MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsval Structured version   Visualization version   GIF version

Theorem divsval 28126
Description: The value of surreal division. (Contributed by Scott Fenton, 12-Mar-2025.)
Assertion
Ref Expression
divsval ((𝐴 No 𝐵 No 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) = (𝑥 No (𝐵 ·s 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem divsval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4738 . . 3 (𝐵 ∈ ( No ∖ { 0s }) ↔ (𝐵 No 𝐵 ≠ 0s ))
2 eqeq2 2743 . . . . 5 (𝑦 = 𝐴 → ((𝑧 ·s 𝑥) = 𝑦 ↔ (𝑧 ·s 𝑥) = 𝐴))
32riotabidv 7305 . . . 4 (𝑦 = 𝐴 → (𝑥 No (𝑧 ·s 𝑥) = 𝑦) = (𝑥 No (𝑧 ·s 𝑥) = 𝐴))
4 oveq1 7353 . . . . . 6 (𝑧 = 𝐵 → (𝑧 ·s 𝑥) = (𝐵 ·s 𝑥))
54eqeq1d 2733 . . . . 5 (𝑧 = 𝐵 → ((𝑧 ·s 𝑥) = 𝐴 ↔ (𝐵 ·s 𝑥) = 𝐴))
65riotabidv 7305 . . . 4 (𝑧 = 𝐵 → (𝑥 No (𝑧 ·s 𝑥) = 𝐴) = (𝑥 No (𝐵 ·s 𝑥) = 𝐴))
7 df-divs 28125 . . . 4 /su = (𝑦 No , 𝑧 ∈ ( No ∖ { 0s }) ↦ (𝑥 No (𝑧 ·s 𝑥) = 𝑦))
8 riotaex 7307 . . . 4 (𝑥 No (𝐵 ·s 𝑥) = 𝐴) ∈ V
93, 6, 7, 8ovmpo 7506 . . 3 ((𝐴 No 𝐵 ∈ ( No ∖ { 0s })) → (𝐴 /su 𝐵) = (𝑥 No (𝐵 ·s 𝑥) = 𝐴))
101, 9sylan2br 595 . 2 ((𝐴 No ∧ (𝐵 No 𝐵 ≠ 0s )) → (𝐴 /su 𝐵) = (𝑥 No (𝐵 ·s 𝑥) = 𝐴))
11103impb 1114 1 ((𝐴 No 𝐵 No 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) = (𝑥 No (𝐵 ·s 𝑥) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cdif 3899  {csn 4576  crio 7302  (class class class)co 7346   No csur 27576   0s c0s 27764   ·s cmuls 28043   /su cdivs 28124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-divs 28125
This theorem is referenced by:  divsmulw  28130  divsclw  28132
  Copyright terms: Public domain W3C validator