MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-dip Structured version   Visualization version   GIF version

Definition df-dip 28964
Description: Define a function that maps a normed complex vector space to its inner product operation in case its norm satisfies the parallelogram identity (otherwise the operation is still defined, but not meaningful). Based on Exercise 4(a) of [ReedSimon] p. 63 and Theorem 6.44 of [Ponnusamy] p. 361. Vector addition is (1st𝑤), the scalar product is (2nd𝑤), and the norm is 𝑛. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
df-dip ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
Distinct variable group:   𝑢,𝑘,𝑥,𝑦

Detailed syntax breakdown of Definition df-dip
StepHypRef Expression
1 cdip 28963 . 2 class ·𝑖OLD
2 vu . . 3 setvar 𝑢
3 cnv 28847 . . 3 class NrmCVec
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1538 . . . . 5 class 𝑢
7 cba 28849 . . . . 5 class BaseSet
86, 7cfv 6418 . . . 4 class (BaseSet‘𝑢)
9 c1 10803 . . . . . . 7 class 1
10 c4 11960 . . . . . . 7 class 4
11 cfz 13168 . . . . . . 7 class ...
129, 10, 11co 7255 . . . . . 6 class (1...4)
13 ci 10804 . . . . . . . 8 class i
14 vk . . . . . . . . 9 setvar 𝑘
1514cv 1538 . . . . . . . 8 class 𝑘
16 cexp 13710 . . . . . . . 8 class
1713, 15, 16co 7255 . . . . . . 7 class (i↑𝑘)
184cv 1538 . . . . . . . . . 10 class 𝑥
195cv 1538 . . . . . . . . . . 11 class 𝑦
20 cns 28850 . . . . . . . . . . . 12 class ·𝑠OLD
216, 20cfv 6418 . . . . . . . . . . 11 class ( ·𝑠OLD𝑢)
2217, 19, 21co 7255 . . . . . . . . . 10 class ((i↑𝑘)( ·𝑠OLD𝑢)𝑦)
23 cpv 28848 . . . . . . . . . . 11 class +𝑣
246, 23cfv 6418 . . . . . . . . . 10 class ( +𝑣𝑢)
2518, 22, 24co 7255 . . . . . . . . 9 class (𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦))
26 cnmcv 28853 . . . . . . . . . 10 class normCV
276, 26cfv 6418 . . . . . . . . 9 class (normCV𝑢)
2825, 27cfv 6418 . . . . . . . 8 class ((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))
29 c2 11958 . . . . . . . 8 class 2
3028, 29, 16co 7255 . . . . . . 7 class (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)
31 cmul 10807 . . . . . . 7 class ·
3217, 30, 31co 7255 . . . . . 6 class ((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2))
3312, 32, 14csu 15325 . . . . 5 class Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2))
34 cdiv 11562 . . . . 5 class /
3533, 10, 34co 7255 . . . 4 class 𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)
364, 5, 8, 8, 35cmpo 7257 . . 3 class (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4))
372, 3, 36cmpt 5153 . 2 class (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
381, 37wceq 1539 1 wff ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
Colors of variables: wff setvar class
This definition is referenced by:  dipfval  28965
  Copyright terms: Public domain W3C validator