Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaffval Structured version   Visualization version   GIF version

Theorem diaffval 39896
Description: The partial isomorphism A for a lattice 𝐾. (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
diaval.b 𝐡 = (Baseβ€˜πΎ)
diaval.l ≀ = (leβ€˜πΎ)
diaval.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
diaffval (𝐾 ∈ 𝑉 β†’ (DIsoAβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ {𝑦 ∈ 𝐡 ∣ 𝑦 ≀ 𝑀} ↦ {𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ∣ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“) ≀ π‘₯})))
Distinct variable groups:   π‘₯,𝑀,𝑦, ≀   𝑀,𝐡,π‘₯,𝑦   𝑀,𝐻   𝑀,𝑓,π‘₯,𝑦,𝐾
Allowed substitution hints:   𝐡(𝑓)   𝐻(π‘₯,𝑦,𝑓)   ≀ (𝑓)   𝑉(π‘₯,𝑦,𝑀,𝑓)

Proof of Theorem diaffval
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾 ∈ 𝑉 β†’ 𝐾 ∈ V)
2 fveq2 6891 . . . . 5 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = (LHypβ€˜πΎ))
3 diaval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
42, 3eqtr4di 2790 . . . 4 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = 𝐻)
5 fveq2 6891 . . . . . . 7 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = (Baseβ€˜πΎ))
6 diaval.b . . . . . . 7 𝐡 = (Baseβ€˜πΎ)
75, 6eqtr4di 2790 . . . . . 6 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = 𝐡)
8 fveq2 6891 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (leβ€˜π‘˜) = (leβ€˜πΎ))
9 diaval.l . . . . . . . 8 ≀ = (leβ€˜πΎ)
108, 9eqtr4di 2790 . . . . . . 7 (π‘˜ = 𝐾 β†’ (leβ€˜π‘˜) = ≀ )
1110breqd 5159 . . . . . 6 (π‘˜ = 𝐾 β†’ (𝑦(leβ€˜π‘˜)𝑀 ↔ 𝑦 ≀ 𝑀))
127, 11rabeqbidv 3449 . . . . 5 (π‘˜ = 𝐾 β†’ {𝑦 ∈ (Baseβ€˜π‘˜) ∣ 𝑦(leβ€˜π‘˜)𝑀} = {𝑦 ∈ 𝐡 ∣ 𝑦 ≀ 𝑀})
13 fveq2 6891 . . . . . . 7 (π‘˜ = 𝐾 β†’ (LTrnβ€˜π‘˜) = (LTrnβ€˜πΎ))
1413fveq1d 6893 . . . . . 6 (π‘˜ = 𝐾 β†’ ((LTrnβ€˜π‘˜)β€˜π‘€) = ((LTrnβ€˜πΎ)β€˜π‘€))
15 fveq2 6891 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (trLβ€˜π‘˜) = (trLβ€˜πΎ))
1615fveq1d 6893 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ((trLβ€˜π‘˜)β€˜π‘€) = ((trLβ€˜πΎ)β€˜π‘€))
1716fveq1d 6893 . . . . . . 7 (π‘˜ = 𝐾 β†’ (((trLβ€˜π‘˜)β€˜π‘€)β€˜π‘“) = (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“))
18 eqidd 2733 . . . . . . 7 (π‘˜ = 𝐾 β†’ π‘₯ = π‘₯)
1917, 10, 18breq123d 5162 . . . . . 6 (π‘˜ = 𝐾 β†’ ((((trLβ€˜π‘˜)β€˜π‘€)β€˜π‘“)(leβ€˜π‘˜)π‘₯ ↔ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“) ≀ π‘₯))
2014, 19rabeqbidv 3449 . . . . 5 (π‘˜ = 𝐾 β†’ {𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ∣ (((trLβ€˜π‘˜)β€˜π‘€)β€˜π‘“)(leβ€˜π‘˜)π‘₯} = {𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ∣ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“) ≀ π‘₯})
2112, 20mpteq12dv 5239 . . . 4 (π‘˜ = 𝐾 β†’ (π‘₯ ∈ {𝑦 ∈ (Baseβ€˜π‘˜) ∣ 𝑦(leβ€˜π‘˜)𝑀} ↦ {𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ∣ (((trLβ€˜π‘˜)β€˜π‘€)β€˜π‘“)(leβ€˜π‘˜)π‘₯}) = (π‘₯ ∈ {𝑦 ∈ 𝐡 ∣ 𝑦 ≀ 𝑀} ↦ {𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ∣ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“) ≀ π‘₯}))
224, 21mpteq12dv 5239 . . 3 (π‘˜ = 𝐾 β†’ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ {𝑦 ∈ (Baseβ€˜π‘˜) ∣ 𝑦(leβ€˜π‘˜)𝑀} ↦ {𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ∣ (((trLβ€˜π‘˜)β€˜π‘€)β€˜π‘“)(leβ€˜π‘˜)π‘₯})) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ {𝑦 ∈ 𝐡 ∣ 𝑦 ≀ 𝑀} ↦ {𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ∣ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“) ≀ π‘₯})))
23 df-disoa 39895 . . 3 DIsoA = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ {𝑦 ∈ (Baseβ€˜π‘˜) ∣ 𝑦(leβ€˜π‘˜)𝑀} ↦ {𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ∣ (((trLβ€˜π‘˜)β€˜π‘€)β€˜π‘“)(leβ€˜π‘˜)π‘₯})))
2422, 23, 3mptfvmpt 7229 . 2 (𝐾 ∈ V β†’ (DIsoAβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ {𝑦 ∈ 𝐡 ∣ 𝑦 ≀ 𝑀} ↦ {𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ∣ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“) ≀ π‘₯})))
251, 24syl 17 1 (𝐾 ∈ 𝑉 β†’ (DIsoAβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ {𝑦 ∈ 𝐡 ∣ 𝑦 ≀ 𝑀} ↦ {𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ∣ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“) ≀ π‘₯})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   class class class wbr 5148   ↦ cmpt 5231  β€˜cfv 6543  Basecbs 17143  lecple 17203  LHypclh 38850  LTrncltrn 38967  trLctrl 39024  DIsoAcdia 39894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-disoa 39895
This theorem is referenced by:  diafval  39897
  Copyright terms: Public domain W3C validator