MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipfval Structured version   Visualization version   GIF version

Theorem dipfval 29064
Description: The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSet‘𝑈)
dipfval.2 𝐺 = ( +𝑣𝑈)
dipfval.4 𝑆 = ( ·𝑠OLD𝑈)
dipfval.6 𝑁 = (normCV𝑈)
dipfval.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipfval (𝑈 ∈ NrmCVec → 𝑃 = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐺   𝑘,𝑁,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑘,𝑋,𝑥,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑘)

Proof of Theorem dipfval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 dipfval.7 . 2 𝑃 = (·𝑖OLD𝑈)
2 fveq2 6774 . . . . 5 (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈))
3 dipfval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
42, 3eqtr4di 2796 . . . 4 (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋)
5 fveq2 6774 . . . . . . . . . 10 (𝑢 = 𝑈 → (normCV𝑢) = (normCV𝑈))
6 dipfval.6 . . . . . . . . . 10 𝑁 = (normCV𝑈)
75, 6eqtr4di 2796 . . . . . . . . 9 (𝑢 = 𝑈 → (normCV𝑢) = 𝑁)
8 fveq2 6774 . . . . . . . . . . 11 (𝑢 = 𝑈 → ( +𝑣𝑢) = ( +𝑣𝑈))
9 dipfval.2 . . . . . . . . . . 11 𝐺 = ( +𝑣𝑈)
108, 9eqtr4di 2796 . . . . . . . . . 10 (𝑢 = 𝑈 → ( +𝑣𝑢) = 𝐺)
11 eqidd 2739 . . . . . . . . . 10 (𝑢 = 𝑈𝑥 = 𝑥)
12 fveq2 6774 . . . . . . . . . . . 12 (𝑢 = 𝑈 → ( ·𝑠OLD𝑢) = ( ·𝑠OLD𝑈))
13 dipfval.4 . . . . . . . . . . . 12 𝑆 = ( ·𝑠OLD𝑈)
1412, 13eqtr4di 2796 . . . . . . . . . . 11 (𝑢 = 𝑈 → ( ·𝑠OLD𝑢) = 𝑆)
1514oveqd 7292 . . . . . . . . . 10 (𝑢 = 𝑈 → ((i↑𝑘)( ·𝑠OLD𝑢)𝑦) = ((i↑𝑘)𝑆𝑦))
1610, 11, 15oveq123d 7296 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)) = (𝑥𝐺((i↑𝑘)𝑆𝑦)))
177, 16fveq12d 6781 . . . . . . . 8 (𝑢 = 𝑈 → ((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦))) = (𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦))))
1817oveq1d 7290 . . . . . . 7 (𝑢 = 𝑈 → (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2) = ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2))
1918oveq2d 7291 . . . . . 6 (𝑢 = 𝑈 → ((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)))
2019sumeq2sdv 15416 . . . . 5 (𝑢 = 𝑈 → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)))
2120oveq1d 7290 . . . 4 (𝑢 = 𝑈 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))
224, 4, 21mpoeq123dv 7350 . . 3 (𝑢 = 𝑈 → (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)) = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
23 df-dip 29063 . . 3 ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
243fvexi 6788 . . . 4 𝑋 ∈ V
2524, 24mpoex 7920 . . 3 (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) ∈ V
2622, 23, 25fvmpt 6875 . 2 (𝑈 ∈ NrmCVec → (·𝑖OLD𝑈) = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
271, 26eqtrid 2790 1 (𝑈 ∈ NrmCVec → 𝑃 = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  cmpo 7277  1c1 10872  ici 10873   · cmul 10876   / cdiv 11632  2c2 12028  4c4 12030  ...cfz 13239  cexp 13782  Σcsu 15397  NrmCVeccnv 28946   +𝑣 cpv 28947  BaseSetcba 28948   ·𝑠OLD cns 28949  normCVcnmcv 28952  ·𝑖OLDcdip 29062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-sum 15398  df-dip 29063
This theorem is referenced by:  ipval  29065  ipf  29075  dipcn  29082
  Copyright terms: Public domain W3C validator