![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dipfval | Structured version Visualization version GIF version |
Description: The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dipfval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
dipfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
dipfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
dipfval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
dipfval.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
dipfval | ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dipfval.7 | . 2 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
2 | fveq2 6446 | . . . . 5 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈)) | |
3 | dipfval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | 2, 3 | syl6eqr 2831 | . . . 4 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋) |
5 | fveq2 6446 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑈 → (normCV‘𝑢) = (normCV‘𝑈)) | |
6 | dipfval.6 | . . . . . . . . . 10 ⊢ 𝑁 = (normCV‘𝑈) | |
7 | 5, 6 | syl6eqr 2831 | . . . . . . . . 9 ⊢ (𝑢 = 𝑈 → (normCV‘𝑢) = 𝑁) |
8 | fveq2 6446 | . . . . . . . . . . 11 ⊢ (𝑢 = 𝑈 → ( +𝑣 ‘𝑢) = ( +𝑣 ‘𝑈)) | |
9 | dipfval.2 | . . . . . . . . . . 11 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
10 | 8, 9 | syl6eqr 2831 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑈 → ( +𝑣 ‘𝑢) = 𝐺) |
11 | eqidd 2778 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑈 → 𝑥 = 𝑥) | |
12 | fveq2 6446 | . . . . . . . . . . . 12 ⊢ (𝑢 = 𝑈 → ( ·𝑠OLD ‘𝑢) = ( ·𝑠OLD ‘𝑈)) | |
13 | dipfval.4 | . . . . . . . . . . . 12 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
14 | 12, 13 | syl6eqr 2831 | . . . . . . . . . . 11 ⊢ (𝑢 = 𝑈 → ( ·𝑠OLD ‘𝑢) = 𝑆) |
15 | 14 | oveqd 6939 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑈 → ((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦) = ((i↑𝑘)𝑆𝑦)) |
16 | 10, 11, 15 | oveq123d 6943 | . . . . . . . . 9 ⊢ (𝑢 = 𝑈 → (𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)) = (𝑥𝐺((i↑𝑘)𝑆𝑦))) |
17 | 7, 16 | fveq12d 6453 | . . . . . . . 8 ⊢ (𝑢 = 𝑈 → ((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦))) = (𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))) |
18 | 17 | oveq1d 6937 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2) = ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) |
19 | 18 | oveq2d 6938 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2))) |
20 | 19 | sumeq2sdv 14842 | . . . . 5 ⊢ (𝑢 = 𝑈 → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2))) |
21 | 20 | oveq1d 6937 | . . . 4 ⊢ (𝑢 = 𝑈 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) |
22 | 4, 4, 21 | mpt2eq123dv 6994 | . . 3 ⊢ (𝑢 = 𝑈 → (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) / 4)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |
23 | df-dip 28128 | . . 3 ⊢ ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) / 4))) | |
24 | 3 | fvexi 6460 | . . . 4 ⊢ 𝑋 ∈ V |
25 | 24, 24 | mpt2ex 7527 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) ∈ V |
26 | 22, 23, 25 | fvmpt 6542 | . 2 ⊢ (𝑈 ∈ NrmCVec → (·𝑖OLD‘𝑈) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |
27 | 1, 26 | syl5eq 2825 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 1c1 10273 ici 10274 · cmul 10277 / cdiv 11032 2c2 11430 4c4 11432 ...cfz 12643 ↑cexp 13178 Σcsu 14824 NrmCVeccnv 28011 +𝑣 cpv 28012 BaseSetcba 28013 ·𝑠OLD cns 28014 normCVcnmcv 28017 ·𝑖OLDcdip 28127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-n0 11643 df-z 11729 df-uz 11993 df-fz 12644 df-seq 13120 df-sum 14825 df-dip 28128 |
This theorem is referenced by: ipval 28130 ipf 28140 dipcn 28147 |
Copyright terms: Public domain | W3C validator |