Step | Hyp | Ref
| Expression |
1 | | dipfval.7 |
. 2
⊢ 𝑃 =
(·𝑖OLD‘𝑈) |
2 | | fveq2 6920 |
. . . . 5
⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈)) |
3 | | dipfval.1 |
. . . . 5
⊢ 𝑋 = (BaseSet‘𝑈) |
4 | 2, 3 | eqtr4di 2798 |
. . . 4
⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋) |
5 | | fveq2 6920 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑈 → (normCV‘𝑢) =
(normCV‘𝑈)) |
6 | | dipfval.6 |
. . . . . . . . . 10
⊢ 𝑁 =
(normCV‘𝑈) |
7 | 5, 6 | eqtr4di 2798 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → (normCV‘𝑢) = 𝑁) |
8 | | fveq2 6920 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑈 → ( +𝑣 ‘𝑢) = ( +𝑣
‘𝑈)) |
9 | | dipfval.2 |
. . . . . . . . . . 11
⊢ 𝐺 = ( +𝑣
‘𝑈) |
10 | 8, 9 | eqtr4di 2798 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑈 → ( +𝑣 ‘𝑢) = 𝐺) |
11 | | eqidd 2741 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑈 → 𝑥 = 𝑥) |
12 | | fveq2 6920 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑈 → (
·𝑠OLD ‘𝑢) = ( ·𝑠OLD
‘𝑈)) |
13 | | dipfval.4 |
. . . . . . . . . . . 12
⊢ 𝑆 = (
·𝑠OLD ‘𝑈) |
14 | 12, 13 | eqtr4di 2798 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑈 → (
·𝑠OLD ‘𝑢) = 𝑆) |
15 | 14 | oveqd 7465 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑈 → ((i↑𝑘)( ·𝑠OLD
‘𝑢)𝑦) = ((i↑𝑘)𝑆𝑦)) |
16 | 10, 11, 15 | oveq123d 7469 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → (𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD
‘𝑢)𝑦)) = (𝑥𝐺((i↑𝑘)𝑆𝑦))) |
17 | 7, 16 | fveq12d 6927 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → ((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD
‘𝑢)𝑦))) = (𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))) |
18 | 17 | oveq1d 7463 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD
‘𝑢)𝑦)))↑2) = ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) |
19 | 18 | oveq2d 7464 |
. . . . . 6
⊢ (𝑢 = 𝑈 → ((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD
‘𝑢)𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2))) |
20 | 19 | sumeq2sdv 15751 |
. . . . 5
⊢ (𝑢 = 𝑈 → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD
‘𝑢)𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2))) |
21 | 20 | oveq1d 7463 |
. . . 4
⊢ (𝑢 = 𝑈 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD
‘𝑢)𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) |
22 | 4, 4, 21 | mpoeq123dv 7525 |
. . 3
⊢ (𝑢 = 𝑈 → (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD
‘𝑢)𝑦)))↑2)) / 4)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |
23 | | df-dip 30733 |
. . 3
⊢
·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD
‘𝑢)𝑦)))↑2)) / 4))) |
24 | 3 | fvexi 6934 |
. . . 4
⊢ 𝑋 ∈ V |
25 | 24, 24 | mpoex 8120 |
. . 3
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) ∈ V |
26 | 22, 23, 25 | fvmpt 7029 |
. 2
⊢ (𝑈 ∈ NrmCVec →
(·𝑖OLD‘𝑈) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |
27 | 1, 26 | eqtrid 2792 |
1
⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |