HomeHome Metamath Proof Explorer
Theorem List (p. 300 of 437)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28347)
  Hilbert Space Explorer  Hilbert Space Explorer
(28348-29872)
  Users' Mathboxes  Users' Mathboxes
(29873-43657)
 

Theorem List for Metamath Proof Explorer - 29901-30000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
20.3.3  General Set Theory
 
20.3.3.1  Class abstractions (a.k.a. class builders)
 
Theoremdifrab2 29901 Difference of two restricted class abstractions. Compare with difrab 4127. (Contributed by Thierry Arnoux, 3-Jan-2022.)
({𝑥𝐴𝜑} ∖ {𝑥𝐵𝜑}) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
 
TheoremrabexgfGS 29902 Separation Scheme in terms of a restricted class abstraction. To be removed in profit of Glauco's equivalent version. (Contributed by Thierry Arnoux, 11-May-2017.)
𝑥𝐴       (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
 
Theoremrabsnel 29903* Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by Thierry Arnoux, 15-Sep-2018.)
𝐵 ∈ V       ({𝑥𝐴𝜑} = {𝐵} → 𝐵𝐴)
 
Theoremrabeqsnd 29904* Conditions for a restricted class abstraction to be a singleton, in deduction form. (Contributed by Thierry Arnoux, 2-Dec-2021.)
(𝑥 = 𝐵 → (𝜓𝜒))    &   (𝜑𝐵𝐴)    &   (𝜑𝜒)    &   (((𝜑𝑥𝐴) ∧ 𝜓) → 𝑥 = 𝐵)       (𝜑 → {𝑥𝐴𝜓} = {𝐵})
 
Theoremforesf1o 29905* From a surjective function, *choose* a subset of the domain, such that the restricted function is bijective. (Contributed by Thierry Arnoux, 27-Jan-2020.)
((𝐴𝑉𝐹:𝐴onto𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto𝐵)
 
Theoremrabfodom 29906* Domination relation for restricted abstract class builders, based on a surjective function. (Contributed by Thierry Arnoux, 27-Jan-2020.)
((𝜑𝑥𝐴𝑦 = (𝐹𝑥)) → (𝜒𝜓))    &   (𝜑𝐴𝑉)    &   (𝜑𝐹:𝐴onto𝐵)       (𝜑 → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
 
20.3.3.2  Image Sets
 
Theoremabrexdomjm 29907* An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑦𝐴 → ∃*𝑥𝜑)       (𝐴𝑉 → {𝑥 ∣ ∃𝑦𝐴 𝜑} ≼ 𝐴)
 
Theoremabrexdom2jm 29908* An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐴𝑉 → {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ≼ 𝐴)
 
Theoremabrexexd 29909* Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017.)
𝑥𝐴    &   (𝜑𝐴 ∈ V)       (𝜑 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
 
Theoremelabreximd 29910* Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016.)
𝑥𝜑    &   𝑥𝜒    &   (𝐴 = 𝐵 → (𝜒𝜓))    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥𝐶) → 𝜓)       ((𝜑𝐴 ∈ {𝑦 ∣ ∃𝑥𝐶 𝑦 = 𝐵}) → 𝜒)
 
Theoremelabreximdv 29911* Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016.)
(𝐴 = 𝐵 → (𝜒𝜓))    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥𝐶) → 𝜓)       ((𝜑𝐴 ∈ {𝑦 ∣ ∃𝑥𝐶 𝑦 = 𝐵}) → 𝜒)
 
Theoremabrexss 29912* A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017.)
𝑥𝐶       (∀𝑥𝐴 𝐵𝐶 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶)
 
20.3.3.3  Set relations and operations - misc additions
 
Theoremrabss3d 29913* Subclass law for restricted abstraction. (Contributed by Thierry Arnoux, 25-Sep-2017.)
((𝜑 ∧ (𝑥𝐴𝜓)) → 𝑥𝐵)       (𝜑 → {𝑥𝐴𝜓} ⊆ {𝑥𝐵𝜓})
 
Theoreminin 29914 Intersection with an intersection. (Contributed by Thierry Arnoux, 27-Dec-2016.)
(𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)
 
Theoreminindif 29915 See inundif 4270. (Contributed by Thierry Arnoux, 13-Sep-2017.)
((𝐴𝐶) ∩ (𝐴𝐶)) = ∅
 
Theoremdifininv 29916 Condition for the intersections of two sets with a given set to be equal. (Contributed by Thierry Arnoux, 28-Dec-2021.)
((((𝐴𝐶) ∩ 𝐵) = ∅ ∧ ((𝐶𝐴) ∩ 𝐵) = ∅) → (𝐴𝐵) = (𝐶𝐵))
 
Theoremdifeq 29917 Rewriting an equation with class difference, without using quantifiers. (Contributed by Thierry Arnoux, 24-Sep-2017.)
((𝐴𝐵) = 𝐶 ↔ ((𝐶𝐵) = ∅ ∧ (𝐶𝐵) = (𝐴𝐵)))
 
Theoremindifundif 29918 A remarkable equation with sets. (Contributed by Thierry Arnoux, 18-May-2020.)
(((𝐴𝐵) ∖ 𝐶) ∪ (𝐴𝐵)) = (𝐴 ∖ (𝐵𝐶))
 
Theoremelpwincl1 29919 Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.)
(𝜑𝐴 ∈ 𝒫 𝐶)       (𝜑 → (𝐴𝐵) ∈ 𝒫 𝐶)
 
Theoremelpwdifcl 29920 Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.)
(𝜑𝐴 ∈ 𝒫 𝐶)       (𝜑 → (𝐴𝐵) ∈ 𝒫 𝐶)
 
Theoremelpwiuncl 29921* Closure of indexed union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 27-May-2020.)
(𝜑𝐴𝑉)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ 𝒫 𝐶)       (𝜑 𝑘𝐴 𝐵 ∈ 𝒫 𝐶)
 
20.3.3.4  Unordered pairs
 
Theoremeqsnd 29922* Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023.)
((𝜑𝑥𝐴) → 𝑥 = 𝐵)    &   (𝜑𝐵𝐴)       (𝜑𝐴 = {𝐵})
 
Theoremelpreq 29923 Equality wihin a pair. (Contributed by Thierry Arnoux, 23-Aug-2017.)
(𝜑𝑋 ∈ {𝐴, 𝐵})    &   (𝜑𝑌 ∈ {𝐴, 𝐵})    &   (𝜑 → (𝑋 = 𝐴𝑌 = 𝐴))       (𝜑𝑋 = 𝑌)
 
20.3.3.5  Conditional operator - misc additions
 
Theoremifeqeqx 29924* An equality theorem tailored for ballotlemsf1o 31174. (Contributed by Thierry Arnoux, 14-Apr-2017.)
(𝑥 = 𝑋𝐴 = 𝐶)    &   (𝑥 = 𝑌𝐵 = 𝑎)    &   (𝑥 = 𝑋 → (𝜒𝜃))    &   (𝑥 = 𝑌 → (𝜒𝜓))    &   (𝜑𝑎 = 𝐶)    &   ((𝜑𝜓) → 𝜃)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋𝑊)       ((𝜑𝑥 = if(𝜓, 𝑋, 𝑌)) → 𝑎 = if(𝜒, 𝐴, 𝐵))
 
Theoremelimifd 29925 Elimination of a conditional operator contained in a wff 𝜒. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(𝜑 → (if(𝜓, 𝐴, 𝐵) = 𝐴 → (𝜒𝜃)))    &   (𝜑 → (if(𝜓, 𝐴, 𝐵) = 𝐵 → (𝜒𝜏)))       (𝜑 → (𝜒 ↔ ((𝜓𝜃) ∨ (¬ 𝜓𝜏))))
 
Theoremelim2if 29926 Elimination of two conditional operators contained in a wff 𝜒. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐴 → (𝜒𝜃))    &   (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐵 → (𝜒𝜏))    &   (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐶 → (𝜒𝜂))       (𝜒 ↔ ((𝜑𝜃) ∨ (¬ 𝜑 ∧ ((𝜓𝜏) ∨ (¬ 𝜓𝜂)))))
 
Theoremelim2ifim 29927 Elimination of two conditional operators for an implication. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐴 → (𝜒𝜃))    &   (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐵 → (𝜒𝜏))    &   (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐶 → (𝜒𝜂))    &   (𝜑𝜃)    &   ((¬ 𝜑𝜓) → 𝜏)    &   ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜂)       𝜒
 
Theoremifeq3da 29928 Given an expression 𝐶 containing if(𝜓, 𝐸, 𝐹), substitute (hypotheses .1 and .2) and evaluate (hypotheses .3 and .4) it for both cases at the same time. (Contributed by Thierry Arnoux, 13-Dec-2021.)
(if(𝜓, 𝐸, 𝐹) = 𝐸𝐶 = 𝐺)    &   (if(𝜓, 𝐸, 𝐹) = 𝐹𝐶 = 𝐻)    &   (𝜑𝐺 = 𝐴)    &   (𝜑𝐻 = 𝐵)       (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶)
 
20.3.3.6  Set union
 
Theoremuniinn0 29929* Sufficient and necessary condition for a union to intersect with a given set. (Contributed by Thierry Arnoux, 27-Jan-2020.)
(( 𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 (𝑥𝐵) ≠ ∅)
 
Theoremuniin1 29930* Union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Thierry Arnoux, 21-Jun-2020.)
𝑥𝐴 (𝑥𝐵) = ( 𝐴𝐵)
 
Theoremuniin2 29931* Union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Thierry Arnoux, 21-Jun-2020.)
𝑥𝐵 (𝐴𝑥) = (𝐴 𝐵)
 
Theoremdifuncomp 29932 Express a class difference using unions and class complements. (Contributed by Thierry Arnoux, 21-Jun-2020.)
(𝐴𝐶 → (𝐴𝐵) = (𝐶 ∖ ((𝐶𝐴) ∪ 𝐵)))
 
Theorempwuniss 29933 Condition for a class union to be a subset. (Contributed by Thierry Arnoux, 21-Jun-2020.)
(𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
 
Theoremelpwunicl 29934 Closure of a set union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 21-Jun-2020.)
(𝜑𝐵𝑉)    &   (𝜑𝐴 ∈ 𝒫 𝒫 𝐵)       (𝜑 𝐴 ∈ 𝒫 𝐵)
 
20.3.3.7  Indexed union - misc additions
 
Theoremcbviunf 29935* Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremiuneq12daf 29936 Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 13-Mar-2017.)
𝑥𝜑    &   𝑥𝐴    &   𝑥𝐵    &   (𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐴) → 𝐶 = 𝐷)       (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
 
Theoremiunin1f 29937 Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 4806 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.) (Revised by Thierry Arnoux, 2-May-2020.)
𝑥𝐶        𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵𝐶)
 
Theoremssiun3 29938* Subset equivalence for an indexed union. (Contributed by Thierry Arnoux, 17-Oct-2016.)
(∀𝑦𝐶𝑥𝐴 𝑦𝐵𝐶 𝑥𝐴 𝐵)
 
Theoremiinssiun 29939* An indexed intersection is a subset of the corresponding indexed union. (Contributed by Thierry Arnoux, 31-Dec-2021.)
(𝐴 ≠ ∅ → 𝑥𝐴 𝐵 𝑥𝐴 𝐵)
 
Theoremssiun2sf 29940 Subset relationship for an indexed union. (Contributed by Thierry Arnoux, 31-Dec-2016.)
𝑥𝐴    &   𝑥𝐶    &   𝑥𝐷    &   (𝑥 = 𝐶𝐵 = 𝐷)       (𝐶𝐴𝐷 𝑥𝐴 𝐵)
 
Theoremiuninc 29941* The union of an increasing collection of sets is its last element. (Contributed by Thierry Arnoux, 22-Jan-2017.)
(𝜑𝐹 Fn ℕ)    &   ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))       ((𝜑𝑖 ∈ ℕ) → 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖))
 
Theoremiundifdifd 29942* The intersection of a set is the complement of the union of the complements. (Contributed by Thierry Arnoux, 19-Dec-2016.)
(𝐴 ⊆ 𝒫 𝑂 → (𝐴 ≠ ∅ → 𝐴 = (𝑂 𝑥𝐴 (𝑂𝑥))))
 
Theoremiundifdif 29943* The intersection of a set is the complement of the union of the complements. TODO: shorten using iundifdifd 29942. (Contributed by Thierry Arnoux, 4-Sep-2016.)
𝑂 ∈ V    &   𝐴 ⊆ 𝒫 𝑂       (𝐴 ≠ ∅ → 𝐴 = (𝑂 𝑥𝐴 (𝑂𝑥)))
 
Theoremiunrdx 29944* Re-index an indexed union. (Contributed by Thierry Arnoux, 6-Apr-2017.)
(𝜑𝐹:𝐴onto𝐶)    &   ((𝜑𝑦 = (𝐹𝑥)) → 𝐷 = 𝐵)       (𝜑 𝑥𝐴 𝐵 = 𝑦𝐶 𝐷)
 
Theoremiunpreima 29945* Preimage of an indexed union. (Contributed by Thierry Arnoux, 27-Mar-2018.)
(Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
 
Theoremiunrnmptss 29946* A subset relation for an indexed union over the range of function expressed as a mapping. (Contributed by Thierry Arnoux, 27-Mar-2018.)
(𝑦 = 𝐵𝐶 = 𝐷)    &   ((𝜑𝑥𝐴) → 𝐵𝑉)       (𝜑 𝑦 ∈ ran (𝑥𝐴𝐵)𝐶 𝑥𝐴 𝐷)
 
20.3.3.8  Disjointness - misc additions
 
Theoremdisjnf 29947* In case 𝑥 is not free in 𝐵, disjointness is not so interesting since it reduces to cases where 𝐴 is a singleton. (Google Groups discussion with Peter Mazsa.) (Contributed by Thierry Arnoux, 26-Jul-2018.)
(Disj 𝑥𝐴 𝐵 ↔ (𝐵 = ∅ ∨ ∃*𝑥 𝑥𝐴))
 
Theoremcbvdisjf 29948* Change bound variables in a disjoint collection. (Contributed by Thierry Arnoux, 6-Apr-2017.)
𝑥𝐴    &   𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)       (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
 
Theoremdisjss1f 29949 A subset of a disjoint collection is disjoint. (Contributed by Thierry Arnoux, 6-Apr-2017.)
𝑥𝐴    &   𝑥𝐵       (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
 
Theoremdisjeq1f 29950 Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
 
Theoremdisjdifprg 29951* A trivial partition into a subset and its complement. (Contributed by Thierry Arnoux, 25-Dec-2016.)
((𝐴𝑉𝐵𝑊) → Disj 𝑥 ∈ {(𝐵𝐴), 𝐴}𝑥)
 
Theoremdisjdifprg2 29952* A trivial partition of a set into its difference and intersection with another set. (Contributed by Thierry Arnoux, 25-Dec-2016.)
(𝐴𝑉Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥)
 
Theoremdisji2f 29953* Property of a disjoint collection: if 𝐵(𝑥) = 𝐶 and 𝐵(𝑌) = 𝐷, and 𝑥𝑌, then 𝐵 and 𝐶 are disjoint. (Contributed by Thierry Arnoux, 30-Dec-2016.)
𝑥𝐶    &   (𝑥 = 𝑌𝐵 = 𝐶)       ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴) ∧ 𝑥𝑌) → (𝐵𝐶) = ∅)
 
Theoremdisjif 29954* Property of a disjoint collection: if 𝐵(𝑥) and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑥 = 𝑌. (Contributed by Thierry Arnoux, 30-Dec-2016.)
𝑥𝐶    &   (𝑥 = 𝑌𝐵 = 𝐶)       ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴) ∧ (𝑍𝐵𝑍𝐶)) → 𝑥 = 𝑌)
 
Theoremdisjorf 29955* Two ways to say that a collection 𝐵(𝑖) for 𝑖𝐴 is disjoint. (Contributed by Thierry Arnoux, 8-Mar-2017.)
𝑖𝐴    &   𝑗𝐴    &   (𝑖 = 𝑗𝐵 = 𝐶)       (Disj 𝑖𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅))
 
Theoremdisjorsf 29956* Two ways to say that a collection 𝐵(𝑖) for 𝑖𝐴 is disjoint. (Contributed by Thierry Arnoux, 8-Mar-2017.)
𝑥𝐴       (Disj 𝑥𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
 
Theoremdisjif2 29957* Property of a disjoint collection: if 𝐵(𝑥) and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑥 = 𝑌. (Contributed by Thierry Arnoux, 6-Apr-2017.)
𝑥𝐴    &   𝑥𝐶    &   (𝑥 = 𝑌𝐵 = 𝐶)       ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴) ∧ (𝑍𝐵𝑍𝐶)) → 𝑥 = 𝑌)
 
Theoremdisjabrex 29958* Rewriting a disjoint collection into a partition of its image set. (Contributed by Thierry Arnoux, 30-Dec-2016.)
(Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
 
Theoremdisjabrexf 29959* Rewriting a disjoint collection into a partition of its image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) (Revised by Thierry Arnoux, 9-Mar-2017.)
𝑥𝐴       (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
 
Theoremdisjpreima 29960* A preimage of a disjoint set is disjoint. (Contributed by Thierry Arnoux, 7-Feb-2017.)
((Fun 𝐹Disj 𝑥𝐴 𝐵) → Disj 𝑥𝐴 (𝐹𝐵))
 
Theoremdisjrnmpt 29961* Rewriting a disjoint collection using the range of a mapping. (Contributed by Thierry Arnoux, 27-May-2020.)
(Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦)
 
Theoremdisjin 29962 If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 14-Feb-2017.)
(Disj 𝑥𝐵 𝐶Disj 𝑥𝐵 (𝐶𝐴))
 
Theoremdisjin2 29963 If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 21-Jun-2020.)
(Disj 𝑥𝐵 𝐶Disj 𝑥𝐵 (𝐴𝐶))
 
Theoremdisjxpin 29964* Derive a disjunction over a Cartesian product from the disjunctions over its first and second elements. (Contributed by Thierry Arnoux, 9-Mar-2018.)
(𝑥 = (1st𝑝) → 𝐶 = 𝐸)    &   (𝑦 = (2nd𝑝) → 𝐷 = 𝐹)    &   (𝜑Disj 𝑥𝐴 𝐶)    &   (𝜑Disj 𝑦𝐵 𝐷)       (𝜑Disj 𝑝 ∈ (𝐴 × 𝐵)(𝐸𝐹))
 
Theoremiundisjf 29965* Rewrite a countable union as a disjoint union. Cf. iundisj 23752. (Contributed by Thierry Arnoux, 31-Dec-2016.)
𝑘𝐴    &   𝑛𝐵    &   (𝑛 = 𝑘𝐴 = 𝐵)        𝑛 ∈ ℕ 𝐴 = 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
 
Theoremiundisj2f 29966* A disjoint union is disjoint. Cf. iundisj2 23753. (Contributed by Thierry Arnoux, 30-Dec-2016.)
𝑘𝐴    &   𝑛𝐵    &   (𝑛 = 𝑘𝐴 = 𝐵)       Disj 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
 
Theoremdisjrdx 29967* Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017.)
(𝜑𝐹:𝐴1-1-onto𝐶)    &   ((𝜑𝑦 = (𝐹𝑥)) → 𝐷 = 𝐵)       (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑦𝐶 𝐷))
 
Theoremdisjex 29968* Two ways to say that two classes are disjoint (or equal). (Contributed by Thierry Arnoux, 4-Oct-2016.)
((∃𝑧(𝑧𝐴𝑧𝐵) → 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅))
 
Theoremdisjexc 29969* A variant of disjex 29968, applicable for more generic families. (Contributed by Thierry Arnoux, 4-Oct-2016.)
(𝑥 = 𝑦𝐴 = 𝐵)       ((∃𝑧(𝑧𝐴𝑧𝐵) → 𝑥 = 𝑦) → (𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅))
 
Theoremdisjunsn 29970* Append an element to a disjoint collection. Similar to ralunsn 4657, gsumunsn 18745, etc. (Contributed by Thierry Arnoux, 28-Mar-2018.)
(𝑥 = 𝑀𝐵 = 𝐶)       ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ (Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴 𝐵𝐶) = ∅)))
 
Theoremdisjun0 29971* Adding the empty element preserves disjointness. (Contributed by Thierry Arnoux, 30-May-2020.)
(Disj 𝑥𝐴 𝑥Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥)
 
Theoremdisjiunel 29972* A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.)
(𝜑Disj 𝑥𝐴 𝐵)    &   (𝑥 = 𝑌𝐵 = 𝐷)    &   (𝜑𝐸𝐴)    &   (𝜑𝑌 ∈ (𝐴𝐸))       (𝜑 → ( 𝑥𝐸 𝐵𝐷) = ∅)
 
Theoremdisjuniel 29973* A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.)
(𝜑Disj 𝑥𝐴 𝑥)    &   (𝜑𝐵𝐴)    &   (𝜑𝐶 ∈ (𝐴𝐵))       (𝜑 → ( 𝐵𝐶) = ∅)
 
20.3.4  Relations and Functions
 
20.3.4.1  Relations - misc additions
 
Theoremxpdisjres 29974 Restriction of a constant function (or other Cartesian product) outside of its domain. (Contributed by Thierry Arnoux, 25-Jan-2017.)
((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) ↾ 𝐶) = ∅)
 
Theoremopeldifid 29975 Ordered pair elementhood outside of the diagonal. (Contributed by Thierry Arnoux, 1-Jan-2020.)
(Rel 𝐴 → (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ I ) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴𝑋𝑌)))
 
Theoremdifres 29976 Case when class difference in unaffected by restriction. (Contributed by Thierry Arnoux, 1-Jan-2020.)
(𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶𝐵)) = (𝐴𝐶))
 
Theoremimadifxp 29977 Image of the difference with a Cartesian product. (Contributed by Thierry Arnoux, 13-Dec-2017.)
(𝐶𝐴 → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅𝐶) ∖ 𝐵))
 
Theoremrelfi 29978 A relation (set) is finite if and only if both its domain and range are finite. (Contributed by Thierry Arnoux, 27-Aug-2017.)
(Rel 𝐴 → (𝐴 ∈ Fin ↔ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin)))
 
Theoremfunresdm1 29979 Restriction of a disjoint union to the domain of the first term. (Contributed by Thierry Arnoux, 9-Dec-2021.)
((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴𝐵) ↾ dom 𝐴) = 𝐴)
 
Theoremfnunres1 29980 Restriction of a disjoint union to the domain of the first function. (Contributed by Thierry Arnoux, 9-Dec-2021.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐴) = 𝐹)
 
Theoremfcoinver 29981 Build an equivalence relation from a function. Two values are equivalent if they have the same image by the function. See also fcoinvbr 29982. (Contributed by Thierry Arnoux, 3-Jan-2020.)
(𝐹 Fn 𝑋 → (𝐹𝐹) Er 𝑋)
 
Theoremfcoinvbr 29982 Binary relation for the equivalence relation from fcoinver 29981. (Contributed by Thierry Arnoux, 3-Jan-2020.)
= (𝐹𝐹)       ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
 
Theorembrabgaf 29983* The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) (Revised by Thierry Arnoux, 17-May-2020.)
𝑥𝜓    &   ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}       ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝜓))
 
Theorembrelg 29984 Two things in a binary relation belong to the relation's domain. (Contributed by Thierry Arnoux, 29-Aug-2017.)
((𝑅 ⊆ (𝐶 × 𝐷) ∧ 𝐴𝑅𝐵) → (𝐴𝐶𝐵𝐷))
 
Theorembr8d 29985* Substitution for an eight-place predicate. (Contributed by Scott Fenton, 26-Sep-2013.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by Thierry Arnoux, 21-Mar-2019.)
(𝑎 = 𝐴 → (𝜓𝜒))    &   (𝑏 = 𝐵 → (𝜒𝜃))    &   (𝑐 = 𝐶 → (𝜃𝜏))    &   (𝑑 = 𝐷 → (𝜏𝜂))    &   (𝑒 = 𝐸 → (𝜂𝜁))    &   (𝑓 = 𝐹 → (𝜁𝜎))    &   (𝑔 = 𝐺 → (𝜎𝜌))    &   ( = 𝐻 → (𝜌𝜇))    &   (𝜑𝑅 = {⟨𝑝, 𝑞⟩ ∣ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃𝑔𝑃𝑃 (𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑒, 𝑓⟩, ⟨𝑔, ⟩⟩ ∧ 𝜓)})    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑𝐺𝑃)    &   (𝜑𝐻𝑃)       (𝜑 → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩𝑅⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ 𝜇))
 
Theoremopabdm 29986* Domain of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017.)
(𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → dom 𝑅 = {𝑥 ∣ ∃𝑦𝜑})
 
Theoremopabrn 29987* Range of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017.)
(𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑})
 
Theoremopabssi 29988* Sufficient condition for a collection of ordered pairs to be a subclass of a relation. (Contributed by Peter Mazsa, 21-Oct-2019.) (Revised by Thierry Arnoux, 18-Feb-2022.)
(𝜑 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)       {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ 𝐴
 
Theoremopabid2ss 29989* One direction of opabid2 5497 which holds without a Rel 𝐴 requirement. (Contributed by Thierry Arnoux, 18-Feb-2022.)
{⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ⊆ 𝐴
 
Theoremssrelf 29990* A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Thierry Arnoux, 6-Nov-2017.)
𝑥𝜑    &   𝑦𝜑    &   𝑥𝐴    &   𝑦𝐴    &   𝑥𝐵    &   𝑦𝐵       (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
 
Theoremeqrelrd2 29991* A version of eqrelrdv2 5466 with explicit non-free declarations. (Contributed by Thierry Arnoux, 28-Aug-2017.)
𝑥𝜑    &   𝑦𝜑    &   𝑥𝐴    &   𝑦𝐴    &   𝑥𝐵    &   𝑦𝐵    &   (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))       (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵)
 
Theoremerbr3b 29992 Biconditional for equivalent elements. (Contributed by Thierry Arnoux, 6-Jan-2020.)
((𝑅 Er 𝑋𝐴𝑅𝐵) → (𝐴𝑅𝐶𝐵𝑅𝐶))
 
Theoremiunsnima 29993 Image of a singleton by an indexed union involving that singleton. (Contributed by Thierry Arnoux, 10-Apr-2020.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥𝐴) → 𝐵𝑊)       ((𝜑𝑥𝐴) → ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑥}) = 𝐵)
 
20.3.4.2  Functions - misc additions
 
Theoremac6sf2 29994* Alternate version of ac6 9637 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008.) (Revised by Thierry Arnoux, 17-May-2020.)
𝑦𝐵    &   𝑦𝜓    &   𝐴 ∈ V    &   (𝑦 = (𝑓𝑥) → (𝜑𝜓))       (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
 
Theoremfnresin 29995 Restriction of a function with a subclass of its domain. (Contributed by Thierry Arnoux, 10-Oct-2017.)
(𝐹 Fn 𝐴 → (𝐹𝐵) Fn (𝐴𝐵))
 
Theoremf1o3d 29996* Describe an implicit one-to-one onto function. (Contributed by Thierry Arnoux, 23-Apr-2017.)
(𝜑𝐹 = (𝑥𝐴𝐶))    &   ((𝜑𝑥𝐴) → 𝐶𝐵)    &   ((𝜑𝑦𝐵) → 𝐷𝐴)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))       (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
 
Theoremrinvf1o 29997 Sufficient conditions for the restriction of an involution to be a bijection. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Fun 𝐹    &   𝐹 = 𝐹    &   (𝐹𝐴) ⊆ 𝐵    &   (𝐹𝐵) ⊆ 𝐴    &   𝐴 ⊆ dom 𝐹    &   𝐵 ⊆ dom 𝐹       (𝐹𝐴):𝐴1-1-onto𝐵
 
Theoremfresf1o 29998 Conditions for a restriction to be a one-to-one onto function. (Contributed by Thierry Arnoux, 7-Dec-2016.)
((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1-onto𝐶)
 
Theoremfmptco1f1o 29999* The action of composing (to the right) with a bijection is itself a bijection of functions. (Contributed by Thierry Arnoux, 3-Jan-2021.)
𝐴 = (𝑅𝑚 𝐸)    &   𝐵 = (𝑅𝑚 𝐷)    &   𝐹 = (𝑓𝐴 ↦ (𝑓𝑇))    &   (𝜑𝐷𝑉)    &   (𝜑𝐸𝑊)    &   (𝜑𝑅𝑋)    &   (𝜑𝑇:𝐷1-1-onto𝐸)       (𝜑𝐹:𝐴1-1-onto𝐵)
 
Theoremf1mptrn 30000* Express injection for a mapping operation. (Contributed by Thierry Arnoux, 3-May-2020.)
((𝜑𝑥𝐴) → 𝐵𝐶)    &   ((𝜑𝑦𝐶) → ∃!𝑥𝐴 𝑦 = 𝐵)       (𝜑 → Fun (𝑥𝐴𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43657
  Copyright terms: Public domain < Previous  Next >