MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipfval Structured version   Visualization version   GIF version

Theorem dipfval 30646
Description: The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSet‘𝑈)
dipfval.2 𝐺 = ( +𝑣𝑈)
dipfval.4 𝑆 = ( ·𝑠OLD𝑈)
dipfval.6 𝑁 = (normCV𝑈)
dipfval.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipfval (𝑈 ∈ NrmCVec → 𝑃 = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐺   𝑘,𝑁,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑘,𝑋,𝑥,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑘)

Proof of Theorem dipfval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 dipfval.7 . 2 𝑃 = (·𝑖OLD𝑈)
2 fveq2 6822 . . . . 5 (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈))
3 dipfval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
42, 3eqtr4di 2782 . . . 4 (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋)
5 fveq2 6822 . . . . . . . . . 10 (𝑢 = 𝑈 → (normCV𝑢) = (normCV𝑈))
6 dipfval.6 . . . . . . . . . 10 𝑁 = (normCV𝑈)
75, 6eqtr4di 2782 . . . . . . . . 9 (𝑢 = 𝑈 → (normCV𝑢) = 𝑁)
8 fveq2 6822 . . . . . . . . . . 11 (𝑢 = 𝑈 → ( +𝑣𝑢) = ( +𝑣𝑈))
9 dipfval.2 . . . . . . . . . . 11 𝐺 = ( +𝑣𝑈)
108, 9eqtr4di 2782 . . . . . . . . . 10 (𝑢 = 𝑈 → ( +𝑣𝑢) = 𝐺)
11 eqidd 2730 . . . . . . . . . 10 (𝑢 = 𝑈𝑥 = 𝑥)
12 fveq2 6822 . . . . . . . . . . . 12 (𝑢 = 𝑈 → ( ·𝑠OLD𝑢) = ( ·𝑠OLD𝑈))
13 dipfval.4 . . . . . . . . . . . 12 𝑆 = ( ·𝑠OLD𝑈)
1412, 13eqtr4di 2782 . . . . . . . . . . 11 (𝑢 = 𝑈 → ( ·𝑠OLD𝑢) = 𝑆)
1514oveqd 7366 . . . . . . . . . 10 (𝑢 = 𝑈 → ((i↑𝑘)( ·𝑠OLD𝑢)𝑦) = ((i↑𝑘)𝑆𝑦))
1610, 11, 15oveq123d 7370 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)) = (𝑥𝐺((i↑𝑘)𝑆𝑦)))
177, 16fveq12d 6829 . . . . . . . 8 (𝑢 = 𝑈 → ((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦))) = (𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦))))
1817oveq1d 7364 . . . . . . 7 (𝑢 = 𝑈 → (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2) = ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2))
1918oveq2d 7365 . . . . . 6 (𝑢 = 𝑈 → ((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)))
2019sumeq2sdv 15610 . . . . 5 (𝑢 = 𝑈 → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)))
2120oveq1d 7364 . . . 4 (𝑢 = 𝑈 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))
224, 4, 21mpoeq123dv 7424 . . 3 (𝑢 = 𝑈 → (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)) = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
23 df-dip 30645 . . 3 ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
243fvexi 6836 . . . 4 𝑋 ∈ V
2524, 24mpoex 8014 . . 3 (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) ∈ V
2622, 23, 25fvmpt 6930 . 2 (𝑈 ∈ NrmCVec → (·𝑖OLD𝑈) = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
271, 26eqtrid 2776 1 (𝑈 ∈ NrmCVec → 𝑃 = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  cmpo 7351  1c1 11010  ici 11011   · cmul 11014   / cdiv 11777  2c2 12183  4c4 12185  ...cfz 13410  cexp 13968  Σcsu 15593  NrmCVeccnv 30528   +𝑣 cpv 30529  BaseSetcba 30530   ·𝑠OLD cns 30531  normCVcnmcv 30534  ·𝑖OLDcdip 30644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seq 13909  df-sum 15594  df-dip 30645
This theorem is referenced by:  ipval  30647  ipf  30657  dipcn  30664
  Copyright terms: Public domain W3C validator