HomeHome Metamath Proof Explorer
Theorem List (p. 300 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 29901-30000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremchdmj2 29901 De Morgan's law for join in a Hilbert lattice. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.)
((𝐴C𝐵C ) → (⊥‘((⊥‘𝐴) ∨ 𝐵)) = (𝐴 ∩ (⊥‘𝐵)))
 
Theoremchdmj3 29902 De Morgan's law for join in a Hilbert lattice. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.)
((𝐴C𝐵C ) → (⊥‘(𝐴 (⊥‘𝐵))) = ((⊥‘𝐴) ∩ 𝐵))
 
Theoremchdmj4 29903 De Morgan's law for join in a Hilbert lattice. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.)
((𝐴C𝐵C ) → (⊥‘((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴𝐵))
 
Theoremchjass 29904 Associative law for Hilbert lattice join. From definition of lattice in [Kalmbach] p. 14. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.)
((𝐴C𝐵C𝐶C ) → ((𝐴 𝐵) ∨ 𝐶) = (𝐴 (𝐵 𝐶)))
 
Theoremchj12 29905 A rearrangement of Hilbert lattice join. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
((𝐴C𝐵C𝐶C ) → (𝐴 (𝐵 𝐶)) = (𝐵 (𝐴 𝐶)))
 
Theoremchj4 29906 Rearrangement of the join of 4 Hilbert lattice elements. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
(((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) → ((𝐴 𝐵) ∨ (𝐶 𝐷)) = ((𝐴 𝐶) ∨ (𝐵 𝐷)))
 
Theoremledii 29907 An ortholattice is distributive in one ordering direction. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐶C       ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶))
 
Theoremlediri 29908 An ortholattice is distributive in one ordering direction. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐶C       ((𝐴𝐶) ∨ (𝐵𝐶)) ⊆ ((𝐴 𝐵) ∩ 𝐶)
 
Theoremlejdii 29909 An ortholattice is distributive in one ordering direction (join version). (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐶C       (𝐴 (𝐵𝐶)) ⊆ ((𝐴 𝐵) ∩ (𝐴 𝐶))
 
Theoremlejdiri 29910 An ortholattice is distributive in one ordering direction (join version). (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐶C       ((𝐴𝐵) ∨ 𝐶) ⊆ ((𝐴 𝐶) ∩ (𝐵 𝐶))
 
Theoremledi 29911 An ortholattice is distributive in one ordering direction. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.)
((𝐴C𝐵C𝐶C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
 
19.5.4  Span (cont.) and one-dimensional subspaces
 
Theoremspansn0 29912 The span of the singleton of the zero vector is the zero subspace. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.)
(span‘{0}) = 0
 
Theoremspan0 29913 The span of the empty set is the zero subspace. Remark 11.6.e of [Schechter] p. 276. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
(span‘∅) = 0
 
Theoremelspani 29914* Membership in the span of a subset of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
𝐵 ∈ V       (𝐴 ⊆ ℋ → (𝐵 ∈ (span‘𝐴) ↔ ∀𝑥S (𝐴𝑥𝐵𝑥)))
 
Theoremspanuni 29915 The span of a union is the subspace sum of spans. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
𝐴 ⊆ ℋ    &   𝐵 ⊆ ℋ       (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵))
 
Theoremspanun 29916 The span of a union is the subspace sum of spans. (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.)
((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵)))
 
Theoremsshhococi 29917 The join of two Hilbert space subsets (not necessarily closed subspaces) equals the join of their closures (double orthocomplements). (Contributed by NM, 1-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
𝐴 ⊆ ℋ    &   𝐵 ⊆ ℋ       (𝐴 𝐵) = ((⊥‘(⊥‘𝐴)) ∨ (⊥‘(⊥‘𝐵)))
 
Theoremhne0 29918 Hilbert space has a nonzero vector iff it is not trivial. (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.)
( ℋ ≠ 0 ↔ ∃𝑥 ∈ ℋ 𝑥 ≠ 0)
 
Theoremchsup0 29919 The supremum of the empty set. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.)
( ‘∅) = 0
 
Theoremh1deoi 29920 Membership in orthocomplement of 1-dimensional subspace. (Contributed by NM, 7-Jul-2001.) (New usage is discouraged.)
𝐵 ∈ ℋ       (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0))
 
Theoremh1dei 29921* Membership in 1-dimensional subspace. (Contributed by NM, 7-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
𝐵 ∈ ℋ       (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ ℋ ((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0)))
 
Theoremh1did 29922 A generating vector belongs to the 1-dimensional subspace it generates. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.)
(𝐴 ∈ ℋ → 𝐴 ∈ (⊥‘(⊥‘{𝐴})))
 
Theoremh1dn0 29923 A nonzero vector generates a (nonzero) 1-dimensional subspace. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.)
((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (⊥‘(⊥‘{𝐴})) ≠ 0)
 
Theoremh1de2i 29924 Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 17-Jul-2001.) (New usage is discouraged.)
𝐴 ∈ ℋ    &   𝐵 ∈ ℋ       (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
 
Theoremh1de2bi 29925 Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 19-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
𝐴 ∈ ℋ    &   𝐵 ∈ ℋ       (𝐵 ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
 
Theoremh1de2ctlem 29926* Lemma for h1de2ci 29927. (Contributed by NM, 19-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
𝐴 ∈ ℋ    &   𝐵 ∈ ℋ       (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
 
Theoremh1de2ci 29927* Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 21-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
𝐵 ∈ ℋ       (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
 
Theoremspansni 29928 The span of a singleton in Hilbert space equals its closure. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
𝐴 ∈ ℋ       (span‘{𝐴}) = (⊥‘(⊥‘{𝐴}))
 
Theoremelspansni 29929* Membership in the span of a singleton. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
𝐴 ∈ ℋ       (𝐵 ∈ (span‘{𝐴}) ↔ ∃𝑥 ∈ ℂ 𝐵 = (𝑥 · 𝐴))
 
Theoremspansn 29930 The span of a singleton in Hilbert space equals its closure. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.)
(𝐴 ∈ ℋ → (span‘{𝐴}) = (⊥‘(⊥‘{𝐴})))
 
Theoremspansnch 29931 The span of a Hilbert space singleton belongs to the Hilbert lattice. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
(𝐴 ∈ ℋ → (span‘{𝐴}) ∈ C )
 
Theoremspansnsh 29932 The span of a Hilbert space singleton is a subspace. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.)
(𝐴 ∈ ℋ → (span‘{𝐴}) ∈ S )
 
Theoremspansnchi 29933 The span of a singleton in Hilbert space is a closed subspace. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
𝐴 ∈ ℋ       (span‘{𝐴}) ∈ C
 
Theoremspansnid 29934 A vector belongs to the span of its singleton. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
(𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴}))
 
Theoremspansnmul 29935 A scalar product with a vector belongs to the span of its singleton. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (𝐵 · 𝐴) ∈ (span‘{𝐴}))
 
Theoremelspansncl 29936 A member of a span of a singleton is a vector. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.)
((𝐴 ∈ ℋ ∧ 𝐵 ∈ (span‘{𝐴})) → 𝐵 ∈ ℋ)
 
Theoremelspansn 29937* Membership in the span of a singleton. (Contributed by NM, 5-Jun-2004.) (New usage is discouraged.)
(𝐴 ∈ ℋ → (𝐵 ∈ (span‘{𝐴}) ↔ ∃𝑥 ∈ ℂ 𝐵 = (𝑥 · 𝐴)))
 
Theoremelspansn2 29938 Membership in the span of a singleton. All members are collinear with the generating vector. (Contributed by NM, 5-Jun-2004.) (New usage is discouraged.)
((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0) → (𝐴 ∈ (span‘{𝐵}) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
 
Theoremspansncol 29939 The singletons of collinear vectors have the same span. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.)
((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (span‘{(𝐵 · 𝐴)}) = (span‘{𝐴}))
 
Theoremspansneleqi 29940 Membership relation implied by equality of spans. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.)
(𝐴 ∈ ℋ → ((span‘{𝐴}) = (span‘{𝐵}) → 𝐴 ∈ (span‘{𝐵})))
 
Theoremspansneleq 29941 Membership relation that implies equality of spans. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.)
((𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝐴 ∈ (span‘{𝐵}) → (span‘{𝐴}) = (span‘{𝐵})))
 
Theoremspansnss 29942 The span of the singleton of an element of a subspace is included in the subspace. (Contributed by NM, 5-Jun-2004.) (New usage is discouraged.)
((𝐴S𝐵𝐴) → (span‘{𝐵}) ⊆ 𝐴)
 
Theoremelspansn3 29943 A member of the span of the singleton of a vector is a member of a subspace containing the vector. (Contributed by NM, 16-Dec-2004.) (New usage is discouraged.)
((𝐴S𝐵𝐴𝐶 ∈ (span‘{𝐵})) → 𝐶𝐴)
 
Theoremelspansn4 29944 A span membership condition implying two vectors belong to the same subspace. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.)
(((𝐴S𝐵 ∈ ℋ) ∧ (𝐶 ∈ (span‘{𝐵}) ∧ 𝐶 ≠ 0)) → (𝐵𝐴𝐶𝐴))
 
Theoremelspansn5 29945 A vector belonging to both a subspace and the span of the singleton of a vector not in it must be zero. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.)
(𝐴S → (((𝐵 ∈ ℋ ∧ ¬ 𝐵𝐴) ∧ (𝐶 ∈ (span‘{𝐵}) ∧ 𝐶𝐴)) → 𝐶 = 0))
 
Theoremspansnss2 29946 The span of the singleton of an element of a subspace is included in the subspace. (Contributed by NM, 16-Dec-2004.) (New usage is discouraged.)
((𝐴S𝐵 ∈ ℋ) → (𝐵𝐴 ↔ (span‘{𝐵}) ⊆ 𝐴))
 
Theoremnormcan 29947 Cancellation-type law that "extracts" a vector 𝐴 from its inner product with a proportional vector 𝐵. (Contributed by NM, 18-Mar-2006.) (New usage is discouraged.)
((𝐵 ∈ ℋ ∧ 𝐵 ≠ 0𝐴 ∈ (span‘{𝐵})) → (((𝐴 ·ih 𝐵) / ((norm𝐵)↑2)) · 𝐵) = 𝐴)
 
Theorempjspansn 29948 A projection on the span of a singleton. (The proof ws shortened by Mario Carneiro, 15-Dec-2013.) (Contributed by NM, 28-May-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) = (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
 
Theoremspansnpji 29949 A subset of Hilbert space is orthogonal to the span of the singleton of a projection onto its orthocomplement. (Contributed by NM, 4-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
𝐴 ⊆ ℋ    &   𝐵 ∈ ℋ       𝐴 ⊆ (⊥‘(span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
 
Theoremspanunsni 29950 The span of the union of a closed subspace with a singleton equals the span of its union with an orthogonal singleton. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
𝐴C    &   𝐵 ∈ ℋ       (span‘(𝐴 ∪ {𝐵})) = (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)}))
 
Theoremspanpr 29951 The span of a pair of vectors. (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.)
((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (span‘{(𝐴 + 𝐵)}) ⊆ (span‘{𝐴, 𝐵}))
 
Theoremh1datomi 29952 A 1-dimensional subspace is an atom. (Contributed by NM, 20-Jul-2001.) (New usage is discouraged.)
𝐴C    &   𝐵 ∈ ℋ       (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0))
 
Theoremh1datom 29953 A 1-dimensional subspace is an atom. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.)
((𝐴C𝐵 ∈ ℋ) → (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0)))
 
19.5.5  Commutes relation for Hilbert lattice elements
 
Definitiondf-cm 29954* Define the commutes relation (on the Hilbert lattice). Definition of commutes in [Kalmbach] p. 20, who uses the notation xCy for "x commutes with y." See cmbri 29961 for membership relation. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.)
𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥C𝑦C ) ∧ 𝑥 = ((𝑥𝑦) ∨ (𝑥 ∩ (⊥‘𝑦))))}
 
Theoremcmbr 29955 Binary relation expressing 𝐴 commutes with 𝐵. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.)
((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵)))))
 
Theorempjoml2i 29956 Variation of orthomodular law. Definition in [Kalmbach] p. 22. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴𝐵 → (𝐴 ((⊥‘𝐴) ∩ 𝐵)) = 𝐵)
 
Theorempjoml3i 29957 Variation of orthomodular law. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐵𝐴 → (𝐴 ∩ ((⊥‘𝐴) ∨ 𝐵)) = 𝐵)
 
Theorempjoml4i 29958 Variation of orthomodular law. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴 (𝐵 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵)))) = (𝐴 𝐵)
 
Theorempjoml5i 29959 The orthomodular law. Remark in [Kalmbach] p. 22. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴 ((⊥‘𝐴) ∩ (𝐴 𝐵))) = (𝐴 𝐵)
 
Theorempjoml6i 29960* An equivalent of the orthomodular law. Theorem 29.13(e) of [MaedaMaeda] p. 132. (Contributed by NM, 30-May-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴𝐵 → ∃𝑥C (𝐴 ⊆ (⊥‘𝑥) ∧ (𝐴 𝑥) = 𝐵))
 
Theoremcmbri 29961 Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵))))
 
Theoremcmcmlem 29962 Commutation is symmetric. Theorem 3.4 of [Beran] p. 45. (Contributed by NM, 3-Nov-2000.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴 𝐶 𝐵𝐵 𝐶 𝐴)
 
Theoremcmcmi 29963 Commutation is symmetric. Theorem 2(v) of [Kalmbach] p. 22. (Contributed by NM, 4-Nov-2000.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴 𝐶 𝐵𝐵 𝐶 𝐴)
 
Theoremcmcm2i 29964 Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (Contributed by NM, 4-Nov-2000.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴 𝐶 𝐵𝐴 𝐶 (⊥‘𝐵))
 
Theoremcmcm3i 29965 Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (Contributed by NM, 4-Nov-2000.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴 𝐶 𝐵 ↔ (⊥‘𝐴) 𝐶 𝐵)
 
Theoremcmcm4i 29966 Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴 𝐶 𝐵 ↔ (⊥‘𝐴) 𝐶 (⊥‘𝐵))
 
Theoremcmbr2i 29967 Alternate definition of the commutes relation. Remark in [Kalmbach] p. 23. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴 𝐶 𝐵𝐴 = ((𝐴 𝐵) ∩ (𝐴 (⊥‘𝐵))))
 
Theoremcmcmii 29968 Commutation is symmetric. Theorem 2(v) of [Kalmbach] p. 22. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐴 𝐶 𝐵       𝐵 𝐶 𝐴
 
Theoremcmcm2ii 29969 Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐴 𝐶 𝐵       𝐴 𝐶 (⊥‘𝐵)
 
Theoremcmcm3ii 29970 Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐴 𝐶 𝐵       (⊥‘𝐴) 𝐶 𝐵
 
Theoremcmbr3i 29971 Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴 𝐶 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ 𝐵)) = (𝐴𝐵))
 
Theoremcmbr4i 29972 Alternate definition for the commutes relation. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴 𝐶 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ 𝐵)) ⊆ 𝐵)
 
Theoremlecmi 29973 Comparable Hilbert lattice elements commute. Theorem 2.3(iii) of [Beran] p. 40. (Contributed by NM, 16-Jan-2005.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴𝐵𝐴 𝐶 𝐵)
 
Theoremlecmii 29974 Comparable Hilbert lattice elements commute. Theorem 2.3(iii) of [Beran] p. 40. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐴𝐵       𝐴 𝐶 𝐵
 
Theoremcmj1i 29975 A Hilbert lattice element commutes with its join. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C       𝐴 𝐶 (𝐴 𝐵)
 
Theoremcmj2i 29976 A Hilbert lattice element commutes with its join. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C       𝐵 𝐶 (𝐴 𝐵)
 
Theoremcmm1i 29977 A Hilbert lattice element commutes with its meet. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C       𝐴 𝐶 (𝐴𝐵)
 
Theoremcmm2i 29978 A Hilbert lattice element commutes with its meet. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C       𝐵 𝐶 (𝐴𝐵)
 
Theoremcmbr3 29979 Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.)
((𝐴C𝐵C ) → (𝐴 𝐶 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ 𝐵)) = (𝐴𝐵)))
 
Theoremcm0 29980 The zero Hilbert lattice element commutes with every element. (Contributed by NM, 16-Jun-2006.) (New usage is discouraged.)
(𝐴C → 0 𝐶 𝐴)
 
Theoremcmidi 29981 The commutes relation is reflexive. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.)
𝐴C       𝐴 𝐶 𝐴
 
Theorempjoml2 29982 Variation of orthomodular law. Definition in [Kalmbach] p. 22. (Contributed by NM, 13-Jun-2006.) (New usage is discouraged.)
((𝐴C𝐵C𝐴𝐵) → (𝐴 ((⊥‘𝐴) ∩ 𝐵)) = 𝐵)
 
Theorempjoml3 29983 Variation of orthomodular law. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.)
((𝐴C𝐵C ) → (𝐵𝐴 → (𝐴 ∩ ((⊥‘𝐴) ∨ 𝐵)) = 𝐵))
 
Theorempjoml5 29984 The orthomodular law. Remark in [Kalmbach] p. 22. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.)
((𝐴C𝐵C ) → (𝐴 ((⊥‘𝐴) ∩ (𝐴 𝐵))) = (𝐴 𝐵))
 
Theoremcmcm 29985 Commutation is symmetric. Theorem 2(v) of [Kalmbach] p. 22. (Contributed by NM, 13-Jun-2006.) (New usage is discouraged.)
((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐵 𝐶 𝐴))
 
Theoremcmcm3 29986 Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (Contributed by NM, 13-Jun-2006.) (New usage is discouraged.)
((𝐴C𝐵C ) → (𝐴 𝐶 𝐵 ↔ (⊥‘𝐴) 𝐶 𝐵))
 
Theoremcmcm2 29987 Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.)
((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 𝐶 (⊥‘𝐵)))
 
Theoremlecm 29988 Comparable Hilbert lattice elements commute. Theorem 2.3(iii) of [Beran] p. 40. (Contributed by NM, 13-Jun-2006.) (New usage is discouraged.)
((𝐴C𝐵C𝐴𝐵) → 𝐴 𝐶 𝐵)
 
19.5.6  Foulis-Holland theorem
 
Theoremfh1 29989 Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. First of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.)
(((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))
 
Theoremfh2 29990 Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Second of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.)
(((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))
 
Theoremcm2j 29991 A lattice element that commutes with two others also commutes with their join. Theorem 4.2 of [Beran] p. 49. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
(((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → 𝐴 𝐶 (𝐵 𝐶))
 
Theoremfh1i 29992 Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. First of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐶C    &   𝐴 𝐶 𝐵    &   𝐴 𝐶 𝐶       (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶))
 
Theoremfh2i 29993 Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Second of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐶C    &   𝐴 𝐶 𝐵    &   𝐴 𝐶 𝐶       (𝐵 ∩ (𝐴 𝐶)) = ((𝐵𝐴) ∨ (𝐵𝐶))
 
Theoremfh3i 29994 Variation of the Foulis-Holland Theorem. (Contributed by NM, 16-Jan-2005.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐶C    &   𝐴 𝐶 𝐵    &   𝐴 𝐶 𝐶       (𝐴 (𝐵𝐶)) = ((𝐴 𝐵) ∩ (𝐴 𝐶))
 
Theoremfh4i 29995 Variation of the Foulis-Holland Theorem. (Contributed by NM, 16-Jan-2005.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐶C    &   𝐴 𝐶 𝐵    &   𝐴 𝐶 𝐶       (𝐵 (𝐴𝐶)) = ((𝐵 𝐴) ∩ (𝐵 𝐶))
 
Theoremcm2ji 29996 A lattice element that commutes with two others also commutes with their join. Theorem 4.2 of [Beran] p. 49. (Contributed by NM, 11-May-2009.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐶C    &   𝐴 𝐶 𝐵    &   𝐴 𝐶 𝐶       𝐴 𝐶 (𝐵 𝐶)
 
Theoremcm2mi 29997 A lattice element that commutes with two others also commutes with their meet. Theorem 4.2 of [Beran] p. 49. (Contributed by NM, 11-May-2009.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐶C    &   𝐴 𝐶 𝐵    &   𝐴 𝐶 𝐶       𝐴 𝐶 (𝐵𝐶)
 
19.5.7  Quantum Logic Explorer axioms
 
Theoremqlax1i 29998 One of the equations showing C is an ortholattice. (This corresponds to axiom "ax-1" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
𝐴C       𝐴 = (⊥‘(⊥‘𝐴))
 
Theoremqlax2i 29999 One of the equations showing C is an ortholattice. (This corresponds to axiom "ax-2" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴 𝐵) = (𝐵 𝐴)
 
Theoremqlax3i 30000 One of the equations showing C is an ortholattice. (This corresponds to axiom "ax-3" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐶C       ((𝐴 𝐵) ∨ 𝐶) = (𝐴 (𝐵 𝐶))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >