Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaffval Structured version   Visualization version   GIF version

Theorem diaffval 38181
Description: The partial isomorphism A for a lattice 𝐾. (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
diaval.b 𝐵 = (Base‘𝐾)
diaval.l = (le‘𝐾)
diaval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
diaffval (𝐾𝑉 → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
Distinct variable groups:   𝑥,𝑤,𝑦,   𝑤,𝐵,𝑥,𝑦   𝑤,𝐻   𝑤,𝑓,𝑥,𝑦,𝐾
Allowed substitution hints:   𝐵(𝑓)   𝐻(𝑥,𝑦,𝑓)   (𝑓)   𝑉(𝑥,𝑦,𝑤,𝑓)

Proof of Theorem diaffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3512 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6670 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 diaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3syl6eqr 2874 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6670 . . . . . . 7 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
6 diaval.b . . . . . . 7 𝐵 = (Base‘𝐾)
75, 6syl6eqr 2874 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
8 fveq2 6670 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
9 diaval.l . . . . . . . 8 = (le‘𝐾)
108, 9syl6eqr 2874 . . . . . . 7 (𝑘 = 𝐾 → (le‘𝑘) = )
1110breqd 5077 . . . . . 6 (𝑘 = 𝐾 → (𝑦(le‘𝑘)𝑤𝑦 𝑤))
127, 11rabeqbidv 3485 . . . . 5 (𝑘 = 𝐾 → {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} = {𝑦𝐵𝑦 𝑤})
13 fveq2 6670 . . . . . . 7 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
1413fveq1d 6672 . . . . . 6 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
15 fveq2 6670 . . . . . . . . 9 (𝑘 = 𝐾 → (trL‘𝑘) = (trL‘𝐾))
1615fveq1d 6672 . . . . . . . 8 (𝑘 = 𝐾 → ((trL‘𝑘)‘𝑤) = ((trL‘𝐾)‘𝑤))
1716fveq1d 6672 . . . . . . 7 (𝑘 = 𝐾 → (((trL‘𝑘)‘𝑤)‘𝑓) = (((trL‘𝐾)‘𝑤)‘𝑓))
18 eqidd 2822 . . . . . . 7 (𝑘 = 𝐾𝑥 = 𝑥)
1917, 10, 18breq123d 5080 . . . . . 6 (𝑘 = 𝐾 → ((((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥 ↔ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥))
2014, 19rabeqbidv 3485 . . . . 5 (𝑘 = 𝐾 → {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥} = {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})
2112, 20mpteq12dv 5151 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥}) = (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))
224, 21mpteq12dv 5151 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥})) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
23 df-disoa 38180 . . 3 DIsoA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥})))
2422, 23, 3mptfvmpt 6990 . 2 (𝐾 ∈ V → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
251, 24syl 17 1 (𝐾𝑉 → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494   class class class wbr 5066  cmpt 5146  cfv 6355  Basecbs 16483  lecple 16572  LHypclh 37135  LTrncltrn 37252  trLctrl 37309  DIsoAcdia 38179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-disoa 38180
This theorem is referenced by:  diafval  38182
  Copyright terms: Public domain W3C validator