![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divsval | Structured version Visualization version GIF version |
Description: The value of surreal division. (Contributed by Scott Fenton, 12-Mar-2025.) |
Ref | Expression |
---|---|
divsval | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4786 | . . 3 ⊢ (𝐵 ∈ ( No ∖ { 0s }) ↔ (𝐵 ∈ No ∧ 𝐵 ≠ 0s )) | |
2 | eqeq2 2739 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑧 ·s 𝑥) = 𝑦 ↔ (𝑧 ·s 𝑥) = 𝐴)) | |
3 | 2 | riotabidv 7372 | . . . 4 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ No (𝑧 ·s 𝑥) = 𝑦) = (℩𝑥 ∈ No (𝑧 ·s 𝑥) = 𝐴)) |
4 | oveq1 7421 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧 ·s 𝑥) = (𝐵 ·s 𝑥)) | |
5 | 4 | eqeq1d 2729 | . . . . 5 ⊢ (𝑧 = 𝐵 → ((𝑧 ·s 𝑥) = 𝐴 ↔ (𝐵 ·s 𝑥) = 𝐴)) |
6 | 5 | riotabidv 7372 | . . . 4 ⊢ (𝑧 = 𝐵 → (℩𝑥 ∈ No (𝑧 ·s 𝑥) = 𝐴) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) |
7 | df-divs 28075 | . . . 4 ⊢ /su = (𝑦 ∈ No , 𝑧 ∈ ( No ∖ { 0s }) ↦ (℩𝑥 ∈ No (𝑧 ·s 𝑥) = 𝑦)) | |
8 | riotaex 7374 | . . . 4 ⊢ (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴) ∈ V | |
9 | 3, 6, 7, 8 | ovmpo 7575 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ ( No ∖ { 0s })) → (𝐴 /su 𝐵) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) |
10 | 1, 9 | sylan2br 594 | . 2 ⊢ ((𝐴 ∈ No ∧ (𝐵 ∈ No ∧ 𝐵 ≠ 0s )) → (𝐴 /su 𝐵) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) |
11 | 10 | 3impb 1113 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∖ cdif 3941 {csn 4624 ℩crio 7369 (class class class)co 7414 No csur 27560 0s c0s 27742 ·s cmuls 27993 /su cdivs 28074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-divs 28075 |
This theorem is referenced by: divsmulw 28079 divsclw 28081 |
Copyright terms: Public domain | W3C validator |