Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaffval Structured version   Visualization version   GIF version

Theorem diaffval 38971
Description: The partial isomorphism A for a lattice 𝐾. (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
diaval.b 𝐵 = (Base‘𝐾)
diaval.l = (le‘𝐾)
diaval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
diaffval (𝐾𝑉 → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
Distinct variable groups:   𝑥,𝑤,𝑦,   𝑤,𝐵,𝑥,𝑦   𝑤,𝐻   𝑤,𝑓,𝑥,𝑦,𝐾
Allowed substitution hints:   𝐵(𝑓)   𝐻(𝑥,𝑦,𝑓)   (𝑓)   𝑉(𝑥,𝑦,𝑤,𝑓)

Proof of Theorem diaffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6756 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 diaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2797 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6756 . . . . . . 7 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
6 diaval.b . . . . . . 7 𝐵 = (Base‘𝐾)
75, 6eqtr4di 2797 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
8 fveq2 6756 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
9 diaval.l . . . . . . . 8 = (le‘𝐾)
108, 9eqtr4di 2797 . . . . . . 7 (𝑘 = 𝐾 → (le‘𝑘) = )
1110breqd 5081 . . . . . 6 (𝑘 = 𝐾 → (𝑦(le‘𝑘)𝑤𝑦 𝑤))
127, 11rabeqbidv 3410 . . . . 5 (𝑘 = 𝐾 → {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} = {𝑦𝐵𝑦 𝑤})
13 fveq2 6756 . . . . . . 7 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
1413fveq1d 6758 . . . . . 6 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
15 fveq2 6756 . . . . . . . . 9 (𝑘 = 𝐾 → (trL‘𝑘) = (trL‘𝐾))
1615fveq1d 6758 . . . . . . . 8 (𝑘 = 𝐾 → ((trL‘𝑘)‘𝑤) = ((trL‘𝐾)‘𝑤))
1716fveq1d 6758 . . . . . . 7 (𝑘 = 𝐾 → (((trL‘𝑘)‘𝑤)‘𝑓) = (((trL‘𝐾)‘𝑤)‘𝑓))
18 eqidd 2739 . . . . . . 7 (𝑘 = 𝐾𝑥 = 𝑥)
1917, 10, 18breq123d 5084 . . . . . 6 (𝑘 = 𝐾 → ((((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥 ↔ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥))
2014, 19rabeqbidv 3410 . . . . 5 (𝑘 = 𝐾 → {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥} = {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})
2112, 20mpteq12dv 5161 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥}) = (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))
224, 21mpteq12dv 5161 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥})) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
23 df-disoa 38970 . . 3 DIsoA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥})))
2422, 23, 3mptfvmpt 7086 . 2 (𝐾 ∈ V → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
251, 24syl 17 1 (𝐾𝑉 → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422   class class class wbr 5070  cmpt 5153  cfv 6418  Basecbs 16840  lecple 16895  LHypclh 37925  LTrncltrn 38042  trLctrl 38099  DIsoAcdia 38969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-disoa 38970
This theorem is referenced by:  diafval  38972
  Copyright terms: Public domain W3C validator