Home | Metamath
Proof Explorer Theorem List (p. 300 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | chscllem2 29901* | Lemma for chscl 29904. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) & ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) & ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑣 ) | ||
Theorem | chscllem3 29902* | Lemma for chscl 29904. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) & ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) & ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝐵) & ⊢ (𝜑 → (𝐻‘𝑁) = (𝐶 +ℎ 𝐷)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐹‘𝑁)) | ||
Theorem | chscllem4 29903* | Lemma for chscl 29904. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) & ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) & ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐵)‘(𝐻‘𝑛))) ⇒ ⊢ (𝜑 → 𝑢 ∈ (𝐴 +ℋ 𝐵)) | ||
Theorem | chscl 29904 | The subspace sum of two closed orthogonal spaces is closed. (Contributed by NM, 19-Oct-1999.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) ⇒ ⊢ (𝜑 → (𝐴 +ℋ 𝐵) ∈ Cℋ ) | ||
Theorem | osumi 29905 | If two closed subspaces of a Hilbert space are orthogonal, their subspace sum equals their subspace join. Lemma 3 of [Kalmbach] p. 67. Note that the (countable) Axiom of Choice is used for this proof via pjhth 29656, although "the hard part" of this proof, chscl 29904, requires no choice. (Contributed by NM, 28-Oct-1999.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ (⊥‘𝐵) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | osumcori 29906 | Corollary of osumi 29905. (Contributed by NM, 5-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 ∩ 𝐵) +ℋ (𝐴 ∩ (⊥‘𝐵))) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) | ||
Theorem | osumcor2i 29907 | Corollary of osumi 29905, showing it holds under the weaker hypothesis that 𝐴 and 𝐵 commute. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | osum 29908 | If two closed subspaces of a Hilbert space are orthogonal, their subspace sum equals their subspace join. Lemma 3 of [Kalmbach] p. 67. (Contributed by NM, 31-Oct-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | spansnji 29909 | The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Proof suggested by Eric Schechter 1-Jun-2004.) (Contributed by NM, 1-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 +ℋ (span‘{𝐵})) = (𝐴 ∨ℋ (span‘{𝐵})) | ||
Theorem | spansnj 29910 | The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℋ (span‘{𝐵})) = (𝐴 ∨ℋ (span‘{𝐵}))) | ||
Theorem | spansnscl 29911 | The subspace sum of a closed subspace and a one-dimensional subspace is closed. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℋ (span‘{𝐵})) ∈ Cℋ ) | ||
Theorem | sumspansn 29912 | The sum of two vectors belong to the span of one of them iff the other vector also belongs. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴}))) | ||
Theorem | spansnm0i 29913 | The meet of different one-dimensional subspaces is the zero subspace. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (¬ 𝐴 ∈ (span‘{𝐵}) → ((span‘{𝐴}) ∩ (span‘{𝐵})) = 0ℋ) | ||
Theorem | nonbooli 29914 | A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ but (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ 0ℋ. The antecedent specifies that the vectors 𝐴 and 𝐵 are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to 𝐹, 𝐺, and 𝐻. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐹 = (span‘{𝐴}) & ⊢ 𝐺 = (span‘{𝐵}) & ⊢ 𝐻 = (span‘{(𝐴 +ℎ 𝐵)}) ⇒ ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) → (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) | ||
Theorem | spansncvi 29915 | Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of [Kalmbach] p. 153. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ (𝐴 ∨ℋ (span‘{𝐶}))) → 𝐵 = (𝐴 ∨ℋ (span‘{𝐶}))) | ||
Theorem | spansncv 29916 | Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of [Kalmbach] p. 153. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ (𝐴 ∨ℋ (span‘{𝐶}))) → 𝐵 = (𝐴 ∨ℋ (span‘{𝐶})))) | ||
Theorem | 5oalem1 29917 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 1-Apr-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ ⇒ ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) | ||
Theorem | 5oalem2 29918 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ ⇒ ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ (𝑥 +ℎ 𝑦) = (𝑧 +ℎ 𝑤)) → (𝑥 −ℎ 𝑧) ∈ ((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷))) | ||
Theorem | 5oalem3 29919 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ (𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺)) ∧ ((𝑥 +ℎ 𝑦) = (𝑓 +ℎ 𝑔) ∧ (𝑧 +ℎ 𝑤) = (𝑓 +ℎ 𝑔))) → (𝑥 −ℎ 𝑧) ∈ (((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) +ℋ ((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)))) | ||
Theorem | 5oalem4 29920 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ (𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺)) ∧ ((𝑥 +ℎ 𝑦) = (𝑓 +ℎ 𝑔) ∧ (𝑧 +ℎ 𝑤) = (𝑓 +ℎ 𝑔))) → (𝑥 −ℎ 𝑧) ∈ (((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) +ℋ ((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺))))) | ||
Theorem | 5oalem5 29921 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-May-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ & ⊢ 𝑆 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ ((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺) ∧ (𝑣 ∈ 𝑅 ∧ 𝑢 ∈ 𝑆))) ∧ (((𝑥 +ℎ 𝑦) = (𝑣 +ℎ 𝑢) ∧ (𝑧 +ℎ 𝑤) = (𝑣 +ℎ 𝑢)) ∧ (𝑓 +ℎ 𝑔) = (𝑣 +ℎ 𝑢))) → (𝑥 −ℎ 𝑧) ∈ ((((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)))) ∩ ((((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))) +ℋ (((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)) ∩ (((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆))))))) | ||
Theorem | 5oalem6 29922 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ & ⊢ 𝑆 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ℎ = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) ∧ ℎ = (𝑧 +ℎ 𝑤))) ∧ (((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺) ∧ ℎ = (𝑓 +ℎ 𝑔)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑢 ∈ 𝑆) ∧ ℎ = (𝑣 +ℎ 𝑢)))) → ℎ ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ ((((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)))) ∩ ((((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))) +ℋ (((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)) ∩ (((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))))))))) | ||
Theorem | 5oalem7 29923 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000.) TODO: replace uses of ee4anv 2351 with 4exdistrv 1961 as in 3oalem3 29927. (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ & ⊢ 𝑆 ∈ Sℋ ⇒ ⊢ (((𝐴 +ℋ 𝐵) ∩ (𝐶 +ℋ 𝐷)) ∩ ((𝐹 +ℋ 𝐺) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ ((((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)))) ∩ ((((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))) +ℋ (((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)) ∩ (((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆))))))))) | ||
Theorem | 5oai 29924 | Orthoarguesian law 5OA. This 8-variable inference is called 5OA because it can be converted to a 5-variable equation (see Quantum Logic Explorer). (Contributed by NM, 5-May-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ & ⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ & ⊢ 𝐴 ⊆ (⊥‘𝐵) & ⊢ 𝐶 ⊆ (⊥‘𝐷) & ⊢ 𝐹 ⊆ (⊥‘𝐺) & ⊢ 𝑅 ⊆ (⊥‘𝑆) ⇒ ⊢ (((𝐴 ∨ℋ 𝐵) ∩ (𝐶 ∨ℋ 𝐷)) ∩ ((𝐹 ∨ℋ 𝐺) ∩ (𝑅 ∨ℋ 𝑆))) ⊆ (𝐵 ∨ℋ (𝐴 ∩ (𝐶 ∨ℋ ((((𝐴 ∨ℋ 𝐶) ∩ (𝐵 ∨ℋ 𝐷)) ∩ (((𝐴 ∨ℋ 𝑅) ∩ (𝐵 ∨ℋ 𝑆)) ∨ℋ ((𝐶 ∨ℋ 𝑅) ∩ (𝐷 ∨ℋ 𝑆)))) ∩ ((((𝐴 ∨ℋ 𝐹) ∩ (𝐵 ∨ℋ 𝐺)) ∩ (((𝐴 ∨ℋ 𝑅) ∩ (𝐵 ∨ℋ 𝑆)) ∨ℋ ((𝐹 ∨ℋ 𝑅) ∩ (𝐺 ∨ℋ 𝑆)))) ∨ℋ (((𝐶 ∨ℋ 𝐹) ∩ (𝐷 ∨ℋ 𝐺)) ∩ (((𝐶 ∨ℋ 𝑅) ∩ (𝐷 ∨ℋ 𝑆)) ∨ℋ ((𝐹 ∨ℋ 𝑅) ∩ (𝐺 ∨ℋ 𝑆))))))))) | ||
Theorem | 3oalem1 29925* | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ ⇒ ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))) | ||
Theorem | 3oalem2 29926* | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ ⇒ ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) | ||
Theorem | 3oalem3 29927 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ ⇒ ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ⊆ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) | ||
Theorem | 3oalem4 29928 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) ⇒ ⊢ 𝑅 ⊆ (⊥‘𝐵) | ||
Theorem | 3oalem5 29929 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) & ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ⇒ ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) = ((𝐵 ∨ℋ 𝑅) ∩ (𝐶 ∨ℋ 𝑆)) | ||
Theorem | 3oalem6 29930 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) & ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ⇒ ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) | ||
Theorem | 3oai 29931 | 3OA (weak) orthoarguesian law. Equation IV of [GodowskiGreechie] p. 249. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) & ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ⇒ ⊢ ((𝐵 ∨ℋ 𝑅) ∩ (𝐶 ∨ℋ 𝑆)) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) | ||
Theorem | pjorthi 29932 | Projection components on orthocomplemented subspaces are orthogonal. (Contributed by NM, 26-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐻 ∈ Cℋ → (((projℎ‘𝐻)‘𝐴) ·ih ((projℎ‘(⊥‘𝐻))‘𝐵)) = 0) | ||
Theorem | pjch1 29933 | Property of identity projection. Remark in [Beran] p. 111. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → ((projℎ‘ ℋ)‘𝐴) = 𝐴) | ||
Theorem | pjo 29934 | The orthogonal projection. Lemma 4.4(i) of [Beran] p. 111. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘(⊥‘𝐻))‘𝐴) = (((projℎ‘ ℋ)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴))) | ||
Theorem | pjcompi 29935 | Component of a projection. (Contributed by NM, 31-Oct-1999.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → ((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = 𝐴) | ||
Theorem | pjidmi 29936 | A projection is idempotent. Property (ii) of [Beran] p. 109. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((projℎ‘𝐻)‘((projℎ‘𝐻)‘𝐴)) = ((projℎ‘𝐻)‘𝐴) | ||
Theorem | pjadjii 29937 | A projection is self-adjoint. Property (i) of [Beran] p. 109. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (((projℎ‘𝐻)‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((projℎ‘𝐻)‘𝐵)) | ||
Theorem | pjaddii 29938 | Projection of vector sum is sum of projections. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐵)) | ||
Theorem | pjinormii 29939 | The inner product of a projection and its argument is the square of the norm of the projection. Remark in [Halmos] p. 44. (Contributed by NM, 13-Aug-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (((projℎ‘𝐻)‘𝐴) ·ih 𝐴) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) | ||
Theorem | pjmulii 29940 | Projection of (scalar) product is product of projection. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((projℎ‘𝐻)‘(𝐶 ·ℎ 𝐴)) = (𝐶 ·ℎ ((projℎ‘𝐻)‘𝐴)) | ||
Theorem | pjsubii 29941 | Projection of vector difference is difference of projections. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((projℎ‘𝐻)‘(𝐴 −ℎ 𝐵)) = (((projℎ‘𝐻)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐵)) | ||
Theorem | pjsslem 29942 | Lemma for subset relationships of projections. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐺 ∈ Cℋ ⇒ ⊢ (((projℎ‘(⊥‘𝐻))‘𝐴) −ℎ ((projℎ‘(⊥‘𝐺))‘𝐴)) = (((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) | ||
Theorem | pjss2i 29943 | Subset relationship for projections. Theorem 4.5(i)->(ii) of [Beran] p. 112. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐺 ∈ Cℋ ⇒ ⊢ (𝐻 ⊆ 𝐺 → ((projℎ‘𝐻)‘((projℎ‘𝐺)‘𝐴)) = ((projℎ‘𝐻)‘𝐴)) | ||
Theorem | pjssmii 29944 | Projection meet property. Remark in [Kalmbach] p. 66. Also Theorem 4.5(i)->(iv) of [Beran] p. 112. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐺 ∈ Cℋ ⇒ ⊢ (𝐻 ⊆ 𝐺 → (((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴)) | ||
Theorem | pjssge0ii 29945 | Theorem 4.5(iv)->(v) of [Beran] p. 112. (Contributed by NM, 13-Aug-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐺 ∈ Cℋ ⇒ ⊢ ((((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) → 0 ≤ ((((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) ·ih 𝐴)) | ||
Theorem | pjdifnormii 29946 | Theorem 4.5(v)<->(vi) of [Beran] p. 112. (Contributed by NM, 13-Aug-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐺 ∈ Cℋ ⇒ ⊢ (0 ≤ ((((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) ·ih 𝐴) ↔ (normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘((projℎ‘𝐺)‘𝐴))) | ||
Theorem | pjcji 29947 | The projection on a subspace join is the sum of the projections. (Contributed by NM, 1-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐺 ∈ Cℋ ⇒ ⊢ (𝐻 ⊆ (⊥‘𝐺) → ((projℎ‘(𝐻 ∨ℋ 𝐺))‘𝐴) = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘𝐺)‘𝐴))) | ||
Theorem | pjadji 29948 | A projection is self-adjoint. Property (i) of [Beran] p. 109. (Contributed by NM, 6-Oct-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((projℎ‘𝐻)‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((projℎ‘𝐻)‘𝐵))) | ||
Theorem | pjaddi 29949 | Projection of vector sum is sum of projections. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐵))) | ||
Theorem | pjinormi 29950 | The inner product of a projection and its argument is the square of the norm of the projection. Remark in [Halmos] p. 44. (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → (((projℎ‘𝐻)‘𝐴) ·ih 𝐴) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2)) | ||
Theorem | pjsubi 29951 | Projection of vector difference is difference of projections. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((projℎ‘𝐻)‘(𝐴 −ℎ 𝐵)) = (((projℎ‘𝐻)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐵))) | ||
Theorem | pjmuli 29952 | Projection of scalar product is scalar product of projection. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((projℎ‘𝐻)‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ ((projℎ‘𝐻)‘𝐵))) | ||
Theorem | pjige0i 29953 | The inner product of a projection and its argument is nonnegative. (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → 0 ≤ (((projℎ‘𝐻)‘𝐴) ·ih 𝐴)) | ||
Theorem | pjige0 29954 | The inner product of a projection and its argument is nonnegative. (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → 0 ≤ (((projℎ‘𝐻)‘𝐴) ·ih 𝐴)) | ||
Theorem | pjcjt2 29955 | The projection on a subspace join is the sum of the projections. (Contributed by NM, 1-Nov-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐺 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (𝐻 ⊆ (⊥‘𝐺) → ((projℎ‘(𝐻 ∨ℋ 𝐺))‘𝐴) = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘𝐺)‘𝐴)))) | ||
Theorem | pj0i 29956 | The projection of the zero vector. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((projℎ‘𝐻)‘0ℎ) = 0ℎ | ||
Theorem | pjch 29957 | Projection of a vector in the projection subspace. Lemma 4.4(ii) of [Beran] p. 111. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ 𝐻 ↔ ((projℎ‘𝐻)‘𝐴) = 𝐴)) | ||
Theorem | pjid 29958 | The projection of a vector in the projection subspace is itself. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ 𝐻) → ((projℎ‘𝐻)‘𝐴) = 𝐴) | ||
Theorem | pjvec 29959* | The set of vectors belonging to the subspace of a projection. Part of Theorem 26.2 of [Halmos] p. 44. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → 𝐻 = {𝑥 ∈ ℋ ∣ ((projℎ‘𝐻)‘𝑥) = 𝑥}) | ||
Theorem | pjocvec 29960* | The set of vectors belonging to the orthocomplemented subspace of a projection. Second part of Theorem 27.3 of [Halmos] p. 45. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ((projℎ‘𝐻)‘𝑥) = 0ℎ}) | ||
Theorem | pjocini 29961 | Membership of projection in orthocomplement of intersection. (Contributed by NM, 21-Apr-2001.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ (⊥‘(𝐺 ∩ 𝐻)) → ((projℎ‘𝐺)‘𝐴) ∈ (⊥‘(𝐺 ∩ 𝐻))) | ||
Theorem | pjini 29962 | Membership of projection in an intersection. (Contributed by NM, 22-Apr-2001.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ (𝐺 ∩ 𝐻) → ((projℎ‘𝐺)‘𝐴) ∈ (𝐺 ∩ 𝐻)) | ||
Theorem | pjjsi 29963* | A sufficient condition for subspace join to be equal to subspace sum. (Contributed by NM, 29-May-2004.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ (∀𝑥 ∈ (𝐺 ∨ℋ 𝐻)((projℎ‘(⊥‘𝐺))‘𝑥) ∈ 𝐻 → (𝐺 ∨ℋ 𝐻) = (𝐺 +ℋ 𝐻)) | ||
Theorem | pjfni 29964 | Functionality of a projection. (Contributed by NM, 30-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (projℎ‘𝐻) Fn ℋ | ||
Theorem | pjrni 29965 | The range of a projection. Part of Theorem 26.2 of [Halmos] p. 44. (Contributed by NM, 30-Oct-1999.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ran (projℎ‘𝐻) = 𝐻 | ||
Theorem | pjfoi 29966 | A projection maps onto its subspace. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (projℎ‘𝐻): ℋ–onto→𝐻 | ||
Theorem | pjfi 29967 | The mapping of a projection. (Contributed by NM, 11-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (projℎ‘𝐻): ℋ⟶ ℋ | ||
Theorem | pjvi 29968 | The value of a projection in terms of components. (Contributed by NM, 28-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → ((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = 𝐴) | ||
Theorem | pjhfo 29969 | A projection maps onto its subspace. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻): ℋ–onto→𝐻) | ||
Theorem | pjrn 29970 | The range of a projection. Part of Theorem 26.2 of [Halmos] p. 44. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → ran (projℎ‘𝐻) = 𝐻) | ||
Theorem | pjhf 29971 | The mapping of a projection. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻): ℋ⟶ ℋ) | ||
Theorem | pjfn 29972 | Functionality of a projection. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) Fn ℋ) | ||
Theorem | pjsumi 29973 | The projection on a subspace sum is the sum of the projections. (Contributed by NM, 11-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → (𝐺 ⊆ (⊥‘𝐻) → ((projℎ‘(𝐺 +ℋ 𝐻))‘𝐴) = (((projℎ‘𝐺)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐴)))) | ||
Theorem | pj11i 29974 | One-to-one correspondence of projection and subspace. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((projℎ‘𝐺) = (projℎ‘𝐻) ↔ 𝐺 = 𝐻) | ||
Theorem | pjdsi 29975 | Vector decomposition into sum of projections on orthogonal subspaces. (Contributed by NM, 21-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ (𝐺 ∨ℋ 𝐻) ∧ 𝐺 ⊆ (⊥‘𝐻)) → 𝐴 = (((projℎ‘𝐺)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐴))) | ||
Theorem | pjds3i 29976 | Vector decomposition into sum of projections on orthogonal subspaces. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (((𝐴 ∈ ((𝐹 ∨ℋ 𝐺) ∨ℋ 𝐻) ∧ 𝐹 ⊆ (⊥‘𝐺)) ∧ (𝐹 ⊆ (⊥‘𝐻) ∧ 𝐺 ⊆ (⊥‘𝐻))) → 𝐴 = ((((projℎ‘𝐹)‘𝐴) +ℎ ((projℎ‘𝐺)‘𝐴)) +ℎ ((projℎ‘𝐻)‘𝐴))) | ||
Theorem | pj11 29977 | One-to-one correspondence of projection and subspace. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ) → ((projℎ‘𝐺) = (projℎ‘𝐻) ↔ 𝐺 = 𝐻)) | ||
Theorem | pjmfn 29978 | Functionality of the projection function. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ projℎ Fn Cℋ | ||
Theorem | pjmf1 29979 | The projector function maps one-to-one into the set of Hilbert space operators. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ projℎ: Cℋ –1-1→( ℋ ↑m ℋ) | ||
Theorem | pjoi0 29980 | The inner product of projections on orthogonal subspaces vanishes. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ (((𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) ∧ 𝐺 ⊆ (⊥‘𝐻)) → (((projℎ‘𝐺)‘𝐴) ·ih ((projℎ‘𝐻)‘𝐴)) = 0) | ||
Theorem | pjoi0i 29981 | The inner product of projections on orthogonal subspaces vanishes. (Contributed by NM, 1-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (𝐺 ⊆ (⊥‘𝐻) → (((projℎ‘𝐺)‘𝐴) ·ih ((projℎ‘𝐻)‘𝐴)) = 0) | ||
Theorem | pjopythi 29982 | Pythagorean theorem for projections on orthogonal subspaces. (Contributed by NM, 1-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (𝐺 ⊆ (⊥‘𝐻) → ((normℎ‘(((projℎ‘𝐺)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐴)))↑2) = (((normℎ‘((projℎ‘𝐺)‘𝐴))↑2) + ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2))) | ||
Theorem | pjopyth 29983 | Pythagorean theorem for projections on orthogonal subspaces. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐺 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (𝐻 ⊆ (⊥‘𝐺) → ((normℎ‘(((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘𝐺)‘𝐴)))↑2) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘𝐺)‘𝐴))↑2)))) | ||
Theorem | pjnormi 29984 | The norm of the projection is less than or equal to the norm. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘𝐴) | ||
Theorem | pjpythi 29985 | Pythagorean theorem for projections. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((normℎ‘𝐴)↑2) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2)) | ||
Theorem | pjneli 29986 | If a vector does not belong to subspace, the norm of its projection is less than its norm. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (¬ 𝐴 ∈ 𝐻 ↔ (normℎ‘((projℎ‘𝐻)‘𝐴)) < (normℎ‘𝐴)) | ||
Theorem | pjnorm 29987 | The norm of the projection is less than or equal to the norm. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘𝐴)) | ||
Theorem | pjpyth 29988 | Pythagorean theorem for projectors. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((normℎ‘𝐴)↑2) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2))) | ||
Theorem | pjnel 29989 | If a vector does not belong to subspace, the norm of its projection is less than its norm. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (¬ 𝐴 ∈ 𝐻 ↔ (normℎ‘((projℎ‘𝐻)‘𝐴)) < (normℎ‘𝐴))) | ||
Theorem | pjnorm2 29990 | A vector belongs to the subspace of a projection iff the norm of its projection equals its norm. This and pjch 29957 yield Theorem 26.3 of [Halmos] p. 44. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ 𝐻 ↔ (normℎ‘((projℎ‘𝐻)‘𝐴)) = (normℎ‘𝐴))) | ||
Theorem | mayete3i 29991 | Mayet's equation E3. Part of Theorem 4.1 of [Mayet3] p. 1223. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ & ⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝐴 ⊆ (⊥‘𝐶) & ⊢ 𝐴 ⊆ (⊥‘𝐹) & ⊢ 𝐶 ⊆ (⊥‘𝐹) & ⊢ 𝐴 ⊆ (⊥‘𝐵) & ⊢ 𝐶 ⊆ (⊥‘𝐷) & ⊢ 𝐹 ⊆ (⊥‘𝐺) & ⊢ 𝑋 = ((𝐴 ∨ℋ 𝐶) ∨ℋ 𝐹) & ⊢ 𝑌 = (((𝐴 ∨ℋ 𝐵) ∩ (𝐶 ∨ℋ 𝐷)) ∩ (𝐹 ∨ℋ 𝐺)) & ⊢ 𝑍 = ((𝐵 ∨ℋ 𝐷) ∨ℋ 𝐺) ⇒ ⊢ (𝑋 ∩ 𝑌) ⊆ 𝑍 | ||
Theorem | mayetes3i 29992 | Mayet's equation E^*3, derived from E3. Solution, for n = 3, to open problem in Remark (b) after Theorem 7.1 of [Mayet3] p. 1240. (Contributed by NM, 10-May-2009.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ & ⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝐴 ⊆ (⊥‘𝐶) & ⊢ 𝐴 ⊆ (⊥‘𝐹) & ⊢ 𝐶 ⊆ (⊥‘𝐹) & ⊢ 𝐴 ⊆ (⊥‘𝐵) & ⊢ 𝐶 ⊆ (⊥‘𝐷) & ⊢ 𝐹 ⊆ (⊥‘𝐺) & ⊢ 𝑅 ⊆ (⊥‘𝑋) & ⊢ 𝑋 = ((𝐴 ∨ℋ 𝐶) ∨ℋ 𝐹) & ⊢ 𝑌 = (((𝐴 ∨ℋ 𝐵) ∩ (𝐶 ∨ℋ 𝐷)) ∩ (𝐹 ∨ℋ 𝐺)) & ⊢ 𝑍 = ((𝐵 ∨ℋ 𝐷) ∨ℋ 𝐺) ⇒ ⊢ ((𝑋 ∨ℋ 𝑅) ∩ 𝑌) ⊆ (𝑍 ∨ℋ 𝑅) | ||
Note on operators. Unlike some authors, we use the term "operator" to mean any function from ℋ to ℋ. This is the definition of operator in [Hughes] p. 14, the definition of operator in [AkhiezerGlazman] p. 30, and the definition of operator in [Goldberg] p. 10. For Reed and Simon, an operator is linear (definition of operator in [ReedSimon] p. 2). For Halmos, an operator is bounded and linear (definition of operator in [Halmos] p. 35). For Kalmbach and Beran, an operator is continuous and linear (definition of operator in [Kalmbach] p. 353; definition of operator in [Beran] p. 99). Note that "bounded and linear" and "continuous and linear" are equivalent by lncnbd 30301. | ||
Definition | df-hosum 29993* | Define the sum of two Hilbert space operators. Definition of [Beran] p. 111. (Contributed by NM, 9-Nov-2000.) (New usage is discouraged.) |
⊢ +op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) +ℎ (𝑔‘𝑥)))) | ||
Definition | df-homul 29994* | Define the scalar product with a Hilbert space operator. Definition of [Beran] p. 111. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
⊢ ·op = (𝑓 ∈ ℂ, 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 ·ℎ (𝑔‘𝑥)))) | ||
Definition | df-hodif 29995* | Define the difference of two Hilbert space operators. Definition of [Beran] p. 111. (Contributed by NM, 9-Nov-2000.) (New usage is discouraged.) |
⊢ −op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) −ℎ (𝑔‘𝑥)))) | ||
Definition | df-hfsum 29996* | Define the sum of two Hilbert space functionals. Definition of [Beran] p. 111. Note that unlike some authors, we define a functional as any function from ℋ to ℂ, not just linear (or bounded linear) ones. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
⊢ +fn = (𝑓 ∈ (ℂ ↑m ℋ), 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥)))) | ||
Definition | df-hfmul 29997* | Define the scalar product with a Hilbert space functional. Definition of [Beran] p. 111. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
⊢ ·fn = (𝑓 ∈ ℂ, 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔‘𝑥)))) | ||
Theorem | hosmval 29998* | Value of the sum of two Hilbert space operators. (Contributed by NM, 9-Nov-2000.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) | ||
Theorem | hommval 29999* | Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) | ||
Theorem | hodmval 30000* | Value of the difference of two Hilbert space operators. (Contributed by NM, 9-Nov-2000.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |