MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsval Structured version   Visualization version   GIF version

Theorem divsval 28129
Description: The value of surreal division. (Contributed by Scott Fenton, 12-Mar-2025.)
Assertion
Ref Expression
divsval ((𝐴 No 𝐵 No 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) = (𝑥 No (𝐵 ·s 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem divsval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4737 . . 3 (𝐵 ∈ ( No ∖ { 0s }) ↔ (𝐵 No 𝐵 ≠ 0s ))
2 eqeq2 2745 . . . . 5 (𝑦 = 𝐴 → ((𝑧 ·s 𝑥) = 𝑦 ↔ (𝑧 ·s 𝑥) = 𝐴))
32riotabidv 7311 . . . 4 (𝑦 = 𝐴 → (𝑥 No (𝑧 ·s 𝑥) = 𝑦) = (𝑥 No (𝑧 ·s 𝑥) = 𝐴))
4 oveq1 7359 . . . . . 6 (𝑧 = 𝐵 → (𝑧 ·s 𝑥) = (𝐵 ·s 𝑥))
54eqeq1d 2735 . . . . 5 (𝑧 = 𝐵 → ((𝑧 ·s 𝑥) = 𝐴 ↔ (𝐵 ·s 𝑥) = 𝐴))
65riotabidv 7311 . . . 4 (𝑧 = 𝐵 → (𝑥 No (𝑧 ·s 𝑥) = 𝐴) = (𝑥 No (𝐵 ·s 𝑥) = 𝐴))
7 df-divs 28128 . . . 4 /su = (𝑦 No , 𝑧 ∈ ( No ∖ { 0s }) ↦ (𝑥 No (𝑧 ·s 𝑥) = 𝑦))
8 riotaex 7313 . . . 4 (𝑥 No (𝐵 ·s 𝑥) = 𝐴) ∈ V
93, 6, 7, 8ovmpo 7512 . . 3 ((𝐴 No 𝐵 ∈ ( No ∖ { 0s })) → (𝐴 /su 𝐵) = (𝑥 No (𝐵 ·s 𝑥) = 𝐴))
101, 9sylan2br 595 . 2 ((𝐴 No ∧ (𝐵 No 𝐵 ≠ 0s )) → (𝐴 /su 𝐵) = (𝑥 No (𝐵 ·s 𝑥) = 𝐴))
11103impb 1114 1 ((𝐴 No 𝐵 No 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) = (𝑥 No (𝐵 ·s 𝑥) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  cdif 3895  {csn 4575  crio 7308  (class class class)co 7352   No csur 27579   0s c0s 27767   ·s cmuls 28046   /su cdivs 28127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-divs 28128
This theorem is referenced by:  divsmulw  28133  divsclw  28135
  Copyright terms: Public domain W3C validator