Detailed syntax breakdown of Definition df-disoa
| Step | Hyp | Ref
| Expression |
| 1 | | cdia 40971 |
. 2
class
DIsoA |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | | vw |
. . . 4
setvar 𝑤 |
| 5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
| 6 | | clh 39927 |
. . . . 5
class
LHyp |
| 7 | 5, 6 | cfv 6542 |
. . . 4
class
(LHyp‘𝑘) |
| 8 | | vx |
. . . . 5
setvar 𝑥 |
| 9 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 10 | 9 | cv 1538 |
. . . . . . 7
class 𝑦 |
| 11 | 4 | cv 1538 |
. . . . . . 7
class 𝑤 |
| 12 | | cple 17284 |
. . . . . . . 8
class
le |
| 13 | 5, 12 | cfv 6542 |
. . . . . . 7
class
(le‘𝑘) |
| 14 | 10, 11, 13 | wbr 5125 |
. . . . . 6
wff 𝑦(le‘𝑘)𝑤 |
| 15 | | cbs 17230 |
. . . . . . 7
class
Base |
| 16 | 5, 15 | cfv 6542 |
. . . . . 6
class
(Base‘𝑘) |
| 17 | 14, 9, 16 | crab 3420 |
. . . . 5
class {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} |
| 18 | | vf |
. . . . . . . . 9
setvar 𝑓 |
| 19 | 18 | cv 1538 |
. . . . . . . 8
class 𝑓 |
| 20 | | ctrl 40101 |
. . . . . . . . . 10
class
trL |
| 21 | 5, 20 | cfv 6542 |
. . . . . . . . 9
class
(trL‘𝑘) |
| 22 | 11, 21 | cfv 6542 |
. . . . . . . 8
class
((trL‘𝑘)‘𝑤) |
| 23 | 19, 22 | cfv 6542 |
. . . . . . 7
class
(((trL‘𝑘)‘𝑤)‘𝑓) |
| 24 | 8 | cv 1538 |
. . . . . . 7
class 𝑥 |
| 25 | 23, 24, 13 | wbr 5125 |
. . . . . 6
wff
(((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥 |
| 26 | | cltrn 40044 |
. . . . . . . 8
class
LTrn |
| 27 | 5, 26 | cfv 6542 |
. . . . . . 7
class
(LTrn‘𝑘) |
| 28 | 11, 27 | cfv 6542 |
. . . . . 6
class
((LTrn‘𝑘)‘𝑤) |
| 29 | 25, 18, 28 | crab 3420 |
. . . . 5
class {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥} |
| 30 | 8, 17, 29 | cmpt 5207 |
. . . 4
class (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥}) |
| 31 | 4, 7, 30 | cmpt 5207 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥})) |
| 32 | 2, 3, 31 | cmpt 5207 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥}))) |
| 33 | 1, 32 | wceq 1539 |
1
wff DIsoA =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥}))) |