![]() |
Metamath
Proof Explorer Theorem List (p. 400 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dvh4dimat 39901* | There is an atom that is outside the subspace sum of 3 others. (Contributed by NM, 25-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ ((𝑃 ⊕ 𝑄) ⊕ 𝑅)) | ||
Theorem | dvh3dimatN 39902* | There is an atom that is outside the subspace sum of 2 others. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ (𝑃 ⊕ 𝑄)) | ||
Theorem | dvh2dimatN 39903* | Given an atom, there exists another. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝐴 𝑠 ≠ 𝑃) | ||
Theorem | dvh1dimat 39904* | There exists an atom. (Contributed by NM, 25-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ∃𝑠 𝑠 ∈ 𝐴) | ||
Theorem | dvh1dim 39905* | There exists a nonzero vector. (Contributed by NM, 26-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 𝑧 ≠ 0 ) | ||
Theorem | dvh4dimlem 39906* | Lemma for dvh4dimN 39910. (Contributed by NM, 22-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) & ⊢ (𝜑 → 𝑍 ≠ 0 ) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) | ||
Theorem | dvhdimlem 39907* | Lemma for dvh2dim 39908 and dvh3dim 39909. TODO: make this obsolete and use dvh4dimlem 39906 directly? (Contributed by NM, 24-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) | ||
Theorem | dvh2dim 39908* | There is a vector that is outside the span of another. (Contributed by NM, 25-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋})) | ||
Theorem | dvh3dim 39909* | There is a vector that is outside the span of 2 others. (Contributed by NM, 24-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) | ||
Theorem | dvh4dimN 39910* | There is a vector that is outside the span of 3 others. (Contributed by NM, 22-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) | ||
Theorem | dvh3dim2 39911* | There is a vector that is outside of 2 spans with a common vector. (Contributed by NM, 13-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))) | ||
Theorem | dvh3dim3N 39912* | There is a vector that is outside of 2 spans. TODO: decide to use either this or dvh3dim2 39911 everywhere. If this one is needed, make dvh3dim2 39911 into a lemma. (Contributed by NM, 21-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))) | ||
Theorem | dochsnnz 39913 | The orthocomplement of a singleton is nonzero. (Contributed by NM, 13-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ { 0 }) | ||
Theorem | dochsatshp 39914 | The orthocomplement of a subspace atom is a hyperplane. (Contributed by NM, 27-Jul-2014.) (Revised by Mario Carneiro, 1-Oct-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑄) ∈ 𝑌) | ||
Theorem | dochsatshpb 39915 | The orthocomplement of a subspace atom is a hyperplane. (Contributed by NM, 29-Oct-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑄 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ( ⊥ ‘𝑄) ∈ 𝑌)) | ||
Theorem | dochsnshp 39916 | The orthocomplement of a nonzero singleton is a hyperplane. (Contributed by NM, 3-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ∈ 𝑌) | ||
Theorem | dochshpsat 39917 | A hyperplane is closed iff its orthocomplement is an atom. (Contributed by NM, 29-Oct-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑌) ⇒ ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) | ||
Theorem | dochkrsat 39918 | The orthocomplement of a kernel is an atom iff it is nonzero. (Contributed by NM, 1-Nov-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘(𝐿‘𝐺)) ≠ { 0 } ↔ ( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴)) | ||
Theorem | dochkrsat2 39919 | The orthocomplement of a kernel is an atom iff the double orthocomplement is not the vector space. (Contributed by NM, 1-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ↔ ( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴)) | ||
Theorem | dochsat0 39920 | The orthocomplement of a kernel is either an atom or zero. (Contributed by NM, 29-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴 ∨ ( ⊥ ‘(𝐿‘𝐺)) = { 0 })) | ||
Theorem | dochkrsm 39921 | The subspace sum of a closed subspace and a kernel orthocomplement is closed. (djhlsmcl 39877 can be used to convert sum to join.) (Contributed by NM, 29-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘(𝐿‘𝐺))) ∈ ran 𝐼) | ||
Theorem | dochexmidat 39922 | Special case of excluded middle for the singleton of a vector. (Contributed by NM, 27-Oct-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (( ⊥ ‘{𝑋}) ⊕ (𝑁‘{𝑋})) = 𝑉) | ||
Theorem | dochexmidlem1 39923 | Lemma for dochexmid 39931. Holland's proof implicitly requires 𝑞 ≠ 𝑟, which we prove here. (Contributed by NM, 14-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ∈ 𝐴) & ⊢ (𝜑 → 𝑟 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ⊆ ( ⊥ ‘𝑋)) & ⊢ (𝜑 → 𝑟 ⊆ 𝑋) ⇒ ⊢ (𝜑 → 𝑞 ≠ 𝑟) | ||
Theorem | dochexmidlem2 39924 | Lemma for dochexmid 39931. (Contributed by NM, 14-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ∈ 𝐴) & ⊢ (𝜑 → 𝑟 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ⊆ ( ⊥ ‘𝑋)) & ⊢ (𝜑 → 𝑟 ⊆ 𝑋) & ⊢ (𝜑 → 𝑝 ⊆ (𝑟 ⊕ 𝑞)) ⇒ ⊢ (𝜑 → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) | ||
Theorem | dochexmidlem3 39925 | Lemma for dochexmid 39931. Use atom exchange lsatexch1 37508 to swap 𝑝 and 𝑞. (Contributed by NM, 14-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ∈ 𝐴) & ⊢ (𝜑 → 𝑟 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ⊆ ( ⊥ ‘𝑋)) & ⊢ (𝜑 → 𝑟 ⊆ 𝑋) & ⊢ (𝜑 → 𝑞 ⊆ (𝑟 ⊕ 𝑝)) ⇒ ⊢ (𝜑 → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) | ||
Theorem | dochexmidlem4 39926 | Lemma for dochexmid 39931. (Contributed by NM, 15-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ∈ 𝐴) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑀 = (𝑋 ⊕ 𝑝) & ⊢ (𝜑 → 𝑋 ≠ { 0 }) & ⊢ (𝜑 → 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) ⇒ ⊢ (𝜑 → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) | ||
Theorem | dochexmidlem5 39927 | Lemma for dochexmid 39931. (Contributed by NM, 15-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑀 = (𝑋 ⊕ 𝑝) & ⊢ (𝜑 → 𝑋 ≠ { 0 }) & ⊢ (𝜑 → ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) ⇒ ⊢ (𝜑 → (( ⊥ ‘𝑋) ∩ 𝑀) = { 0 }) | ||
Theorem | dochexmidlem6 39928 | Lemma for dochexmid 39931. (Contributed by NM, 15-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑀 = (𝑋 ⊕ 𝑝) & ⊢ (𝜑 → 𝑋 ≠ { 0 }) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) & ⊢ (𝜑 → ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) ⇒ ⊢ (𝜑 → 𝑀 = 𝑋) | ||
Theorem | dochexmidlem7 39929 | Lemma for dochexmid 39931. Contradict dochexmidlem6 39928. (Contributed by NM, 15-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑀 = (𝑋 ⊕ 𝑝) & ⊢ (𝜑 → 𝑋 ≠ { 0 }) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) & ⊢ (𝜑 → ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) ⇒ ⊢ (𝜑 → 𝑀 ≠ 𝑋) | ||
Theorem | dochexmidlem8 39930 | Lemma for dochexmid 39931. The contradiction of dochexmidlem6 39928 and dochexmidlem7 39929 shows that there can be no atom 𝑝 that is not in 𝑋 + ( ⊥ ‘𝑋), which is therefore the whole atom space. (Contributed by NM, 15-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ { 0 }) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) ⇒ ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘𝑋)) = 𝑉) | ||
Theorem | dochexmid 39931 | Excluded middle law for closed subspaces, which is equivalent to (and derived from) the orthomodular law dihoml4 39840. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, 𝑞, 𝑟 in place of Hollands' l, m, P, Q, L respectively. (pexmidALTN 38441 analog.) (Contributed by NM, 15-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) ⇒ ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘𝑋)) = 𝑉) | ||
Theorem | dochsnkrlem1 39932 | Lemma for dochsnkr 39935. (Contributed by NM, 1-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) | ||
Theorem | dochsnkrlem2 39933 | Lemma for dochsnkr 39935. (Contributed by NM, 1-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) & ⊢ 𝐴 = (LSAtoms‘𝑈) ⇒ ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴) | ||
Theorem | dochsnkrlem3 39934 | Lemma for dochsnkr 39935. (Contributed by NM, 2-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) | ||
Theorem | dochsnkr 39935 | A (closed) kernel expressed in terms of a nonzero vector in its orthocomplement. TODO: consolidate lemmas unless they're needed for something else (in which case break out as theorems). (Contributed by NM, 2-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑋})) | ||
Theorem | dochsnkr2 39936* | Kernel of the explicit functional 𝐺 determined by a nonzero vector 𝑋. Compare the more general lshpkr 37579. (Contributed by NM, 27-Oct-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝐷) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑋})) | ||
Theorem | dochsnkr2cl 39937* | The 𝑋 determining functional 𝐺 belongs to the atom formed by the orthocomplement of the kernel. (Contributed by NM, 4-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝐷) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) | ||
Theorem | dochflcl 39938* | Closure of the explicit functional 𝐺 determined by a nonzero vector 𝑋. Compare the more general lshpkrcl 37578. (Contributed by NM, 27-Oct-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝐷) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐹) | ||
Theorem | dochfl1 39939* | The value of the explicit functional 𝐺 is 1 at the 𝑋 that determines it. (Contributed by NM, 27-Oct-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝐷) & ⊢ 1 = (1r‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) | ||
Theorem | dochfln0 39940 | The value of a functional is nonzero at a nonzero vector in the orthocomplement of its kernel. (Contributed by NM, 2-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝑁 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) ≠ 𝑁) | ||
Theorem | dochkr1 39941* | A nonzero functional has a value of 1 at some argument belonging to the orthocomplement of its kernel (when its kernel is a closed hyperplane). Tighter version of lfl1 37532. (Contributed by NM, 2-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })(𝐺‘𝑥) = 1 ) | ||
Theorem | dochkr1OLDN 39942* | A nonzero functional has a value of 1 at some argument belonging to the orthocomplement of its kernel (when its kernel is a closed hyperplane). Tighter version of lfl1 37532. (Contributed by NM, 2-Jan-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ( ⊥ ‘(𝐿‘𝐺))(𝐺‘𝑥) = 1 ) | ||
Syntax | clpoN 39943 | Extend class notation with all polarities of a left module or left vector space. |
class LPol | ||
Definition | df-lpolN 39944* | Define the set of all polarities of a left module or left vector space. A polarity is a kind of complementation operation on a subspace. The double polarity of a subspace is a closure operation. Based on Definition 3.2 of [Holland95] p. 214 for projective geometry polarities. For convenience, we open up the domain to include all vector subsets and not just subspaces, but any more restricted polarity can be converted to this one by taking the span of its argument. (Contributed by NM, 24-Nov-2014.) |
⊢ LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g‘𝑤)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥 ⊆ 𝑦) → (𝑜‘𝑦) ⊆ (𝑜‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜‘𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜‘𝑥)) = 𝑥))}) | ||
Theorem | lpolsetN 39945* | The set of polarities of a left module or left vector space. (Contributed by NM, 24-Nov-2014.) (New usage is discouraged.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝑃 = {𝑜 ∈ (𝑆 ↑m 𝒫 𝑉) ∣ ((𝑜‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → (𝑜‘𝑦) ⊆ (𝑜‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 ((𝑜‘𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜‘𝑥)) = 𝑥))}) | ||
Theorem | islpolN 39946* | The predicate "is a polarity". (Contributed by NM, 24-Nov-2014.) (New usage is discouraged.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) | ||
Theorem | islpoldN 39947* | Properties that determine a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) & ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦)) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘𝑥) ∈ 𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) ⇒ ⊢ (𝜑 → ⊥ ∈ 𝑃) | ||
Theorem | lpolfN 39948 | Functionality of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) ⇒ ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) | ||
Theorem | lpolvN 39949 | The polarity of the whole space is the zero subspace. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) | ||
Theorem | lpolconN 39950 | Contraposition property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) & ⊢ (𝜑 → 𝑌 ⊆ 𝑉) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) | ||
Theorem | lpolsatN 39951 | The polarity of an atomic subspace is a hyperplane. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑄) ∈ 𝐻) | ||
Theorem | lpolpolsatN 39952 | Property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑄)) = 𝑄) | ||
Theorem | dochpolN 39953 | The subspace orthocomplement for the DVecH vector space is a polarity. (Contributed by NM, 27-Dec-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑃 = (LPol‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ⊥ ∈ 𝑃) | ||
Theorem | lcfl1lem 39954* | Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014.) |
⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ⇒ ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) | ||
Theorem | lcfl1 39955* | Property of a functional with a closed kernel. (Contributed by NM, 31-Dec-2014.) |
⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) | ||
Theorem | lcfl2 39956* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ∨ (𝐿‘𝐺) = 𝑉))) | ||
Theorem | lcfl3 39957* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴 ∨ (𝐿‘𝐺) = 𝑉))) | ||
Theorem | lcfl4N 39958* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 ∨ (𝐿‘𝐺) = 𝑉))) | ||
Theorem | lcfl5 39959* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (𝐿‘𝐺) ∈ ran 𝐼)) | ||
Theorem | lcfl5a 39960 | Property of a functional with a closed kernel. TODO: Make lcfl5 39959 etc. obsolete and rewrite without 𝐶 hypothesis? (Contributed by NM, 29-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ↔ (𝐿‘𝐺) ∈ ran 𝐼)) | ||
Theorem | lcfl6lem 39961* | Lemma for lcfl6 39963. A functional 𝐺 (whose kernel is closed by dochsnkr 39935) is comletely determined by a vector 𝑋 in the orthocomplement in its kernel at which the functional value is 1. Note that the ∖ { 0 } in the 𝑋 hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 1 = (1r‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) & ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) ⇒ ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) | ||
Theorem | lcfl7lem 39962* | Lemma for lcfl7N 39964. If two functionals 𝐺 and 𝐽 are equal, they are determined by the same vector. (Contributed by NM, 4-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) & ⊢ 𝐽 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑌})𝑣 = (𝑤 + (𝑘 · 𝑌)))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐺 = 𝐽) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | lcfl6 39963* | Property of a functional with a closed kernel. Note that (𝐿‘𝐺) = 𝑉 means the functional is zero by lkr0f 37556. (Contributed by NM, 3-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ((𝐿‘𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))) | ||
Theorem | lcfl7N 39964* | Property of a functional with a closed kernel. Every nonzero functional is determined by a unique nonzero vector. Note that (𝐿‘𝐺) = 𝑉 means the functional is zero by lkr0f 37556. (Contributed by NM, 4-Jan-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ((𝐿‘𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))) | ||
Theorem | lcfl8 39965* | Property of a functional with a closed kernel. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝑉 (𝐿‘𝐺) = ( ⊥ ‘{𝑥}))) | ||
Theorem | lcfl8a 39966* | Property of a functional with a closed kernel. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ↔ ∃𝑥 ∈ 𝑉 (𝐿‘𝐺) = ( ⊥ ‘{𝑥}))) | ||
Theorem | lcfl8b 39967* | Property of a nonzero functional with a closed kernel. (Contributed by NM, 4-Feb-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑌 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 ∖ {𝑌})) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝑉 ∖ { 0 })( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})) | ||
Theorem | lcfl9a 39968 | Property implying that a functional has a closed kernel. (Contributed by NM, 16-Feb-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) | ||
Theorem | lclkrlem1 39969* | The set of functionals having closed kernels is closed under scalar product. (Contributed by NM, 28-Dec-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐶) | ||
Theorem | lclkrlem2a 39970 | Lemma for lclkr 39996. Use lshpat 37518 to show that the intersection of a hyperplane with a noncomparable sum of atoms is an atom. (Contributed by NM, 16-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘{𝐵})) ⇒ ⊢ (𝜑 → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘{𝐵})) ∈ 𝐴) | ||
Theorem | lclkrlem2b 39971 | Lemma for lclkr 39996. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) ⇒ ⊢ (𝜑 → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘{𝐵})) ∈ 𝐴) | ||
Theorem | lclkrlem2c 39972 | Lemma for lclkr 39996. (Contributed by NM, 16-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ 𝐽 = (LSHyp‘𝑈) ⇒ ⊢ (𝜑 → ((( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌})) ⊕ (𝑁‘{𝐵})) ∈ 𝐽) | ||
Theorem | lclkrlem2d 39973 | Lemma for lclkr 39996. (Contributed by NM, 16-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (𝜑 → ((( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌})) ⊕ (𝑁‘{𝐵})) ∈ ran 𝐼) | ||
Theorem | lclkrlem2e 39974 | Lemma for lclkr 39996. The kernel of the sum is closed when the kernels of the summands are equal and closed. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐸) = (𝐿‘𝐺)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2f 39975 | Lemma for lclkr 39996. Construct a closed hyperplane under the kernel of the sum. (Contributed by NM, 16-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝐿‘𝐸) ≠ (𝐿‘𝐺)) & ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽) ⇒ ⊢ (𝜑 → (((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) ⊆ (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2g 39976 | Lemma for lclkr 39996. Comparable hyperplanes are equal, so the kernel of the sum is closed. (Contributed by NM, 16-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝐿‘𝐸) ≠ (𝐿‘𝐺)) & ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2h 39977 | Lemma for lclkr 39996. Eliminate the (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽 hypothesis. (Contributed by NM, 16-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝐿‘𝐸) ≠ (𝐿‘𝐺)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2i 39978 | Lemma for lclkr 39996. Eliminate the (𝐿‘𝐸) ≠ (𝐿‘𝐺) hypothesis. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2j 39979 | Lemma for lclkr 39996. Kernel closure when 𝑌 is zero. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 = 0 ) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2k 39980 | Lemma for lclkr 39996. Kernel closure when 𝑋 is zero. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 = 0 ) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2l 39981 | Lemma for lclkr 39996. Eliminate the 𝑋 ≠ 0, 𝑌 ≠ 0 hypotheses. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2m 39982 | Lemma for lclkr 39996. Construct a vector 𝐵 that makes the sum of functionals zero. Combine with 𝐵 ∈ 𝑉 to shorten overall proof. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑈 ∈ LVec) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐵 ∈ 𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 )) | ||
Theorem | lclkrlem2n 39983 | Lemma for lclkr 39996. (Contributed by NM, 12-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ LVec) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2o 39984 | Lemma for lclkr 39996. When 𝐵 is nonzero, the vectors 𝑋 and 𝑌 can't both belong to the hyperplane generated by 𝐵. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) & ⊢ (𝜑 → 𝐵 ≠ (0g‘𝑈)) ⇒ ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) | ||
Theorem | lclkrlem2p 39985 | Lemma for lclkr 39996. When 𝐵 is zero, 𝑋 and 𝑌 must colinear, so their orthocomplements must be comparable. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) & ⊢ (𝜑 → 𝐵 = (0g‘𝑈)) ⇒ ⊢ (𝜑 → ( ⊥ ‘{𝑌}) ⊆ ( ⊥ ‘{𝑋})) | ||
Theorem | lclkrlem2q 39986 | Lemma for lclkr 39996. The sum has a closed kernel when 𝐵 is nonzero. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) & ⊢ (𝜑 → 𝐵 ≠ (0g‘𝑈)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2r 39987 | Lemma for lclkr 39996. When 𝐵 is zero, i.e. when 𝑋 and 𝑌 are colinear, the intersection of the kernels of 𝐸 and 𝐺 equal the kernel of 𝐺, so the kernels of 𝐺 and the sum are comparable. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) & ⊢ (𝜑 → 𝐵 = (0g‘𝑈)) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2s 39988 | Lemma for lclkr 39996. Thus, the sum has a closed kernel when 𝐵 is zero. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) & ⊢ (𝜑 → 𝐵 = (0g‘𝑈)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2t 39989 | Lemma for lclkr 39996. We eliminate all hypotheses with 𝐵 here. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2u 39990 | Lemma for lclkr 39996. lclkrlem2t 39989 with 𝑋 and 𝑌 swapped. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) ≠ 0 ) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2v 39991 | Lemma for lclkr 39996. When the hypotheses of lclkrlem2u 39990 and lclkrlem2u 39990 are negated, the functional sum must be zero, so the kernel is the vector space. We make use of the law of excluded middle, dochexmid 39931, which requires the orthomodular law dihoml4 39840 (Lemma 3.3 of [Holland95] p. 214). (Contributed by NM, 16-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) ⇒ ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) = 𝑉) | ||
Theorem | lclkrlem2w 39992 | Lemma for lclkr 39996. This is the same as lclkrlem2u 39990 and lclkrlem2u 39990 with the inequality hypotheses negated. When the sum of two functionals is zero at each generating vector, the kernel is the vector space and therefore closed. (Contributed by NM, 16-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2x 39993 | Lemma for lclkr 39996. Eliminate by cases the hypotheses of lclkrlem2u 39990, lclkrlem2u 39990 and lclkrlem2w 39992. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2y 39994 | Lemma for lclkr 39996. Restate the hypotheses for 𝐸 and 𝐺 to say their kernels are closed, in order to eliminate the generating vectors 𝑋 and 𝑌. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐸))) = (𝐿‘𝐸)) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2 39995* | The set of functionals having closed kernels is closed under vector (functional) addition. Lemmas lclkrlem2a 39970 through lclkrlem2y 39994 are used for the proof. Here we express lclkrlem2y 39994 in terms of membership in the set 𝐶 of functionals with closed kernels. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐸 ∈ 𝐶) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐶) | ||
Theorem | lclkr 39996* | The set of functionals with closed kernels is a subspace. Part of proof of Theorem 3.6 of [Holland95] p. 218, line 20, stating "The fM that arise this way generate a subspace F of E'". Our proof was suggested by Mario Carneiro, 5-Jan-2015. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝑆) | ||
Theorem | lcfls1lem 39997* | Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.) |
⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} ⇒ ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) | ||
Theorem | lcfls1N 39998* | Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.) (New usage is discouraged.) |
⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄))) | ||
Theorem | lcfls1c 39999* | Property of a functional with a closed kernel. (Contributed by NM, 28-Jan-2015.) |
⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} & ⊢ 𝐷 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ⇒ ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐷 ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) | ||
Theorem | lclkrslem1 40000* | The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑄 is closed under scalar product. (Contributed by NM, 27-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑄 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐶) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |