![]() |
Metamath
Proof Explorer Theorem List (p. 300 of 474) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29923) |
![]() (29924-31446) |
![]() (31447-47372) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | hlpar2 29901 | The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
Theorem | hlpar 29902 | The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
Theorem | hlex 29903 | The base set of a Hilbert space is a set. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) ⇒ ⊢ 𝑋 ∈ V | ||
Theorem | hladdf 29904 | Mapping for Hilbert space vector addition. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝐺:(𝑋 × 𝑋)⟶𝑋) | ||
Theorem | hlcom 29905 | Hilbert space vector addition is commutative. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) | ||
Theorem | hlass 29906 | Hilbert space vector addition is associative. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))) | ||
Theorem | hl0cl 29907 | The Hilbert space zero vector. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝑍 ∈ 𝑋) | ||
Theorem | hladdid 29908 | Hilbert space addition with the zero vector. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) | ||
Theorem | hlmulf 29909 | Mapping for Hilbert space scalar multiplication. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝑆:(ℂ × 𝑋)⟶𝑋) | ||
Theorem | hlmulid 29910 | Hilbert space scalar multiplication by one. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) | ||
Theorem | hlmulass 29911 | Hilbert space scalar multiplication associative law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))) | ||
Theorem | hldi 29912 | Hilbert space scalar multiplication distributive law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))) | ||
Theorem | hldir 29913 | Hilbert space scalar multiplication distributive law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶))) | ||
Theorem | hlmul0 29914 | Hilbert space scalar multiplication by zero. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) | ||
Theorem | hlipf 29915 | Mapping for Hilbert space inner product. (Contributed by NM, 19-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝑃:(𝑋 × 𝑋)⟶ℂ) | ||
Theorem | hlipcj 29916 | Conjugate law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (∗‘(𝐵𝑃𝐴))) | ||
Theorem | hlipdir 29917 | Distributive law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) | ||
Theorem | hlipass 29918 | Associative law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) | ||
Theorem | hlipgt0 29919 | The inner product of a Hilbert space vector by itself is positive. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → 0 < (𝐴𝑃𝐴)) | ||
Theorem | hlcompl 29920 | Completeness of a Hilbert space. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 9-May-2014.) (New usage is discouraged.) |
⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | ||
Theorem | cnchl 29921 | The set of complex numbers is a complex Hilbert space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ 𝑈 ∈ CHilOLD | ||
Theorem | htthlem 29922* | Lemma for htth 29923. The collection 𝐾, which consists of functions 𝐹(𝑧)(𝑤) = 〈𝑤 ∣ 𝑇(𝑧)〉 = 〈𝑇(𝑤) ∣ 𝑧〉 for each 𝑧 in the unit ball, is a collection of bounded linear functions by ipblnfi 29860, so by the Uniform Boundedness theorem ubth 29878, there is a uniform bound 𝑦 on ∥ 𝐹(𝑥) ∥ for all 𝑥 in the unit ball. Then ∣ 𝑇(𝑥) ∣ ↑2 = 〈𝑇(𝑥) ∣ 𝑇(𝑥)〉 = 𝐹(𝑥)( 𝑇(𝑥)) ≤ 𝑦 ∣ 𝑇(𝑥) ∣, so ∣ 𝑇(𝑥) ∣ ≤ 𝑦 and 𝑇 is bounded. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝐿 = (𝑈 LnOp 𝑈) & ⊢ 𝐵 = (𝑈 BLnOp 𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑈 ∈ CHilOLD & ⊢ 𝑊 = 〈〈 + , · 〉, abs〉 & ⊢ (𝜑 → 𝑇 ∈ 𝐿) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦)) & ⊢ 𝐹 = (𝑧 ∈ 𝑋 ↦ (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑧)))) & ⊢ 𝐾 = (𝐹 “ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1}) ⇒ ⊢ (𝜑 → 𝑇 ∈ 𝐵) | ||
Theorem | htth 29923* | Hellinger-Toeplitz Theorem: any self-adjoint linear operator defined on all of Hilbert space is bounded. Theorem 10.1-1 of [Kreyszig] p. 525. Discovered by E. Hellinger and O. Toeplitz in 1910, "it aroused both admiration and puzzlement since the theorem establishes a relation between properties of two different kinds, namely, the properties of being defined everywhere and being bounded." (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝐿 = (𝑈 LnOp 𝑈) & ⊢ 𝐵 = (𝑈 BLnOp 𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝑇 ∈ 𝐿 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦)) → 𝑇 ∈ 𝐵) | ||
This part contains the definitions and theorems used by the Hilbert Space Explorer (HSE), mmhil.html. Because it axiomatizes a single complex Hilbert space whose existence is assumed, its usefulness is limited. For example, it cannot work with real or quaternion Hilbert spaces and it cannot study relationships between two Hilbert spaces. More information can be found on the Hilbert Space Explorer page. Future development should instead work with general Hilbert spaces as defined by df-hil 21147; note that df-hil 21147 uses extensible structures. The intent is for this deprecated section to be deleted once all its theorems have been translated into extensible structure versions (or are not useful). Many of the theorems in this section have already been translated to extensible structure versions, but there is still a lot in this section that might be useful for future reference. It is much easier to translate these by hand from this section than to start from scratch from textbook proofs, since the HSE omits no details. | ||
Syntax | chba 29924 | Extend class notation with Hilbert vector space. |
class ℋ | ||
Syntax | cva 29925 | Extend class notation with vector addition in Hilbert space. In the literature, the subscript "h" is omitted, but we need it to avoid ambiguity with complex number addition + caddc 11063. |
class +ℎ | ||
Syntax | csm 29926 | Extend class notation with scalar multiplication in Hilbert space. In the literature scalar multiplication is usually indicated by juxtaposition, but we need an explicit symbol to prevent ambiguity. |
class ·ℎ | ||
Syntax | csp 29927 | Extend class notation with inner (scalar) product in Hilbert space. In the literature, the inner product of 𝐴 and 𝐵 is usually written 〈𝐴, 𝐵〉 but our operation notation allows to use existing theorems about operations and also eliminates ambiguity with the definition of an ordered pair df-op 4598. |
class ·ih | ||
Syntax | cno 29928 | Extend class notation with the norm function in Hilbert space. In the literature, the norm of 𝐴 is usually written "|| 𝐴 ||", but we use function notation to take advantage of our existing theorems about functions. |
class normℎ | ||
Syntax | c0v 29929 | Extend class notation with zero vector in Hilbert space. |
class 0ℎ | ||
Syntax | cmv 29930 | Extend class notation with vector subtraction in Hilbert space. |
class −ℎ | ||
Syntax | ccauold 29931 | Extend class notation with set of Cauchy sequences in Hilbert space. |
class Cauchy | ||
Syntax | chli 29932 | Extend class notation with convergence relation in Hilbert space. |
class ⇝𝑣 | ||
Syntax | csh 29933 | Extend class notation with set of subspaces of a Hilbert space. |
class Sℋ | ||
Syntax | cch 29934 | Extend class notation with set of closed subspaces of a Hilbert space. |
class Cℋ | ||
Syntax | cort 29935 | Extend class notation with orthogonal complement in Cℋ. |
class ⊥ | ||
Syntax | cph 29936 | Extend class notation with subspace sum in Cℋ. |
class +ℋ | ||
Syntax | cspn 29937 | Extend class notation with subspace span in Cℋ. |
class span | ||
Syntax | chj 29938 | Extend class notation with join in Cℋ. |
class ∨ℋ | ||
Syntax | chsup 29939 | Extend class notation with supremum of a collection in Cℋ. |
class ∨ℋ | ||
Syntax | c0h 29940 | Extend class notation with zero of Cℋ. |
class 0ℋ | ||
Syntax | ccm 29941 | Extend class notation with the commutes relation on a Hilbert lattice. |
class 𝐶ℋ | ||
Syntax | cpjh 29942 | Extend class notation with set of projections on a Hilbert space. |
class projℎ | ||
Syntax | chos 29943 | Extend class notation with sum of Hilbert space operators. |
class +op | ||
Syntax | chot 29944 | Extend class notation with scalar product of a Hilbert space operator. |
class ·op | ||
Syntax | chod 29945 | Extend class notation with difference of Hilbert space operators. |
class −op | ||
Syntax | chfs 29946 | Extend class notation with sum of Hilbert space functionals. |
class +fn | ||
Syntax | chft 29947 | Extend class notation with scalar product of Hilbert space functional. |
class ·fn | ||
Syntax | ch0o 29948 | Extend class notation with the Hilbert space zero operator. |
class 0hop | ||
Syntax | chio 29949 | Extend class notation with Hilbert space identity operator. |
class Iop | ||
Syntax | cnop 29950 | Extend class notation with the operator norm function. |
class normop | ||
Syntax | ccop 29951 | Extend class notation with set of continuous Hilbert space operators. |
class ContOp | ||
Syntax | clo 29952 | Extend class notation with set of linear Hilbert space operators. |
class LinOp | ||
Syntax | cbo 29953 | Extend class notation with set of bounded linear operators. |
class BndLinOp | ||
Syntax | cuo 29954 | Extend class notation with set of unitary Hilbert space operators. |
class UniOp | ||
Syntax | cho 29955 | Extend class notation with set of Hermitian Hilbert space operators. |
class HrmOp | ||
Syntax | cnmf 29956 | Extend class notation with the functional norm function. |
class normfn | ||
Syntax | cnl 29957 | Extend class notation with the functional nullspace function. |
class null | ||
Syntax | ccnfn 29958 | Extend class notation with set of continuous Hilbert space functionals. |
class ContFn | ||
Syntax | clf 29959 | Extend class notation with set of linear Hilbert space functionals. |
class LinFn | ||
Syntax | cado 29960 | Extend class notation with Hilbert space adjoint function. |
class adjℎ | ||
Syntax | cbr 29961 | Extend class notation with the bra of a vector in Dirac bra-ket notation. |
class bra | ||
Syntax | ck 29962 | Extend class notation with the outer product of two vectors in Dirac bra-ket notation. |
class ketbra | ||
Syntax | cleo 29963 | Extend class notation with positive operator ordering. |
class ≤op | ||
Syntax | cei 29964 | Extend class notation with Hilbert space eigenvector function. |
class eigvec | ||
Syntax | cel 29965 | Extend class notation with Hilbert space eigenvalue function. |
class eigval | ||
Syntax | cspc 29966 | Extend class notation with the spectrum of an operator. |
class Lambda | ||
Syntax | cst 29967 | Extend class notation with set of states on a Hilbert lattice. |
class States | ||
Syntax | chst 29968 | Extend class notation with set of Hilbert-space-valued states on a Hilbert lattice. |
class CHStates | ||
Syntax | ccv 29969 | Extend class notation with the covers relation on a Hilbert lattice. |
class ⋖ℋ | ||
Syntax | cat 29970 | Extend class notation with set of atoms on a Hilbert lattice. |
class HAtoms | ||
Syntax | cmd 29971 | Extend class notation with the modular pair relation on a Hilbert lattice. |
class 𝑀ℋ | ||
Syntax | cdmd 29972 | Extend class notation with the dual modular pair relation on a Hilbert lattice. |
class 𝑀ℋ* | ||
Definition | df-hnorm 29973 | Define the function for the norm of a vector of Hilbert space. See normval 30129 for its value and normcl 30130 for its closure. Theorems norm-i-i 30138, norm-ii-i 30142, and norm-iii-i 30144 show it has the expected properties of a norm. In the literature, the norm of 𝐴 is usually written "|| 𝐴 ||", but we use function notation to take advantage of our existing theorems about functions. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ normℎ = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) | ||
Definition | df-hba 29974 | Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30004). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 30172. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | ||
Definition | df-h0v 29975 | Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 30173. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | ||
Definition | df-hvsub 29976* | Define vector subtraction. See hvsubvali 30025 for its value and hvsubcli 30026 for its closure. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) | ||
Definition | df-hlim 29977* | Define the limit relation for Hilbert space. See hlimi 30193 for its relational expression. Note that 𝑓:ℕ⟶ ℋ is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of converge in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ ⇝𝑣 = {〈𝑓, 𝑤〉 ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥)} | ||
Definition | df-hcau 29978* | Define the set of Cauchy sequences on a Hilbert space. See hcau 30189 for its membership relation. Note that 𝑓:ℕ⟶ ℋ is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of Cauchy sequence in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥} | ||
Theorem | h2hva 29979 | The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ +ℎ = ( +𝑣 ‘𝑈) | ||
Theorem | h2hsm 29980 | The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) | ||
Theorem | h2hnm 29981 | The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ normℎ = (normCV‘𝑈) | ||
Theorem | h2hvs 29982 | The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) ⇒ ⊢ −ℎ = ( −𝑣 ‘𝑈) | ||
Theorem | h2hmetdval 29983 | Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
Theorem | h2hcau 29984 | The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) | ||
Theorem | h2hlm 29985 | The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ⇝𝑣 = ((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ)) | ||
Before introducing the 18 axioms for Hilbert space, we first prove them as the conclusions of Theorems axhilex-zf 29986 through axhcompl-zf 30003, using ZFC set theory only. These show that if we are given a known, fixed Hilbert space 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 that satisfies their hypotheses, then we can derive the Hilbert space axioms as theorems of ZFC set theory. In practice, in order to use these theorems to convert the Hilbert Space explorer to a ZFC-only subtheory, we would also have to provide definitions for the 3 (otherwise primitive) class constants +ℎ, ·ℎ, and ·ih before df-hnorm 29973 above. See also the comment in ax-hilex 30004. | ||
Theorem | axhilex-zf 29986 | Derive Axiom ax-hilex 30004 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ℋ ∈ V | ||
Theorem | axhfvadd-zf 29987 | Derive Axiom ax-hfvadd 30005 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | ||
Theorem | axhvcom-zf 29988 | Derive Axiom ax-hvcom 30006 from Hilbert space under ZF set theory. (Contributed by NM, 27-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | ||
Theorem | axhvass-zf 29989 | Derive Axiom ax-hvass 30007 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | ||
Theorem | axhv0cl-zf 29990 | Derive Axiom ax-hv0cl 30008 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ 0ℎ ∈ ℋ | ||
Theorem | axhvaddid-zf 29991 | Derive Axiom ax-hvaddid 30009 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | ||
Theorem | axhfvmul-zf 29992 | Derive Axiom ax-hfvmul 30010 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | ||
Theorem | axhvmulid-zf 29993 | Derive Axiom ax-hvmulid 30011 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | ||
Theorem | axhvmulass-zf 29994 | Derive Axiom ax-hvmulass 30012 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) | ||
Theorem | axhvdistr1-zf 29995 | Derive Axiom ax-hvdistr1 30013 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶))) | ||
Theorem | axhvdistr2-zf 29996 | Derive Axiom ax-hvdistr2 30014 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵 ·ℎ 𝐶))) | ||
Theorem | axhvmul0-zf 29997 | Derive Axiom ax-hvmul0 30015 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) | ||
Theorem | axhfi-zf 29998 | Derive Axiom ax-hfi 30084 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ·ih :( ℋ × ℋ)⟶ℂ | ||
Theorem | axhis1-zf 29999 | Derive Axiom ax-his1 30087 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) | ||
Theorem | axhis2-zf 30000 | Derive Axiom ax-his2 30088 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |