![]() |
Metamath
Proof Explorer Theorem List (p. 300 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28347) |
![]() (28348-29872) |
![]() (29873-43657) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | difrab2 29901 | Difference of two restricted class abstractions. Compare with difrab 4127. (Contributed by Thierry Arnoux, 3-Jan-2022.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ {𝑥 ∈ 𝐵 ∣ 𝜑}) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} | ||
Theorem | rabexgfGS 29902 | Separation Scheme in terms of a restricted class abstraction. To be removed in profit of Glauco's equivalent version. (Contributed by Thierry Arnoux, 11-May-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
Theorem | rabsnel 29903* | Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by Thierry Arnoux, 15-Sep-2018.) |
⊢ 𝐵 ∈ V ⇒ ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝐵 ∈ 𝐴) | ||
Theorem | rabeqsnd 29904* | Conditions for a restricted class abstraction to be a singleton, in deduction form. (Contributed by Thierry Arnoux, 2-Dec-2021.) |
⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝜒) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝑥 = 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝐵}) | ||
Theorem | foresf1o 29905* | From a surjective function, *choose* a subset of the domain, such that the restricted function is bijective. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐵) | ||
Theorem | rabfodom 29906* | Domination relation for restricted abstract class builders, based on a surjective function. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) ⇒ ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝜒} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓}) | ||
Theorem | abrexdomjm 29907* | An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) | ||
Theorem | abrexdom2jm 29908* | An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = 𝐵} ≼ 𝐴) | ||
Theorem | abrexexd 29909* | Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐴 ∈ V) ⇒ ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | ||
Theorem | elabreximd 29910* | Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝐴 = 𝐵 → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵}) → 𝜒) | ||
Theorem | elabreximdv 29911* | Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
⊢ (𝐴 = 𝐵 → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵}) → 𝜒) | ||
Theorem | abrexss 29912* | A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶) | ||
Theorem | rabss3d 29913* | Subclass law for restricted abstraction. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜓}) | ||
Theorem | inin 29914 | Intersection with an intersection. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) | ||
Theorem | inindif 29915 | See inundif 4270. (Contributed by Thierry Arnoux, 13-Sep-2017.) |
⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ | ||
Theorem | difininv 29916 | Condition for the intersections of two sets with a given set to be equal. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
⊢ ((((𝐴 ∖ 𝐶) ∩ 𝐵) = ∅ ∧ ((𝐶 ∖ 𝐴) ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = (𝐶 ∩ 𝐵)) | ||
Theorem | difeq 29917 | Rewriting an equation with class difference, without using quantifiers. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
⊢ ((𝐴 ∖ 𝐵) = 𝐶 ↔ ((𝐶 ∩ 𝐵) = ∅ ∧ (𝐶 ∪ 𝐵) = (𝐴 ∪ 𝐵))) | ||
Theorem | indifundif 29918 | A remarkable equation with sets. (Contributed by Thierry Arnoux, 18-May-2020.) |
⊢ (((𝐴 ∩ 𝐵) ∖ 𝐶) ∪ (𝐴 ∖ 𝐵)) = (𝐴 ∖ (𝐵 ∩ 𝐶)) | ||
Theorem | elpwincl1 29919 | Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝒫 𝐶) | ||
Theorem | elpwdifcl 29920 | Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐶) | ||
Theorem | elpwiuncl 29921* | Closure of indexed union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 27-May-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝒫 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶) | ||
Theorem | eqsnd 29922* | Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = 𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = {𝐵}) | ||
Theorem | elpreq 29923 | Equality wihin a pair. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
⊢ (𝜑 → 𝑋 ∈ {𝐴, 𝐵}) & ⊢ (𝜑 → 𝑌 ∈ {𝐴, 𝐵}) & ⊢ (𝜑 → (𝑋 = 𝐴 ↔ 𝑌 = 𝐴)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | ifeqeqx 29924* | An equality theorem tailored for ballotlemsf1o 31174. (Contributed by Thierry Arnoux, 14-Apr-2017.) |
⊢ (𝑥 = 𝑋 → 𝐴 = 𝐶) & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝑎) & ⊢ (𝑥 = 𝑋 → (𝜒 ↔ 𝜃)) & ⊢ (𝑥 = 𝑌 → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝑎 = 𝐶) & ⊢ ((𝜑 ∧ 𝜓) → 𝜃) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑥 = if(𝜓, 𝑋, 𝑌)) → 𝑎 = if(𝜒, 𝐴, 𝐵)) | ||
Theorem | elimifd 29925 | Elimination of a conditional operator contained in a wff 𝜒. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (𝜑 → (if(𝜓, 𝐴, 𝐵) = 𝐴 → (𝜒 ↔ 𝜃))) & ⊢ (𝜑 → (if(𝜓, 𝐴, 𝐵) = 𝐵 → (𝜒 ↔ 𝜏))) ⇒ ⊢ (𝜑 → (𝜒 ↔ ((𝜓 ∧ 𝜃) ∨ (¬ 𝜓 ∧ 𝜏)))) | ||
Theorem | elim2if 29926 | Elimination of two conditional operators contained in a wff 𝜒. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐴 → (𝜒 ↔ 𝜃)) & ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐵 → (𝜒 ↔ 𝜏)) & ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐶 → (𝜒 ↔ 𝜂)) ⇒ ⊢ (𝜒 ↔ ((𝜑 ∧ 𝜃) ∨ (¬ 𝜑 ∧ ((𝜓 ∧ 𝜏) ∨ (¬ 𝜓 ∧ 𝜂))))) | ||
Theorem | elim2ifim 29927 | Elimination of two conditional operators for an implication. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐴 → (𝜒 ↔ 𝜃)) & ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐵 → (𝜒 ↔ 𝜏)) & ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐶 → (𝜒 ↔ 𝜂)) & ⊢ (𝜑 → 𝜃) & ⊢ ((¬ 𝜑 ∧ 𝜓) → 𝜏) & ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜂) ⇒ ⊢ 𝜒 | ||
Theorem | ifeq3da 29928 | Given an expression 𝐶 containing if(𝜓, 𝐸, 𝐹), substitute (hypotheses .1 and .2) and evaluate (hypotheses .3 and .4) it for both cases at the same time. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
⊢ (if(𝜓, 𝐸, 𝐹) = 𝐸 → 𝐶 = 𝐺) & ⊢ (if(𝜓, 𝐸, 𝐹) = 𝐹 → 𝐶 = 𝐻) & ⊢ (𝜑 → 𝐺 = 𝐴) & ⊢ (𝜑 → 𝐻 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) | ||
Theorem | uniinn0 29929* | Sufficient and necessary condition for a union to intersect with a given set. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
⊢ ((∪ 𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅) | ||
Theorem | uniin1 29930* | Union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
⊢ ∪ 𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = (∪ 𝐴 ∩ 𝐵) | ||
Theorem | uniin2 29931* | Union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
⊢ ∪ 𝑥 ∈ 𝐵 (𝐴 ∩ 𝑥) = (𝐴 ∩ ∪ 𝐵) | ||
Theorem | difuncomp 29932 | Express a class difference using unions and class complements. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵))) | ||
Theorem | pwuniss 29933 | Condition for a class union to be a subset. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
⊢ (𝐴 ⊆ 𝒫 𝐵 → ∪ 𝐴 ⊆ 𝐵) | ||
Theorem | elpwunicl 29934 | Closure of a set union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝒫 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ 𝒫 𝐵) | ||
Theorem | cbviunf 29935* | Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 | ||
Theorem | iuneq12daf 29936 | Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 13-Mar-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) | ||
Theorem | iunin1f 29937 | Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 4806 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.) (Revised by Thierry Arnoux, 2-May-2020.) |
⊢ Ⅎ𝑥𝐶 ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) | ||
Theorem | ssiun3 29938* | Subset equivalence for an indexed union. (Contributed by Thierry Arnoux, 17-Oct-2016.) |
⊢ (∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | iinssiun 29939* | An indexed intersection is a subset of the corresponding indexed union. (Contributed by Thierry Arnoux, 31-Dec-2021.) |
⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | ssiun2sf 29940 | Subset relationship for an indexed union. (Contributed by Thierry Arnoux, 31-Dec-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | iuninc 29941* | The union of an increasing collection of sets is its last element. (Contributed by Thierry Arnoux, 22-Jan-2017.) |
⊢ (𝜑 → 𝐹 Fn ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛) = (𝐹‘𝑖)) | ||
Theorem | iundifdifd 29942* | The intersection of a set is the complement of the union of the complements. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
⊢ (𝐴 ⊆ 𝒫 𝑂 → (𝐴 ≠ ∅ → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥)))) | ||
Theorem | iundifdif 29943* | The intersection of a set is the complement of the union of the complements. TODO: shorten using iundifdifd 29942. (Contributed by Thierry Arnoux, 4-Sep-2016.) |
⊢ 𝑂 ∈ V & ⊢ 𝐴 ⊆ 𝒫 𝑂 ⇒ ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥))) | ||
Theorem | iunrdx 29944* | Re-index an indexed union. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
⊢ (𝜑 → 𝐹:𝐴–onto→𝐶) & ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) | ||
Theorem | iunpreima 29945* | Preimage of an indexed union. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) | ||
Theorem | iunrnmptss 29946* | A subset relation for an indexed union over the range of function expressed as a mapping. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
⊢ (𝑦 = 𝐵 → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐷) | ||
Theorem | disjnf 29947* | In case 𝑥 is not free in 𝐵, disjointness is not so interesting since it reduces to cases where 𝐴 is a singleton. (Google Groups discussion with Peter Mazsa.) (Contributed by Thierry Arnoux, 26-Jul-2018.) |
⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ (𝐵 = ∅ ∨ ∃*𝑥 𝑥 ∈ 𝐴)) | ||
Theorem | cbvdisjf 29948* | Change bound variables in a disjoint collection. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) | ||
Theorem | disjss1f 29949 | A subset of a disjoint collection is disjoint. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) | ||
Theorem | disjeq1f 29950 | Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) | ||
Theorem | disjdifprg 29951* | A trivial partition into a subset and its complement. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Disj 𝑥 ∈ {(𝐵 ∖ 𝐴), 𝐴}𝑥) | ||
Theorem | disjdifprg2 29952* | A trivial partition of a set into its difference and intersection with another set. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ (𝐴 ∈ 𝑉 → Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥) | ||
Theorem | disji2f 29953* | Property of a disjoint collection: if 𝐵(𝑥) = 𝐶 and 𝐵(𝑌) = 𝐷, and 𝑥 ≠ 𝑌, then 𝐵 and 𝐶 are disjoint. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) ⇒ ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑥 ≠ 𝑌) → (𝐵 ∩ 𝐶) = ∅) | ||
Theorem | disjif 29954* | Property of a disjoint collection: if 𝐵(𝑥) and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑥 = 𝑌. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) ⇒ ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝑍 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶)) → 𝑥 = 𝑌) | ||
Theorem | disjorf 29955* | Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑖𝐴 & ⊢ Ⅎ𝑗𝐴 & ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐶) ⇒ ⊢ (Disj 𝑖 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅)) | ||
Theorem | disjorsf 29956* | Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) | ||
Theorem | disjif2 29957* | Property of a disjoint collection: if 𝐵(𝑥) and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑥 = 𝑌. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) ⇒ ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝑍 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶)) → 𝑥 = 𝑌) | ||
Theorem | disjabrex 29958* | Rewriting a disjoint collection into a partition of its image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑦) | ||
Theorem | disjabrexf 29959* | Rewriting a disjoint collection into a partition of its image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) (Revised by Thierry Arnoux, 9-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑦) | ||
Theorem | disjpreima 29960* | A preimage of a disjoint set is disjoint. (Contributed by Thierry Arnoux, 7-Feb-2017.) |
⊢ ((Fun 𝐹 ∧ Disj 𝑥 ∈ 𝐴 𝐵) → Disj 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) | ||
Theorem | disjrnmpt 29961* | Rewriting a disjoint collection using the range of a mapping. (Contributed by Thierry Arnoux, 27-May-2020.) |
⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦) | ||
Theorem | disjin 29962 | If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
⊢ (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 (𝐶 ∩ 𝐴)) | ||
Theorem | disjin2 29963 | If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
⊢ (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 (𝐴 ∩ 𝐶)) | ||
Theorem | disjxpin 29964* | Derive a disjunction over a Cartesian product from the disjunctions over its first and second elements. (Contributed by Thierry Arnoux, 9-Mar-2018.) |
⊢ (𝑥 = (1st ‘𝑝) → 𝐶 = 𝐸) & ⊢ (𝑦 = (2nd ‘𝑝) → 𝐷 = 𝐹) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐶) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝐵 𝐷) ⇒ ⊢ (𝜑 → Disj 𝑝 ∈ (𝐴 × 𝐵)(𝐸 ∩ 𝐹)) | ||
Theorem | iundisjf 29965* | Rewrite a countable union as a disjoint union. Cf. iundisj 23752. (Contributed by Thierry Arnoux, 31-Dec-2016.) |
⊢ Ⅎ𝑘𝐴 & ⊢ Ⅎ𝑛𝐵 & ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
Theorem | iundisj2f 29966* | A disjoint union is disjoint. Cf. iundisj2 23753. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
⊢ Ⅎ𝑘𝐴 & ⊢ Ⅎ𝑛𝐵 & ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ Disj 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
Theorem | disjrdx 29967* | Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017.) |
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐶) & ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐶 𝐷)) | ||
Theorem | disjex 29968* | Two ways to say that two classes are disjoint (or equal). (Contributed by Thierry Arnoux, 4-Oct-2016.) |
⊢ ((∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅)) | ||
Theorem | disjexc 29969* | A variant of disjex 29968, applicable for more generic families. (Contributed by Thierry Arnoux, 4-Oct-2016.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ ((∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝑥 = 𝑦) → (𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅)) | ||
Theorem | disjunsn 29970* | Append an element to a disjoint collection. Similar to ralunsn 4657, gsumunsn 18745, etc. (Contributed by Thierry Arnoux, 28-Mar-2018.) |
⊢ (𝑥 = 𝑀 → 𝐵 = 𝐶) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅))) | ||
Theorem | disjun0 29971* | Adding the empty element preserves disjointness. (Contributed by Thierry Arnoux, 30-May-2020.) |
⊢ (Disj 𝑥 ∈ 𝐴 𝑥 → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) | ||
Theorem | disjiunel 29972* | A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.) |
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐸 ⊆ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ (𝐴 ∖ 𝐸)) ⇒ ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷) = ∅) | ||
Theorem | disjuniel 29973* | A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.) |
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) ⇒ ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐶) = ∅) | ||
Theorem | xpdisjres 29974 | Restriction of a constant function (or other Cartesian product) outside of its domain. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) ↾ 𝐶) = ∅) | ||
Theorem | opeldifid 29975 | Ordered pair elementhood outside of the diagonal. (Contributed by Thierry Arnoux, 1-Jan-2020.) |
⊢ (Rel 𝐴 → (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ I ) ↔ (〈𝑋, 𝑌〉 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌))) | ||
Theorem | difres 29976 | Case when class difference in unaffected by restriction. (Contributed by Thierry Arnoux, 1-Jan-2020.) |
⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ↾ 𝐵)) = (𝐴 ∖ 𝐶)) | ||
Theorem | imadifxp 29977 | Image of the difference with a Cartesian product. (Contributed by Thierry Arnoux, 13-Dec-2017.) |
⊢ (𝐶 ⊆ 𝐴 → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅 “ 𝐶) ∖ 𝐵)) | ||
Theorem | relfi 29978 | A relation (set) is finite if and only if both its domain and range are finite. (Contributed by Thierry Arnoux, 27-Aug-2017.) |
⊢ (Rel 𝐴 → (𝐴 ∈ Fin ↔ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin))) | ||
Theorem | funresdm1 29979 | Restriction of a disjoint union to the domain of the first term. (Contributed by Thierry Arnoux, 9-Dec-2021.) |
⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴 ∪ 𝐵) ↾ dom 𝐴) = 𝐴) | ||
Theorem | fnunres1 29980 | Restriction of a disjoint union to the domain of the first function. (Contributed by Thierry Arnoux, 9-Dec-2021.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) | ||
Theorem | fcoinver 29981 | Build an equivalence relation from a function. Two values are equivalent if they have the same image by the function. See also fcoinvbr 29982. (Contributed by Thierry Arnoux, 3-Jan-2020.) |
⊢ (𝐹 Fn 𝑋 → (◡𝐹 ∘ 𝐹) Er 𝑋) | ||
Theorem | fcoinvbr 29982 | Binary relation for the equivalence relation from fcoinver 29981. (Contributed by Thierry Arnoux, 3-Jan-2020.) |
⊢ ∼ = (◡𝐹 ∘ 𝐹) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∼ 𝑌 ↔ (𝐹‘𝑋) = (𝐹‘𝑌))) | ||
Theorem | brabgaf 29983* | The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) (Revised by Thierry Arnoux, 17-May-2020.) |
⊢ Ⅎ𝑥𝜓 & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) | ||
Theorem | brelg 29984 | Two things in a binary relation belong to the relation's domain. (Contributed by Thierry Arnoux, 29-Aug-2017.) |
⊢ ((𝑅 ⊆ (𝐶 × 𝐷) ∧ 𝐴𝑅𝐵) → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | ||
Theorem | br8d 29985* | Substitution for an eight-place predicate. (Contributed by Scott Fenton, 26-Sep-2013.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by Thierry Arnoux, 21-Mar-2019.) |
⊢ (𝑎 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ (𝑏 = 𝐵 → (𝜒 ↔ 𝜃)) & ⊢ (𝑐 = 𝐶 → (𝜃 ↔ 𝜏)) & ⊢ (𝑑 = 𝐷 → (𝜏 ↔ 𝜂)) & ⊢ (𝑒 = 𝐸 → (𝜂 ↔ 𝜁)) & ⊢ (𝑓 = 𝐹 → (𝜁 ↔ 𝜎)) & ⊢ (𝑔 = 𝐺 → (𝜎 ↔ 𝜌)) & ⊢ (ℎ = 𝐻 → (𝜌 ↔ 𝜇)) & ⊢ (𝜑 → 𝑅 = {〈𝑝, 𝑞〉 ∣ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 ∃𝑒 ∈ 𝑃 ∃𝑓 ∈ 𝑃 ∃𝑔 ∈ 𝑃 ∃ℎ ∈ 𝑃 (𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑒, 𝑓〉, 〈𝑔, ℎ〉〉 ∧ 𝜓)}) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ 𝑃) & ⊢ (𝜑 → 𝐻 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑅〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ 𝜇)) | ||
Theorem | opabdm 29986* | Domain of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017.) |
⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → dom 𝑅 = {𝑥 ∣ ∃𝑦𝜑}) | ||
Theorem | opabrn 29987* | Range of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017.) |
⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑}) | ||
Theorem | opabssi 29988* | Sufficient condition for a collection of ordered pairs to be a subclass of a relation. (Contributed by Peter Mazsa, 21-Oct-2019.) (Revised by Thierry Arnoux, 18-Feb-2022.) |
⊢ (𝜑 → 〈𝑥, 𝑦〉 ∈ 𝐴) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ 𝐴 | ||
Theorem | opabid2ss 29989* | One direction of opabid2 5497 which holds without a Rel 𝐴 requirement. (Contributed by Thierry Arnoux, 18-Feb-2022.) |
⊢ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ⊆ 𝐴 | ||
Theorem | ssrelf 29990* | A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Thierry Arnoux, 6-Nov-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | ||
Theorem | eqrelrd2 29991* | A version of eqrelrdv2 5466 with explicit non-free declarations. (Contributed by Thierry Arnoux, 28-Aug-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑦𝐵 & ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) ⇒ ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) | ||
Theorem | erbr3b 29992 | Biconditional for equivalent elements. (Contributed by Thierry Arnoux, 6-Jan-2020.) |
⊢ ((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | ||
Theorem | iunsnima 29993 | Image of a singleton by an indexed union involving that singleton. (Contributed by Thierry Arnoux, 10-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑥}) = 𝐵) | ||
Theorem | ac6sf2 29994* | Alternate version of ac6 9637 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008.) (Revised by Thierry Arnoux, 17-May-2020.) |
⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑦𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | fnresin 29995 | Restriction of a function with a subclass of its domain. (Contributed by Thierry Arnoux, 10-Oct-2017.) |
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐵) Fn (𝐴 ∩ 𝐵)) | ||
Theorem | f1o3d 29996* | Describe an implicit one-to-one onto function. (Contributed by Thierry Arnoux, 23-Apr-2017.) |
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) | ||
Theorem | rinvf1o 29997 | Sufficient conditions for the restriction of an involution to be a bijection. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
⊢ Fun 𝐹 & ⊢ ◡𝐹 = 𝐹 & ⊢ (𝐹 “ 𝐴) ⊆ 𝐵 & ⊢ (𝐹 “ 𝐵) ⊆ 𝐴 & ⊢ 𝐴 ⊆ dom 𝐹 & ⊢ 𝐵 ⊆ dom 𝐹 ⇒ ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝐵 | ||
Theorem | fresf1o 29998 | Conditions for a restriction to be a one-to-one onto function. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–1-1-onto→𝐶) | ||
Theorem | fmptco1f1o 29999* | The action of composing (to the right) with a bijection is itself a bijection of functions. (Contributed by Thierry Arnoux, 3-Jan-2021.) |
⊢ 𝐴 = (𝑅 ↑𝑚 𝐸) & ⊢ 𝐵 = (𝑅 ↑𝑚 𝐷) & ⊢ 𝐹 = (𝑓 ∈ 𝐴 ↦ (𝑓 ∘ 𝑇)) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) & ⊢ (𝜑 → 𝑇:𝐷–1-1-onto→𝐸) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | ||
Theorem | f1mptrn 30000* | Express injection for a mapping operation. (Contributed by Thierry Arnoux, 3-May-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵) ⇒ ⊢ (𝜑 → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |