MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-divs Structured version   Visualization version   GIF version

Definition df-divs 28001
Description: Define surreal division. This is not the definition used in the literature, but we use it here because it is technically easier to work with. (Contributed by Scott Fenton, 12-Mar-2025.)
Assertion
Ref Expression
df-divs /su = (๐‘ฅ โˆˆ No , ๐‘ฆ โˆˆ ( No โˆ– { 0s }) โ†ฆ (โ„ฉ๐‘ง โˆˆ No (๐‘ฆ ยทs ๐‘ง) = ๐‘ฅ))
Distinct variable group:   ๐‘ฅ,๐‘ฆ,๐‘ง

Detailed syntax breakdown of Definition df-divs
StepHypRef Expression
1 cdivs 28000 . 2 class /su
2 vx . . 3 setvar ๐‘ฅ
3 vy . . 3 setvar ๐‘ฆ
4 csur 27486 . . 3 class No
5 c0s 27668 . . . . 5 class 0s
65csn 4628 . . . 4 class { 0s }
74, 6cdif 3945 . . 3 class ( No โˆ– { 0s })
83cv 1539 . . . . . 6 class ๐‘ฆ
9 vz . . . . . . 7 setvar ๐‘ง
109cv 1539 . . . . . 6 class ๐‘ง
11 cmuls 27919 . . . . . 6 class ยทs
128, 10, 11co 7412 . . . . 5 class (๐‘ฆ ยทs ๐‘ง)
132cv 1539 . . . . 5 class ๐‘ฅ
1412, 13wceq 1540 . . . 4 wff (๐‘ฆ ยทs ๐‘ง) = ๐‘ฅ
1514, 9, 4crio 7367 . . 3 class (โ„ฉ๐‘ง โˆˆ No (๐‘ฆ ยทs ๐‘ง) = ๐‘ฅ)
162, 3, 4, 7, 15cmpo 7414 . 2 class (๐‘ฅ โˆˆ No , ๐‘ฆ โˆˆ ( No โˆ– { 0s }) โ†ฆ (โ„ฉ๐‘ง โˆˆ No (๐‘ฆ ยทs ๐‘ง) = ๐‘ฅ))
171, 16wceq 1540 1 wff /su = (๐‘ฅ โˆˆ No , ๐‘ฆ โˆˆ ( No โˆ– { 0s }) โ†ฆ (โ„ฉ๐‘ง โˆˆ No (๐‘ฆ ยทs ๐‘ง) = ๐‘ฅ))
Colors of variables: wff setvar class
This definition is referenced by:  divsval  28002
  Copyright terms: Public domain W3C validator