MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-dip Structured version   Visualization version   GIF version

Definition df-dip 30679
Description: Define a function that maps a normed complex vector space to its inner product operation in case its norm satisfies the parallelogram identity (otherwise the operation is still defined, but not meaningful). Based on Exercise 4(a) of [ReedSimon] p. 63 and Theorem 6.44 of [Ponnusamy] p. 361. Vector addition is (1st𝑤), the scalar product is (2nd𝑤), and the norm is 𝑛. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
df-dip ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
Distinct variable group:   𝑢,𝑘,𝑥,𝑦

Detailed syntax breakdown of Definition df-dip
StepHypRef Expression
1 cdip 30678 . 2 class ·𝑖OLD
2 vu . . 3 setvar 𝑢
3 cnv 30562 . . 3 class NrmCVec
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1540 . . . . 5 class 𝑢
7 cba 30564 . . . . 5 class BaseSet
86, 7cfv 6481 . . . 4 class (BaseSet‘𝑢)
9 c1 11007 . . . . . . 7 class 1
10 c4 12182 . . . . . . 7 class 4
11 cfz 13407 . . . . . . 7 class ...
129, 10, 11co 7346 . . . . . 6 class (1...4)
13 ci 11008 . . . . . . . 8 class i
14 vk . . . . . . . . 9 setvar 𝑘
1514cv 1540 . . . . . . . 8 class 𝑘
16 cexp 13968 . . . . . . . 8 class
1713, 15, 16co 7346 . . . . . . 7 class (i↑𝑘)
184cv 1540 . . . . . . . . . 10 class 𝑥
195cv 1540 . . . . . . . . . . 11 class 𝑦
20 cns 30565 . . . . . . . . . . . 12 class ·𝑠OLD
216, 20cfv 6481 . . . . . . . . . . 11 class ( ·𝑠OLD𝑢)
2217, 19, 21co 7346 . . . . . . . . . 10 class ((i↑𝑘)( ·𝑠OLD𝑢)𝑦)
23 cpv 30563 . . . . . . . . . . 11 class +𝑣
246, 23cfv 6481 . . . . . . . . . 10 class ( +𝑣𝑢)
2518, 22, 24co 7346 . . . . . . . . 9 class (𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦))
26 cnmcv 30568 . . . . . . . . . 10 class normCV
276, 26cfv 6481 . . . . . . . . 9 class (normCV𝑢)
2825, 27cfv 6481 . . . . . . . 8 class ((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))
29 c2 12180 . . . . . . . 8 class 2
3028, 29, 16co 7346 . . . . . . 7 class (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)
31 cmul 11011 . . . . . . 7 class ·
3217, 30, 31co 7346 . . . . . 6 class ((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2))
3312, 32, 14csu 15593 . . . . 5 class Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2))
34 cdiv 11774 . . . . 5 class /
3533, 10, 34co 7346 . . . 4 class 𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)
364, 5, 8, 8, 35cmpo 7348 . . 3 class (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4))
372, 3, 36cmpt 5172 . 2 class (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
381, 37wceq 1541 1 wff ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
Colors of variables: wff setvar class
This definition is referenced by:  dipfval  30680
  Copyright terms: Public domain W3C validator