Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaffval Structured version   Visualization version   GIF version

Theorem diaffval 40987
Description: The partial isomorphism A for a lattice 𝐾. (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
diaval.b 𝐵 = (Base‘𝐾)
diaval.l = (le‘𝐾)
diaval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
diaffval (𝐾𝑉 → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
Distinct variable groups:   𝑥,𝑤,𝑦,   𝑤,𝐵,𝑥,𝑦   𝑤,𝐻   𝑤,𝑓,𝑥,𝑦,𝐾
Allowed substitution hints:   𝐵(𝑓)   𝐻(𝑥,𝑦,𝑓)   (𝑓)   𝑉(𝑥,𝑦,𝑤,𝑓)

Proof of Theorem diaffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3509 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6920 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 diaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2798 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6920 . . . . . . 7 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
6 diaval.b . . . . . . 7 𝐵 = (Base‘𝐾)
75, 6eqtr4di 2798 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
8 fveq2 6920 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
9 diaval.l . . . . . . . 8 = (le‘𝐾)
108, 9eqtr4di 2798 . . . . . . 7 (𝑘 = 𝐾 → (le‘𝑘) = )
1110breqd 5177 . . . . . 6 (𝑘 = 𝐾 → (𝑦(le‘𝑘)𝑤𝑦 𝑤))
127, 11rabeqbidv 3462 . . . . 5 (𝑘 = 𝐾 → {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} = {𝑦𝐵𝑦 𝑤})
13 fveq2 6920 . . . . . . 7 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
1413fveq1d 6922 . . . . . 6 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
15 fveq2 6920 . . . . . . . . 9 (𝑘 = 𝐾 → (trL‘𝑘) = (trL‘𝐾))
1615fveq1d 6922 . . . . . . . 8 (𝑘 = 𝐾 → ((trL‘𝑘)‘𝑤) = ((trL‘𝐾)‘𝑤))
1716fveq1d 6922 . . . . . . 7 (𝑘 = 𝐾 → (((trL‘𝑘)‘𝑤)‘𝑓) = (((trL‘𝐾)‘𝑤)‘𝑓))
18 eqidd 2741 . . . . . . 7 (𝑘 = 𝐾𝑥 = 𝑥)
1917, 10, 18breq123d 5180 . . . . . 6 (𝑘 = 𝐾 → ((((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥 ↔ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥))
2014, 19rabeqbidv 3462 . . . . 5 (𝑘 = 𝐾 → {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥} = {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})
2112, 20mpteq12dv 5257 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥}) = (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))
224, 21mpteq12dv 5257 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥})) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
23 df-disoa 40986 . . 3 DIsoA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥})))
2422, 23, 3mptfvmpt 7265 . 2 (𝐾 ∈ V → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
251, 24syl 17 1 (𝐾𝑉 → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488   class class class wbr 5166  cmpt 5249  cfv 6573  Basecbs 17258  lecple 17318  LHypclh 39941  LTrncltrn 40058  trLctrl 40115  DIsoAcdia 40985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-disoa 40986
This theorem is referenced by:  diafval  40988
  Copyright terms: Public domain W3C validator