Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dipfval | Structured version Visualization version GIF version |
Description: The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dipfval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
dipfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
dipfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
dipfval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
dipfval.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
dipfval | ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dipfval.7 | . 2 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
2 | fveq2 6756 | . . . . 5 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈)) | |
3 | dipfval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | 2, 3 | eqtr4di 2797 | . . . 4 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋) |
5 | fveq2 6756 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑈 → (normCV‘𝑢) = (normCV‘𝑈)) | |
6 | dipfval.6 | . . . . . . . . . 10 ⊢ 𝑁 = (normCV‘𝑈) | |
7 | 5, 6 | eqtr4di 2797 | . . . . . . . . 9 ⊢ (𝑢 = 𝑈 → (normCV‘𝑢) = 𝑁) |
8 | fveq2 6756 | . . . . . . . . . . 11 ⊢ (𝑢 = 𝑈 → ( +𝑣 ‘𝑢) = ( +𝑣 ‘𝑈)) | |
9 | dipfval.2 | . . . . . . . . . . 11 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
10 | 8, 9 | eqtr4di 2797 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑈 → ( +𝑣 ‘𝑢) = 𝐺) |
11 | eqidd 2739 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑈 → 𝑥 = 𝑥) | |
12 | fveq2 6756 | . . . . . . . . . . . 12 ⊢ (𝑢 = 𝑈 → ( ·𝑠OLD ‘𝑢) = ( ·𝑠OLD ‘𝑈)) | |
13 | dipfval.4 | . . . . . . . . . . . 12 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
14 | 12, 13 | eqtr4di 2797 | . . . . . . . . . . 11 ⊢ (𝑢 = 𝑈 → ( ·𝑠OLD ‘𝑢) = 𝑆) |
15 | 14 | oveqd 7272 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑈 → ((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦) = ((i↑𝑘)𝑆𝑦)) |
16 | 10, 11, 15 | oveq123d 7276 | . . . . . . . . 9 ⊢ (𝑢 = 𝑈 → (𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)) = (𝑥𝐺((i↑𝑘)𝑆𝑦))) |
17 | 7, 16 | fveq12d 6763 | . . . . . . . 8 ⊢ (𝑢 = 𝑈 → ((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦))) = (𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))) |
18 | 17 | oveq1d 7270 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2) = ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) |
19 | 18 | oveq2d 7271 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2))) |
20 | 19 | sumeq2sdv 15344 | . . . . 5 ⊢ (𝑢 = 𝑈 → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2))) |
21 | 20 | oveq1d 7270 | . . . 4 ⊢ (𝑢 = 𝑈 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) |
22 | 4, 4, 21 | mpoeq123dv 7328 | . . 3 ⊢ (𝑢 = 𝑈 → (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) / 4)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |
23 | df-dip 28964 | . . 3 ⊢ ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) / 4))) | |
24 | 3 | fvexi 6770 | . . . 4 ⊢ 𝑋 ∈ V |
25 | 24, 24 | mpoex 7893 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) ∈ V |
26 | 22, 23, 25 | fvmpt 6857 | . 2 ⊢ (𝑈 ∈ NrmCVec → (·𝑖OLD‘𝑈) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |
27 | 1, 26 | syl5eq 2791 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1c1 10803 ici 10804 · cmul 10807 / cdiv 11562 2c2 11958 4c4 11960 ...cfz 13168 ↑cexp 13710 Σcsu 15325 NrmCVeccnv 28847 +𝑣 cpv 28848 BaseSetcba 28849 ·𝑠OLD cns 28850 normCVcnmcv 28853 ·𝑖OLDcdip 28963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-seq 13650 df-sum 15326 df-dip 28964 |
This theorem is referenced by: ipval 28966 ipf 28976 dipcn 28983 |
Copyright terms: Public domain | W3C validator |