| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divsval | Structured version Visualization version GIF version | ||
| Description: The value of surreal division. (Contributed by Scott Fenton, 12-Mar-2025.) |
| Ref | Expression |
|---|---|
| divsval | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4740 | . . 3 ⊢ (𝐵 ∈ ( No ∖ { 0s }) ↔ (𝐵 ∈ No ∧ 𝐵 ≠ 0s )) | |
| 2 | eqeq2 2741 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑧 ·s 𝑥) = 𝑦 ↔ (𝑧 ·s 𝑥) = 𝐴)) | |
| 3 | 2 | riotabidv 7312 | . . . 4 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ No (𝑧 ·s 𝑥) = 𝑦) = (℩𝑥 ∈ No (𝑧 ·s 𝑥) = 𝐴)) |
| 4 | oveq1 7360 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧 ·s 𝑥) = (𝐵 ·s 𝑥)) | |
| 5 | 4 | eqeq1d 2731 | . . . . 5 ⊢ (𝑧 = 𝐵 → ((𝑧 ·s 𝑥) = 𝐴 ↔ (𝐵 ·s 𝑥) = 𝐴)) |
| 6 | 5 | riotabidv 7312 | . . . 4 ⊢ (𝑧 = 𝐵 → (℩𝑥 ∈ No (𝑧 ·s 𝑥) = 𝐴) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) |
| 7 | df-divs 28114 | . . . 4 ⊢ /su = (𝑦 ∈ No , 𝑧 ∈ ( No ∖ { 0s }) ↦ (℩𝑥 ∈ No (𝑧 ·s 𝑥) = 𝑦)) | |
| 8 | riotaex 7314 | . . . 4 ⊢ (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴) ∈ V | |
| 9 | 3, 6, 7, 8 | ovmpo 7513 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ ( No ∖ { 0s })) → (𝐴 /su 𝐵) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) |
| 10 | 1, 9 | sylan2br 595 | . 2 ⊢ ((𝐴 ∈ No ∧ (𝐵 ∈ No ∧ 𝐵 ≠ 0s )) → (𝐴 /su 𝐵) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) |
| 11 | 10 | 3impb 1114 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 {csn 4579 ℩crio 7309 (class class class)co 7353 No csur 27567 0s c0s 27754 ·s cmuls 28032 /su cdivs 28113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-divs 28114 |
| This theorem is referenced by: divsmulw 28119 divsclw 28121 |
| Copyright terms: Public domain | W3C validator |