization version   GIF version

Definition df-dip 30685
Description: Define a function that maps a normed complex vector space to its inner product operation in case its norm satisfies the parallelogram identity (otherwise the operation is still defined, but not meaningful). Based on Exercise 4(a) of [ReedSimon] p. 63 and Theorem 6.44 of [Ponnusamy] p. 361. Vector addition is (1st𝑤), the scalar product is (2nd𝑤), and the norm is 𝑛. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
df-dip ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
Distinct variable group:   𝑢,𝑘,𝑥,𝑦

Detailed syntax breakdown of Definition df-dip
StepHypRef Expression
1 cdip 30684 . 2 class ·𝑖OLD
2 vu . . 3 setvar 𝑢
3 cnv 30568 . . 3 class NrmCVec
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1540 . . . . 5 class 𝑢
7 cba 30570 . . . . 5 class BaseSet
86, 7cfv 6488 . . . 4 class (BaseSet‘𝑢)
9 c1 11016 . . . . . . 7 class 1
10 c4 12191 . . . . . . 7 class 4
11 cfz 13411 . . . . . . 7 class ...
129, 10, 11co 7354 . . . . . 6 class (1...4)
13 ci 11017 . . . . . . . 8 class i
14 vk . . . . . . . . 9 setvar 𝑘
1514cv 1540 . . . . . . . 8 class 𝑘
16 cexp 13972 . . . . . . . 8 class
1713, 15, 16co 7354 . . . . . . 7 class (i↑𝑘)
184cv 1540 . . . . . . . . . 10 class 𝑥
195cv 1540 . . . . . . . . . . 11 class 𝑦
20 cns 30571 . . . . . . . . . . . 12 class ·𝑠OLD
216, 20cfv 6488 . . . . . . . . . . 11 class ( ·𝑠OLD𝑢)
2217, 19, 21co 7354 . . . . . . . . . 10 class ((i↑𝑘)( ·𝑠OLD𝑢)𝑦)
23 cpv 30569 . . . . . . . . . . 11 class +𝑣
246, 23cfv 6488 . . . . . . . . . 10 class ( +𝑣𝑢)
2518, 22, 24co 7354 . . . . . . . . 9 class (𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦))
26 cnmcv 30574 . . . . . . . . . 10 class normCV
276, 26cfv 6488 . . . . . . . . 9 class (normCV𝑢)
2825, 27cfv 6488 . . . . . . . 8 class ((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))
29 c2 12189 . . . . . . . 8 class 2
3028, 29, 16co 7354 . . . . . . 7 class (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)
31 cmul 11020 . . . . . . 7 class ·
3217, 30, 31co 7354 . . . . . 6 class ((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2))
3312, 32, 14csu 15597 . . . . 5 class Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2))
34 cdiv 11783 . . . . 5 class /
3533, 10, 34co 7354 . . . 4 class 𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)
364, 5, 8, 8, 35cmpo 7356 . . 3 class (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4))
372, 3, 36cmpt 5176 . 2 class (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
381, 37wceq 1541 1 wff ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
Colors of variables: wff setvar class
This definition is referenced by:  dipfval  30686
  Copyright terms: Public domain W3C validator