MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipfval Structured version   Visualization version   GIF version

Theorem dipfval 28478
Description: The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSet‘𝑈)
dipfval.2 𝐺 = ( +𝑣𝑈)
dipfval.4 𝑆 = ( ·𝑠OLD𝑈)
dipfval.6 𝑁 = (normCV𝑈)
dipfval.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipfval (𝑈 ∈ NrmCVec → 𝑃 = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐺   𝑘,𝑁,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑘,𝑋,𝑥,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑘)

Proof of Theorem dipfval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 dipfval.7 . 2 𝑃 = (·𝑖OLD𝑈)
2 fveq2 6669 . . . . 5 (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈))
3 dipfval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
42, 3syl6eqr 2874 . . . 4 (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋)
5 fveq2 6669 . . . . . . . . . 10 (𝑢 = 𝑈 → (normCV𝑢) = (normCV𝑈))
6 dipfval.6 . . . . . . . . . 10 𝑁 = (normCV𝑈)
75, 6syl6eqr 2874 . . . . . . . . 9 (𝑢 = 𝑈 → (normCV𝑢) = 𝑁)
8 fveq2 6669 . . . . . . . . . . 11 (𝑢 = 𝑈 → ( +𝑣𝑢) = ( +𝑣𝑈))
9 dipfval.2 . . . . . . . . . . 11 𝐺 = ( +𝑣𝑈)
108, 9syl6eqr 2874 . . . . . . . . . 10 (𝑢 = 𝑈 → ( +𝑣𝑢) = 𝐺)
11 eqidd 2822 . . . . . . . . . 10 (𝑢 = 𝑈𝑥 = 𝑥)
12 fveq2 6669 . . . . . . . . . . . 12 (𝑢 = 𝑈 → ( ·𝑠OLD𝑢) = ( ·𝑠OLD𝑈))
13 dipfval.4 . . . . . . . . . . . 12 𝑆 = ( ·𝑠OLD𝑈)
1412, 13syl6eqr 2874 . . . . . . . . . . 11 (𝑢 = 𝑈 → ( ·𝑠OLD𝑢) = 𝑆)
1514oveqd 7172 . . . . . . . . . 10 (𝑢 = 𝑈 → ((i↑𝑘)( ·𝑠OLD𝑢)𝑦) = ((i↑𝑘)𝑆𝑦))
1610, 11, 15oveq123d 7176 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)) = (𝑥𝐺((i↑𝑘)𝑆𝑦)))
177, 16fveq12d 6676 . . . . . . . 8 (𝑢 = 𝑈 → ((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦))) = (𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦))))
1817oveq1d 7170 . . . . . . 7 (𝑢 = 𝑈 → (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2) = ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2))
1918oveq2d 7171 . . . . . 6 (𝑢 = 𝑈 → ((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)))
2019sumeq2sdv 15060 . . . . 5 (𝑢 = 𝑈 → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)))
2120oveq1d 7170 . . . 4 (𝑢 = 𝑈 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))
224, 4, 21mpoeq123dv 7228 . . 3 (𝑢 = 𝑈 → (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)) = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
23 df-dip 28477 . . 3 ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
243fvexi 6683 . . . 4 𝑋 ∈ V
2524, 24mpoex 7776 . . 3 (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) ∈ V
2622, 23, 25fvmpt 6767 . 2 (𝑈 ∈ NrmCVec → (·𝑖OLD𝑈) = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
271, 26syl5eq 2868 1 (𝑈 ∈ NrmCVec → 𝑃 = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cfv 6354  (class class class)co 7155  cmpo 7157  1c1 10537  ici 10538   · cmul 10541   / cdiv 11296  2c2 11691  4c4 11693  ...cfz 12891  cexp 13428  Σcsu 15041  NrmCVeccnv 28360   +𝑣 cpv 28361  BaseSetcba 28362   ·𝑠OLD cns 28363  normCVcnmcv 28366  ·𝑖OLDcdip 28476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-seq 13369  df-sum 15042  df-dip 28477
This theorem is referenced by:  ipval  28479  ipf  28489  dipcn  28496
  Copyright terms: Public domain W3C validator