MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipfval Structured version   Visualization version   GIF version

Theorem dipfval 28737
Description: The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSet‘𝑈)
dipfval.2 𝐺 = ( +𝑣𝑈)
dipfval.4 𝑆 = ( ·𝑠OLD𝑈)
dipfval.6 𝑁 = (normCV𝑈)
dipfval.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipfval (𝑈 ∈ NrmCVec → 𝑃 = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐺   𝑘,𝑁,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑘,𝑋,𝑥,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑘)

Proof of Theorem dipfval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 dipfval.7 . 2 𝑃 = (·𝑖OLD𝑈)
2 fveq2 6695 . . . . 5 (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈))
3 dipfval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
42, 3eqtr4di 2789 . . . 4 (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋)
5 fveq2 6695 . . . . . . . . . 10 (𝑢 = 𝑈 → (normCV𝑢) = (normCV𝑈))
6 dipfval.6 . . . . . . . . . 10 𝑁 = (normCV𝑈)
75, 6eqtr4di 2789 . . . . . . . . 9 (𝑢 = 𝑈 → (normCV𝑢) = 𝑁)
8 fveq2 6695 . . . . . . . . . . 11 (𝑢 = 𝑈 → ( +𝑣𝑢) = ( +𝑣𝑈))
9 dipfval.2 . . . . . . . . . . 11 𝐺 = ( +𝑣𝑈)
108, 9eqtr4di 2789 . . . . . . . . . 10 (𝑢 = 𝑈 → ( +𝑣𝑢) = 𝐺)
11 eqidd 2737 . . . . . . . . . 10 (𝑢 = 𝑈𝑥 = 𝑥)
12 fveq2 6695 . . . . . . . . . . . 12 (𝑢 = 𝑈 → ( ·𝑠OLD𝑢) = ( ·𝑠OLD𝑈))
13 dipfval.4 . . . . . . . . . . . 12 𝑆 = ( ·𝑠OLD𝑈)
1412, 13eqtr4di 2789 . . . . . . . . . . 11 (𝑢 = 𝑈 → ( ·𝑠OLD𝑢) = 𝑆)
1514oveqd 7208 . . . . . . . . . 10 (𝑢 = 𝑈 → ((i↑𝑘)( ·𝑠OLD𝑢)𝑦) = ((i↑𝑘)𝑆𝑦))
1610, 11, 15oveq123d 7212 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)) = (𝑥𝐺((i↑𝑘)𝑆𝑦)))
177, 16fveq12d 6702 . . . . . . . 8 (𝑢 = 𝑈 → ((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦))) = (𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦))))
1817oveq1d 7206 . . . . . . 7 (𝑢 = 𝑈 → (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2) = ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2))
1918oveq2d 7207 . . . . . 6 (𝑢 = 𝑈 → ((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)))
2019sumeq2sdv 15233 . . . . 5 (𝑢 = 𝑈 → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)))
2120oveq1d 7206 . . . 4 (𝑢 = 𝑈 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))
224, 4, 21mpoeq123dv 7264 . . 3 (𝑢 = 𝑈 → (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)) = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
23 df-dip 28736 . . 3 ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
243fvexi 6709 . . . 4 𝑋 ∈ V
2524, 24mpoex 7828 . . 3 (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) ∈ V
2622, 23, 25fvmpt 6796 . 2 (𝑈 ∈ NrmCVec → (·𝑖OLD𝑈) = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
271, 26syl5eq 2783 1 (𝑈 ∈ NrmCVec → 𝑃 = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  cfv 6358  (class class class)co 7191  cmpo 7193  1c1 10695  ici 10696   · cmul 10699   / cdiv 11454  2c2 11850  4c4 11852  ...cfz 13060  cexp 13600  Σcsu 15214  NrmCVeccnv 28619   +𝑣 cpv 28620  BaseSetcba 28621   ·𝑠OLD cns 28622  normCVcnmcv 28625  ·𝑖OLDcdip 28735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-seq 13540  df-sum 15215  df-dip 28736
This theorem is referenced by:  ipval  28738  ipf  28748  dipcn  28755
  Copyright terms: Public domain W3C validator