| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-divs | Structured version Visualization version GIF version | ||
| Description: Define surreal division. This is not the definition used in the literature, but we use it here because it is technically easier to work with. (Contributed by Scott Fenton, 12-Mar-2025.) |
| Ref | Expression |
|---|---|
| df-divs | ⊢ /su = (𝑥 ∈ No , 𝑦 ∈ ( No ∖ { 0s }) ↦ (℩𝑧 ∈ No (𝑦 ·s 𝑧) = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdivs 28213 | . 2 class /su | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | csur 27684 | . . 3 class No | |
| 5 | c0s 27867 | . . . . 5 class 0s | |
| 6 | 5 | csn 4626 | . . . 4 class { 0s } |
| 7 | 4, 6 | cdif 3948 | . . 3 class ( No ∖ { 0s }) |
| 8 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 9 | vz | . . . . . . 7 setvar 𝑧 | |
| 10 | 9 | cv 1539 | . . . . . 6 class 𝑧 |
| 11 | cmuls 28132 | . . . . . 6 class ·s | |
| 12 | 8, 10, 11 | co 7431 | . . . . 5 class (𝑦 ·s 𝑧) |
| 13 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 14 | 12, 13 | wceq 1540 | . . . 4 wff (𝑦 ·s 𝑧) = 𝑥 |
| 15 | 14, 9, 4 | crio 7387 | . . 3 class (℩𝑧 ∈ No (𝑦 ·s 𝑧) = 𝑥) |
| 16 | 2, 3, 4, 7, 15 | cmpo 7433 | . 2 class (𝑥 ∈ No , 𝑦 ∈ ( No ∖ { 0s }) ↦ (℩𝑧 ∈ No (𝑦 ·s 𝑧) = 𝑥)) |
| 17 | 1, 16 | wceq 1540 | 1 wff /su = (𝑥 ∈ No , 𝑦 ∈ ( No ∖ { 0s }) ↦ (℩𝑧 ∈ No (𝑦 ·s 𝑧) = 𝑥)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: divsval 28215 |
| Copyright terms: Public domain | W3C validator |