![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-divs | Structured version Visualization version GIF version |
Description: Define surreal division. This is not the definition used in the literature, but we use it here because it is technically easier to work with. (Contributed by Scott Fenton, 12-Mar-2025.) |
Ref | Expression |
---|---|
df-divs | ⊢ /su = (𝑥 ∈ No , 𝑦 ∈ ( No ∖ { 0s }) ↦ (℩𝑧 ∈ No (𝑦 ·s 𝑧) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdivs 28081 | . 2 class /su | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | csur 27567 | . . 3 class No | |
5 | c0s 27749 | . . . . 5 class 0s | |
6 | 5 | csn 4625 | . . . 4 class { 0s } |
7 | 4, 6 | cdif 3942 | . . 3 class ( No ∖ { 0s }) |
8 | 3 | cv 1533 | . . . . . 6 class 𝑦 |
9 | vz | . . . . . . 7 setvar 𝑧 | |
10 | 9 | cv 1533 | . . . . . 6 class 𝑧 |
11 | cmuls 28000 | . . . . . 6 class ·s | |
12 | 8, 10, 11 | co 7415 | . . . . 5 class (𝑦 ·s 𝑧) |
13 | 2 | cv 1533 | . . . . 5 class 𝑥 |
14 | 12, 13 | wceq 1534 | . . . 4 wff (𝑦 ·s 𝑧) = 𝑥 |
15 | 14, 9, 4 | crio 7370 | . . 3 class (℩𝑧 ∈ No (𝑦 ·s 𝑧) = 𝑥) |
16 | 2, 3, 4, 7, 15 | cmpo 7417 | . 2 class (𝑥 ∈ No , 𝑦 ∈ ( No ∖ { 0s }) ↦ (℩𝑧 ∈ No (𝑦 ·s 𝑧) = 𝑥)) |
17 | 1, 16 | wceq 1534 | 1 wff /su = (𝑥 ∈ No , 𝑦 ∈ ( No ∖ { 0s }) ↦ (℩𝑧 ∈ No (𝑦 ·s 𝑧) = 𝑥)) |
Colors of variables: wff setvar class |
This definition is referenced by: divsval 28083 |
Copyright terms: Public domain | W3C validator |