MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-dip Structured version   Visualization version   GIF version

Definition df-dip 28157
Description: Define a function that maps a normed complex vector space to its inner product operation in case its norm satisfies the parallelogram identity (otherwise the operation is still defined, but not meaningful). Based on Exercise 4(a) of [ReedSimon] p. 63 and Theorem 6.44 of [Ponnusamy] p. 361. Vector addition is (1st𝑤), the scalar product is (2nd𝑤), and the norm is 𝑛. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
df-dip ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
Distinct variable group:   𝑢,𝑘,𝑥,𝑦

Detailed syntax breakdown of Definition df-dip
StepHypRef Expression
1 cdip 28156 . 2 class ·𝑖OLD
2 vu . . 3 setvar 𝑢
3 cnv 28040 . . 3 class NrmCVec
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1519 . . . . 5 class 𝑢
7 cba 28042 . . . . 5 class BaseSet
86, 7cfv 6217 . . . 4 class (BaseSet‘𝑢)
9 c1 10373 . . . . . . 7 class 1
10 c4 11531 . . . . . . 7 class 4
11 cfz 12731 . . . . . . 7 class ...
129, 10, 11co 7007 . . . . . 6 class (1...4)
13 ci 10374 . . . . . . . 8 class i
14 vk . . . . . . . . 9 setvar 𝑘
1514cv 1519 . . . . . . . 8 class 𝑘
16 cexp 13267 . . . . . . . 8 class
1713, 15, 16co 7007 . . . . . . 7 class (i↑𝑘)
184cv 1519 . . . . . . . . . 10 class 𝑥
195cv 1519 . . . . . . . . . . 11 class 𝑦
20 cns 28043 . . . . . . . . . . . 12 class ·𝑠OLD
216, 20cfv 6217 . . . . . . . . . . 11 class ( ·𝑠OLD𝑢)
2217, 19, 21co 7007 . . . . . . . . . 10 class ((i↑𝑘)( ·𝑠OLD𝑢)𝑦)
23 cpv 28041 . . . . . . . . . . 11 class +𝑣
246, 23cfv 6217 . . . . . . . . . 10 class ( +𝑣𝑢)
2518, 22, 24co 7007 . . . . . . . . 9 class (𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦))
26 cnmcv 28046 . . . . . . . . . 10 class normCV
276, 26cfv 6217 . . . . . . . . 9 class (normCV𝑢)
2825, 27cfv 6217 . . . . . . . 8 class ((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))
29 c2 11529 . . . . . . . 8 class 2
3028, 29, 16co 7007 . . . . . . 7 class (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)
31 cmul 10377 . . . . . . 7 class ·
3217, 30, 31co 7007 . . . . . 6 class ((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2))
3312, 32, 14csu 14864 . . . . 5 class Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2))
34 cdiv 11134 . . . . 5 class /
3533, 10, 34co 7007 . . . 4 class 𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)
364, 5, 8, 8, 35cmpo 7009 . . 3 class (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4))
372, 3, 36cmpt 5035 . 2 class (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
381, 37wceq 1520 1 wff ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
Colors of variables: wff setvar class
This definition is referenced by:  dipfval  28158
  Copyright terms: Public domain W3C validator