| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divsval | Structured version Visualization version GIF version | ||
| Description: The value of surreal division. (Contributed by Scott Fenton, 12-Mar-2025.) |
| Ref | Expression |
|---|---|
| divsval | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4738 | . . 3 ⊢ (𝐵 ∈ ( No ∖ { 0s }) ↔ (𝐵 ∈ No ∧ 𝐵 ≠ 0s )) | |
| 2 | eqeq2 2743 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑧 ·s 𝑥) = 𝑦 ↔ (𝑧 ·s 𝑥) = 𝐴)) | |
| 3 | 2 | riotabidv 7305 | . . . 4 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ No (𝑧 ·s 𝑥) = 𝑦) = (℩𝑥 ∈ No (𝑧 ·s 𝑥) = 𝐴)) |
| 4 | oveq1 7353 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧 ·s 𝑥) = (𝐵 ·s 𝑥)) | |
| 5 | 4 | eqeq1d 2733 | . . . . 5 ⊢ (𝑧 = 𝐵 → ((𝑧 ·s 𝑥) = 𝐴 ↔ (𝐵 ·s 𝑥) = 𝐴)) |
| 6 | 5 | riotabidv 7305 | . . . 4 ⊢ (𝑧 = 𝐵 → (℩𝑥 ∈ No (𝑧 ·s 𝑥) = 𝐴) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) |
| 7 | df-divs 28125 | . . . 4 ⊢ /su = (𝑦 ∈ No , 𝑧 ∈ ( No ∖ { 0s }) ↦ (℩𝑥 ∈ No (𝑧 ·s 𝑥) = 𝑦)) | |
| 8 | riotaex 7307 | . . . 4 ⊢ (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴) ∈ V | |
| 9 | 3, 6, 7, 8 | ovmpo 7506 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ ( No ∖ { 0s })) → (𝐴 /su 𝐵) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) |
| 10 | 1, 9 | sylan2br 595 | . 2 ⊢ ((𝐴 ∈ No ∧ (𝐵 ∈ No ∧ 𝐵 ≠ 0s )) → (𝐴 /su 𝐵) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) |
| 11 | 10 | 3impb 1114 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 {csn 4576 ℩crio 7302 (class class class)co 7346 No csur 27576 0s c0s 27764 ·s cmuls 28043 /su cdivs 28124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-divs 28125 |
| This theorem is referenced by: divsmulw 28130 divsclw 28132 |
| Copyright terms: Public domain | W3C validator |