MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsval Structured version   Visualization version   GIF version

Theorem divsval 28233
Description: The value of surreal division. (Contributed by Scott Fenton, 12-Mar-2025.)
Assertion
Ref Expression
divsval ((𝐴 No 𝐵 No 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) = (𝑥 No (𝐵 ·s 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem divsval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4811 . . 3 (𝐵 ∈ ( No ∖ { 0s }) ↔ (𝐵 No 𝐵 ≠ 0s ))
2 eqeq2 2752 . . . . 5 (𝑦 = 𝐴 → ((𝑧 ·s 𝑥) = 𝑦 ↔ (𝑧 ·s 𝑥) = 𝐴))
32riotabidv 7406 . . . 4 (𝑦 = 𝐴 → (𝑥 No (𝑧 ·s 𝑥) = 𝑦) = (𝑥 No (𝑧 ·s 𝑥) = 𝐴))
4 oveq1 7455 . . . . . 6 (𝑧 = 𝐵 → (𝑧 ·s 𝑥) = (𝐵 ·s 𝑥))
54eqeq1d 2742 . . . . 5 (𝑧 = 𝐵 → ((𝑧 ·s 𝑥) = 𝐴 ↔ (𝐵 ·s 𝑥) = 𝐴))
65riotabidv 7406 . . . 4 (𝑧 = 𝐵 → (𝑥 No (𝑧 ·s 𝑥) = 𝐴) = (𝑥 No (𝐵 ·s 𝑥) = 𝐴))
7 df-divs 28232 . . . 4 /su = (𝑦 No , 𝑧 ∈ ( No ∖ { 0s }) ↦ (𝑥 No (𝑧 ·s 𝑥) = 𝑦))
8 riotaex 7408 . . . 4 (𝑥 No (𝐵 ·s 𝑥) = 𝐴) ∈ V
93, 6, 7, 8ovmpo 7610 . . 3 ((𝐴 No 𝐵 ∈ ( No ∖ { 0s })) → (𝐴 /su 𝐵) = (𝑥 No (𝐵 ·s 𝑥) = 𝐴))
101, 9sylan2br 594 . 2 ((𝐴 No ∧ (𝐵 No 𝐵 ≠ 0s )) → (𝐴 /su 𝐵) = (𝑥 No (𝐵 ·s 𝑥) = 𝐴))
11103impb 1115 1 ((𝐴 No 𝐵 No 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) = (𝑥 No (𝐵 ·s 𝑥) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973  {csn 4648  crio 7403  (class class class)co 7448   No csur 27702   0s c0s 27885   ·s cmuls 28150   /su cdivs 28231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-divs 28232
This theorem is referenced by:  divsmulw  28236  divsclw  28238
  Copyright terms: Public domain W3C validator