![]() |
Metamath
Proof Explorer Theorem List (p. 400 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 1psubclN 39901 | The set of all atoms is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → 𝐴 ∈ 𝐶) | ||
Theorem | atpsubclN 39902 | A point (singleton of an atom) is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → {𝑄} ∈ 𝐶) | ||
Theorem | pmapsubclN 39903 | A projective map value is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ∈ 𝐶) | ||
Theorem | ispsubcl2N 39904* | Alternate predicate for "is a closed projective subspace". Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑋 = (𝑀‘𝑦))) | ||
Theorem | psubclinN 39905 | The intersection of two closed subspaces is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → (𝑋 ∩ 𝑌) ∈ 𝐶) | ||
Theorem | paddatclN 39906 | The projective sum of a closed subspace and an atom is a closed projective subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑄 ∈ 𝐴) → (𝑋 + {𝑄}) ∈ 𝐶) | ||
Theorem | pclfinclN 39907 | The projective subspace closure of a finite set of atoms is a closed subspace. Compare the (non-closed) subspace version pclfinN 39857 and also pclcmpatN 39858. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) & ⊢ 𝑆 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (𝑈‘𝑋) ∈ 𝑆) | ||
Theorem | linepsubclN 39908 | A line is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐶) | ||
Theorem | polsubclN 39909 | A polarity is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝐶) | ||
Theorem | poml4N 39910 | Orthomodular law for projective lattices. Lemma 3.3(1) in [Holland95] p. 215. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥ ‘𝑋)))) | ||
Theorem | poml5N 39911 | Orthomodular law for projective lattices. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) ∩ ( ⊥ ‘𝑌)) = ( ⊥ ‘( ⊥ ‘𝑋))) | ||
Theorem | poml6N 39912 | Orthomodular law for projective lattices. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋) | ||
Theorem | osumcllem1N 39913 | Lemma for osumclN 39924. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → (𝑈 ∩ 𝑀) = 𝑀) | ||
Theorem | osumcllem2N 39914 | Lemma for osumclN 39924. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ (𝑈 ∩ 𝑀)) | ||
Theorem | osumcllem3N 39915 | Lemma for osumclN 39924. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘𝑋) ∩ 𝑈) = 𝑌) | ||
Theorem | osumcllem4N 39916 | Lemma for osumclN 39924. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → 𝑞 ≠ 𝑟) | ||
Theorem | osumcllem5N 39917 | Lemma for osumclN 39924. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴 ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ∈ (𝑋 + 𝑌)) | ||
Theorem | osumcllem6N 39918 | Lemma for osumclN 39924. Use atom exchange hlatexch1 39352 to swap 𝑝 and 𝑞. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑝 ∈ (𝑋 + 𝑌)) | ||
Theorem | osumcllem7N 39919* | Lemma for osumclN 39924. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → 𝑝 ∈ (𝑋 + 𝑌)) | ||
Theorem | osumcllem8N 39920 | Lemma for osumclN 39924. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌 ∩ 𝑀) = ∅) | ||
Theorem | osumcllem9N 39921 | Lemma for osumclN 39924. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 = 𝑋) | ||
Theorem | osumcllem10N 39922 | Lemma for osumclN 39924. Contradict osumcllem9N 39921. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 ≠ 𝑋) | ||
Theorem | osumcllem11N 39923 | Lemma for osumclN 39924. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌)))) | ||
Theorem | osumclN 39924 | Closure of orthogonal sum. If 𝑋 and 𝑌 are orthogonal closed projective subspaces, then their sum is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑋 + 𝑌) ∈ 𝐶) | ||
Theorem | pmapojoinN 39925 | For orthogonal elements, projective map of join equals projective sum. Compare pmapjoin 39809 where only one direction holds. (Contributed by NM, 11-Apr-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ ( ⊥ ‘𝑌)) → (𝑀‘(𝑋 ∨ 𝑌)) = ((𝑀‘𝑋) + (𝑀‘𝑌))) | ||
Theorem | pexmidN 39926 | Excluded middle law for closed projective subspaces, which can be shown to be equivalent to (and derivable from) the orthomodular law poml4N 39910. Lemma 3.3(2) in [Holland95] p. 215, which we prove as a special case of osumclN 39924. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) | ||
Theorem | pexmidlem1N 39927 | Lemma for pexmidN 39926. Holland's proof implicitly requires 𝑞 ≠ 𝑟, which we prove here. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ≠ 𝑟) | ||
Theorem | pexmidlem2N 39928 | Lemma for pexmidN 39926. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) | ||
Theorem | pexmidlem3N 39929 | Lemma for pexmidN 39926. Use atom exchange hlatexch1 39352 to swap 𝑝 and 𝑞. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋)) ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) | ||
Theorem | pexmidlem4N 39930* | Lemma for pexmidN 39926. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) | ||
Theorem | pexmidlem5N 39931 | Lemma for pexmidN 39926. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (( ⊥ ‘𝑋) ∩ 𝑀) = ∅) | ||
Theorem | pexmidlem6N 39932 | Lemma for pexmidN 39926. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑀 = 𝑋) | ||
Theorem | pexmidlem7N 39933 | Lemma for pexmidN 39926. Contradict pexmidlem6N 39932. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑀 ≠ 𝑋) | ||
Theorem | pexmidlem8N 39934 | Lemma for pexmidN 39926. The contradiction of pexmidlem6N 39932 and pexmidlem7N 39933 shows that there can be no atom 𝑝 that is not in 𝑋 + ( ⊥ ‘𝑋), which is therefore the whole atom space. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) | ||
Theorem | pexmidALTN 39935 | Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 39910. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, 𝑞, 𝑟 in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) | ||
Theorem | pl42lem1N 39936 | Lemma for pl42N 39940. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → ((𝑋 ≤ ( ⊥ ‘𝑌) ∧ 𝑍 ≤ ( ⊥ ‘𝑊)) → (𝐹‘((((𝑋 ∨ 𝑌) ∧ 𝑍) ∨ 𝑊) ∧ 𝑉)) = (((((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) + (𝐹‘𝑊)) ∩ (𝐹‘𝑉)))) | ||
Theorem | pl42lem2N 39937 | Lemma for pl42N 39940. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → (((𝐹‘𝑋) + (𝐹‘𝑌)) + (((𝐹‘𝑋) + (𝐹‘𝑊)) ∩ ((𝐹‘𝑌) + (𝐹‘𝑉)))) ⊆ (𝐹‘((𝑋 ∨ 𝑌) ∨ ((𝑋 ∨ 𝑊) ∧ (𝑌 ∨ 𝑉))))) | ||
Theorem | pl42lem3N 39938 | Lemma for pl42N 39940. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → (((((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) + (𝐹‘𝑊)) ∩ (𝐹‘𝑉)) ⊆ ((((𝐹‘𝑋) + (𝐹‘𝑌)) + (𝐹‘𝑊)) ∩ (((𝐹‘𝑋) + (𝐹‘𝑌)) + (𝐹‘𝑉)))) | ||
Theorem | pl42lem4N 39939 | Lemma for pl42N 39940. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → ((𝑋 ≤ ( ⊥ ‘𝑌) ∧ 𝑍 ≤ ( ⊥ ‘𝑊)) → (𝐹‘((((𝑋 ∨ 𝑌) ∧ 𝑍) ∨ 𝑊) ∧ 𝑉)) ⊆ (𝐹‘((𝑋 ∨ 𝑌) ∨ ((𝑋 ∨ 𝑊) ∧ (𝑌 ∨ 𝑉)))))) | ||
Theorem | pl42N 39940 | Law holding in a Hilbert lattice that fails in orthomodular lattice L42 (Figure 7 in [MegPav2000] p. 2366). (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → ((𝑋 ≤ ( ⊥ ‘𝑌) ∧ 𝑍 ≤ ( ⊥ ‘𝑊)) → ((((𝑋 ∨ 𝑌) ∧ 𝑍) ∨ 𝑊) ∧ 𝑉) ≤ ((𝑋 ∨ 𝑌) ∨ ((𝑋 ∨ 𝑊) ∧ (𝑌 ∨ 𝑉))))) | ||
Syntax | clh 39941 | Extend class notation with set of all co-atoms (lattice hyperplanes). |
class LHyp | ||
Syntax | claut 39942 | Extend class notation with set of all lattice automorphisms. |
class LAut | ||
Syntax | cwpointsN 39943 | Extend class notation with W points. |
class WAtoms | ||
Syntax | cpautN 39944 | Extend class notation with set of all projective automorphisms. |
class PAut | ||
Definition | df-lhyp 39945* | Define the set of lattice hyperplanes, which are all lattice elements covered by 1 (i.e., all co-atoms). We call them "hyperplanes" instead of "co-atoms" in analogy with projective geometry hyperplanes. (Contributed by NM, 11-May-2012.) |
⊢ LHyp = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ 𝑥( ⋖ ‘𝑘)(1.‘𝑘)}) | ||
Definition | df-laut 39946* | Define set of lattice autoisomorphisms. (Contributed by NM, 11-May-2012.) |
⊢ LAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓‘𝑥)(le‘𝑘)(𝑓‘𝑦)))}) | ||
Definition | df-watsN 39947* | Define W-atoms corresponding to an arbitrary "fiducial (i.e. reference) atom" 𝑑. These are all atoms not in the polarity of {𝑑}), which is the hyperplane determined by 𝑑. Definition of set W in [Crawley] p. 111. (Contributed by NM, 26-Jan-2012.) |
⊢ WAtoms = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃‘𝑘)‘{𝑑})))) | ||
Definition | df-pautN 39948* | Define set of all projective automorphisms. This is the intended definition of automorphism in [Crawley] p. 112. (Contributed by NM, 26-Jan-2012.) |
⊢ PAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) | ||
Theorem | watfvalN 39949* | The W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) & ⊢ 𝑊 = (WAtoms‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → 𝑊 = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) | ||
Theorem | watvalN 39950 | Value of the W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) & ⊢ 𝑊 = (WAtoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑊‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) | ||
Theorem | iswatN 39951 | The predicate "is a W atom" (corresponding to fiducial atom 𝐷). (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) & ⊢ 𝑊 = (WAtoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑃 ∈ (𝑊‘𝐷) ↔ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ∈ ((⊥𝑃‘𝐾)‘{𝐷})))) | ||
Theorem | lhpset 39952* | The set of co-atoms (lattice hyperplanes). (Contributed by NM, 11-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → 𝐻 = {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 }) | ||
Theorem | islhp 39953 | The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 11-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ 𝐵 ∧ 𝑊𝐶 1 ))) | ||
Theorem | islhp2 39954 | The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 18-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐵) → (𝑊 ∈ 𝐻 ↔ 𝑊𝐶 1 )) | ||
Theorem | lhpbase 39955 | A co-atom is a member of the lattice base set (i.e., a lattice element). (Contributed by NM, 18-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) | ||
Theorem | lhp1cvr 39956 | The lattice unity covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.) |
⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → 𝑊𝐶 1 ) | ||
Theorem | lhplt 39957 | An atom under a co-atom is strictly less than it. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊)) → 𝑃 < 𝑊) | ||
Theorem | lhp2lt 39958 | The join of two atoms under a co-atom is strictly less than it. (Contributed by NM, 8-Jul-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) → (𝑃 ∨ 𝑄) < 𝑊) | ||
Theorem | lhpexlt 39959* | There exists an atom less than a co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) |
⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 𝑝 < 𝑊) | ||
Theorem | lhp0lt 39960 | A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) |
⊢ < = (lt‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 < 𝑊) | ||
Theorem | lhpn0 39961 | A co-atom is nonzero. TODO: is this needed? (Contributed by NM, 26-Apr-2013.) |
⊢ 0 = (0.‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ≠ 0 ) | ||
Theorem | lhpexle 39962* | There exists an atom under a co-atom. (Contributed by NM, 26-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 𝑝 ≤ 𝑊) | ||
Theorem | lhpexnle 39963* | There exists an atom not under a co-atom. (Contributed by NM, 12-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ¬ 𝑝 ≤ 𝑊) | ||
Theorem | lhpexle1lem 39964* | Lemma for lhpexle1 39965 and others that eliminates restrictions on 𝑋. (Contributed by NM, 24-Jul-2013.) |
⊢ (𝜑 → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝜓)) & ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝜓 ∧ 𝑝 ≠ 𝑋)) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝜓 ∧ 𝑝 ≠ 𝑋)) | ||
Theorem | lhpexle1 39965* | There exists an atom under a co-atom different from any given element. (Contributed by NM, 24-Jul-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋)) | ||
Theorem | lhpexle2lem 39966* | Lemma for lhpexle2 39967. (Contributed by NM, 19-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌)) | ||
Theorem | lhpexle2 39967* | There exists atom under a co-atom different from any two other elements. (Contributed by NM, 24-Jul-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌)) | ||
Theorem | lhpexle3lem 39968* | There exists atom under a co-atom different from any three other atoms. TODO: study if adant*, simp* usage can be improved. (Contributed by NM, 9-Jul-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍))) | ||
Theorem | lhpexle3 39969* | There exists atom under a co-atom different from any three other elements. (Contributed by NM, 24-Jul-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍))) | ||
Theorem | lhpex2leN 39970* | There exist at least two different atoms under a co-atom. This allows to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) | ||
Theorem | lhpoc 39971 | The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵) → (𝑊 ∈ 𝐻 ↔ ( ⊥ ‘𝑊) ∈ 𝐴)) | ||
Theorem | lhpoc2N 39972 | The orthocomplement of an atom is a co-atom (lattice hyperplane). (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵) → (𝑊 ∈ 𝐴 ↔ ( ⊥ ‘𝑊) ∈ 𝐻)) | ||
Theorem | lhpocnle 39973 | The orthocomplement of a co-atom is not under it. (Contributed by NM, 22-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ¬ ( ⊥ ‘𝑊) ≤ 𝑊) | ||
Theorem | lhpocat 39974 | The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013.) |
⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘𝑊) ∈ 𝐴) | ||
Theorem | lhpocnel 39975 | The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( ⊥ ‘𝑊) ∈ 𝐴 ∧ ¬ ( ⊥ ‘𝑊) ≤ 𝑊)) | ||
Theorem | lhpocnel2 39976 | The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | ||
Theorem | lhpjat1 39977 | The join of a co-atom (hyperplane) and an atom not under it is the lattice unity. (Contributed by NM, 18-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = 1 ) | ||
Theorem | lhpjat2 39978 | The join of a co-atom (hyperplane) and an atom not under it is the lattice unity. (Contributed by NM, 4-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ 𝑊) = 1 ) | ||
Theorem | lhpj1 39979 | The join of a co-atom (hyperplane) and an element not under it is the lattice unity. (Contributed by NM, 7-Dec-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑊 ∨ 𝑋) = 1 ) | ||
Theorem | lhpmcvr 39980 | The meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 7-Dec-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊)𝐶𝑋) | ||
Theorem | lhpmcvr2 39981* | Alternate way to express that the meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 9-Apr-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) | ||
Theorem | lhpmcvr3 39982 | Specialization of lhpmcvr2 39981. TODO: Use this to simplify many uses of (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋 to become 𝑃 ≤ 𝑋. (Contributed by NM, 6-Apr-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ≤ 𝑋 ↔ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) | ||
Theorem | lhpmcvr4N 39983 | Specialization of lhpmcvr2 39981. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊 ∧ 𝑃 ≤ 𝑋)) → ¬ 𝑃 ≤ 𝑌) | ||
Theorem | lhpmcvr5N 39984* | Specialization of lhpmcvr2 39981. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) | ||
Theorem | lhpmcvr6N 39985* | Specialization of lhpmcvr2 39981. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ 𝑝 ≤ 𝑋)) | ||
Theorem | lhpm0atN 39986 | If the meet of a lattice hyperplane with a nonzero element is zero, the element is an atom. (Contributed by NM, 28-Apr-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → 𝑋 ∈ 𝐴) | ||
Theorem | lhpmat 39987 | An element covered by the lattice unity, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = 0 ) | ||
Theorem | lhpmatb 39988 | An element covered by the lattice unity, when conjoined with an atom, equals zero iff the atom is not under it. (Contributed by NM, 15-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 0 )) | ||
Theorem | lhp2at0 39989 | Join and meet with different atoms under co-atom 𝑊. (Contributed by NM, 15-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ((𝑃 ∨ 𝑈) ∧ 𝑉) = 0 ) | ||
Theorem | lhp2atnle 39990 | Inequality for 2 different atoms under co-atom 𝑊. (Contributed by NM, 17-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ¬ 𝑉 ≤ (𝑃 ∨ 𝑈)) | ||
Theorem | lhp2atne 39991 | Inequality for joins with 2 different atoms under co-atom 𝑊. (Contributed by NM, 22-Jul-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 ≠ 𝑉) → (𝑃 ∨ 𝑈) ≠ (𝑄 ∨ 𝑉)) | ||
Theorem | lhp2at0nle 39992 | Inequality for 2 different atoms (or an atom and zero) under co-atom 𝑊. (Contributed by NM, 28-Jul-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ¬ 𝑉 ≤ (𝑃 ∨ 𝑈)) | ||
Theorem | lhp2at0ne 39993 | Inequality for joins with 2 different atoms (or an atom and zero) under co-atom 𝑊. (Contributed by NM, 28-Jul-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 ≠ 𝑉) → (𝑃 ∨ 𝑈) ≠ (𝑄 ∨ 𝑉)) | ||
Theorem | lhpelim 39994 | Eliminate an atom not under a lattice hyperplane. TODO: Look at proofs using lhpmat 39987 to see if this can be used to shorten them. (Contributed by NM, 27-Apr-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊) = (𝑋 ∧ 𝑊)) | ||
Theorem | lhpmod2i2 39995 | Modular law for hyperplanes analogous to atmod2i2 39819 for atoms. (Contributed by NM, 9-Feb-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → ((𝑋 ∧ 𝑊) ∨ 𝑌) = (𝑋 ∧ (𝑊 ∨ 𝑌))) | ||
Theorem | lhpmod6i1 39996 | Modular law for hyperplanes analogous to complement of atmod2i1 39818 for atoms. (Contributed by NM, 1-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑊) → (𝑋 ∨ (𝑌 ∧ 𝑊)) = ((𝑋 ∨ 𝑌) ∧ 𝑊)) | ||
Theorem | lhprelat3N 39997* | The Hilbert lattice is relatively atomic with respect to co-atoms (lattice hyperplanes). Dual version of hlrelat3 39369. (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ∃𝑤 ∈ 𝐻 (𝑋 ≤ (𝑌 ∧ 𝑤) ∧ (𝑌 ∧ 𝑤)𝐶𝑌)) | ||
Theorem | cdlemb2 39998* | Given two atoms not under the fiducial (reference) co-atom 𝑊, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 30-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) | ||
Theorem | lhple 39999 | Property of a lattice element under a co-atom. (Contributed by NM, 28-Feb-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝑃 ∨ 𝑋) ∧ 𝑊) = 𝑋) | ||
Theorem | lhpat 40000 | Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 23-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |