MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-dip Structured version   Visualization version   GIF version

Definition df-dip 30637
Description: Define a function that maps a normed complex vector space to its inner product operation in case its norm satisfies the parallelogram identity (otherwise the operation is still defined, but not meaningful). Based on Exercise 4(a) of [ReedSimon] p. 63 and Theorem 6.44 of [Ponnusamy] p. 361. Vector addition is (1st𝑤), the scalar product is (2nd𝑤), and the norm is 𝑛. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
df-dip ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
Distinct variable group:   𝑢,𝑘,𝑥,𝑦

Detailed syntax breakdown of Definition df-dip
StepHypRef Expression
1 cdip 30636 . 2 class ·𝑖OLD
2 vu . . 3 setvar 𝑢
3 cnv 30520 . . 3 class NrmCVec
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1539 . . . . 5 class 𝑢
7 cba 30522 . . . . 5 class BaseSet
86, 7cfv 6514 . . . 4 class (BaseSet‘𝑢)
9 c1 11076 . . . . . . 7 class 1
10 c4 12250 . . . . . . 7 class 4
11 cfz 13475 . . . . . . 7 class ...
129, 10, 11co 7390 . . . . . 6 class (1...4)
13 ci 11077 . . . . . . . 8 class i
14 vk . . . . . . . . 9 setvar 𝑘
1514cv 1539 . . . . . . . 8 class 𝑘
16 cexp 14033 . . . . . . . 8 class
1713, 15, 16co 7390 . . . . . . 7 class (i↑𝑘)
184cv 1539 . . . . . . . . . 10 class 𝑥
195cv 1539 . . . . . . . . . . 11 class 𝑦
20 cns 30523 . . . . . . . . . . . 12 class ·𝑠OLD
216, 20cfv 6514 . . . . . . . . . . 11 class ( ·𝑠OLD𝑢)
2217, 19, 21co 7390 . . . . . . . . . 10 class ((i↑𝑘)( ·𝑠OLD𝑢)𝑦)
23 cpv 30521 . . . . . . . . . . 11 class +𝑣
246, 23cfv 6514 . . . . . . . . . 10 class ( +𝑣𝑢)
2518, 22, 24co 7390 . . . . . . . . 9 class (𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦))
26 cnmcv 30526 . . . . . . . . . 10 class normCV
276, 26cfv 6514 . . . . . . . . 9 class (normCV𝑢)
2825, 27cfv 6514 . . . . . . . 8 class ((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))
29 c2 12248 . . . . . . . 8 class 2
3028, 29, 16co 7390 . . . . . . 7 class (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)
31 cmul 11080 . . . . . . 7 class ·
3217, 30, 31co 7390 . . . . . 6 class ((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2))
3312, 32, 14csu 15659 . . . . 5 class Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2))
34 cdiv 11842 . . . . 5 class /
3533, 10, 34co 7390 . . . 4 class 𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)
364, 5, 8, 8, 35cmpo 7392 . . 3 class (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4))
372, 3, 36cmpt 5191 . 2 class (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
381, 37wceq 1540 1 wff ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
Colors of variables: wff setvar class
This definition is referenced by:  dipfval  30638
  Copyright terms: Public domain W3C validator