MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-divs Structured version   Visualization version   GIF version

Definition df-divs 28082
Description: Define surreal division. This is not the definition used in the literature, but we use it here because it is technically easier to work with. (Contributed by Scott Fenton, 12-Mar-2025.)
Assertion
Ref Expression
df-divs /su = (𝑥 No , 𝑦 ∈ ( No ∖ { 0s }) ↦ (𝑧 No (𝑦 ·s 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-divs
StepHypRef Expression
1 cdivs 28081 . 2 class /su
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 csur 27567 . . 3 class No
5 c0s 27749 . . . . 5 class 0s
65csn 4625 . . . 4 class { 0s }
74, 6cdif 3942 . . 3 class ( No ∖ { 0s })
83cv 1533 . . . . . 6 class 𝑦
9 vz . . . . . . 7 setvar 𝑧
109cv 1533 . . . . . 6 class 𝑧
11 cmuls 28000 . . . . . 6 class ·s
128, 10, 11co 7415 . . . . 5 class (𝑦 ·s 𝑧)
132cv 1533 . . . . 5 class 𝑥
1412, 13wceq 1534 . . . 4 wff (𝑦 ·s 𝑧) = 𝑥
1514, 9, 4crio 7370 . . 3 class (𝑧 No (𝑦 ·s 𝑧) = 𝑥)
162, 3, 4, 7, 15cmpo 7417 . 2 class (𝑥 No , 𝑦 ∈ ( No ∖ { 0s }) ↦ (𝑧 No (𝑦 ·s 𝑧) = 𝑥))
171, 16wceq 1534 1 wff /su = (𝑥 No , 𝑦 ∈ ( No ∖ { 0s }) ↦ (𝑧 No (𝑦 ·s 𝑧) = 𝑥))
Colors of variables: wff setvar class
This definition is referenced by:  divsval  28083
  Copyright terms: Public domain W3C validator