| Metamath
Proof Explorer Theorem List (p. 281 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | pncan2s 28001 | Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) -s 𝐴) = 𝐵) | ||
| Theorem | npcans 28002 | Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴) | ||
| Theorem | sltsub1 28003 | Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐴 -s 𝐶) <s (𝐵 -s 𝐶))) | ||
| Theorem | sltsub2 28004 | Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐶 -s 𝐵) <s (𝐶 -s 𝐴))) | ||
| Theorem | sltsub1d 28005 | Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 -s 𝐶) <s (𝐵 -s 𝐶))) | ||
| Theorem | sltsub2d 28006 | Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 -s 𝐵) <s (𝐶 -s 𝐴))) | ||
| Theorem | negsubsdi2d 28007 | Distribution of negative over subtraction. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ( -us ‘(𝐴 -s 𝐵)) = (𝐵 -s 𝐴)) | ||
| Theorem | addsubsassd 28008 | Associative-type law for surreal addition and subtraction. (Contributed by Scott Fenton, 6-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) -s 𝐶) = (𝐴 +s (𝐵 -s 𝐶))) | ||
| Theorem | addsubsd 28009 | Law for surreal addition and subtraction. (Contributed by Scott Fenton, 4-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) -s 𝐶) = ((𝐴 -s 𝐶) +s 𝐵)) | ||
| Theorem | sltsubsubbd 28010 | Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 6-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷))) | ||
| Theorem | sltsubsub2bd 28011 | Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) <s (𝐶 -s 𝐷) ↔ (𝐷 -s 𝐶) <s (𝐵 -s 𝐴))) | ||
| Theorem | sltsubsub3bd 28012 | Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐷 -s 𝐶) <s (𝐵 -s 𝐴))) | ||
| Theorem | slesubsubbd 28013 | Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐶) ≤s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) ≤s (𝐶 -s 𝐷))) | ||
| Theorem | slesubsub2bd 28014 | Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) ≤s (𝐶 -s 𝐷) ↔ (𝐷 -s 𝐶) ≤s (𝐵 -s 𝐴))) | ||
| Theorem | slesubsub3bd 28015 | Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐶) ≤s (𝐵 -s 𝐷) ↔ (𝐷 -s 𝐶) ≤s (𝐵 -s 𝐴))) | ||
| Theorem | sltsubaddd 28016 | Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 27-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) <s 𝐶 ↔ 𝐴 <s (𝐶 +s 𝐵))) | ||
| Theorem | sltsubadd2d 28017 | Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 27-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) <s 𝐶 ↔ 𝐴 <s (𝐵 +s 𝐶))) | ||
| Theorem | sltaddsubd 28018 | Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 28-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) <s 𝐶 ↔ 𝐴 <s (𝐶 -s 𝐵))) | ||
| Theorem | sltaddsub2d 28019 | Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 28-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) <s 𝐶 ↔ 𝐵 <s (𝐶 -s 𝐴))) | ||
| Theorem | slesubaddd 28020 | Surreal less-than or equal relationship between subtraction and addition. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) ≤s 𝐶 ↔ 𝐴 ≤s (𝐶 +s 𝐵))) | ||
| Theorem | subsubs4d 28021 | Law for double surreal subtraction. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) -s 𝐶) = (𝐴 -s (𝐵 +s 𝐶))) | ||
| Theorem | subsubs2d 28022 | Law for double surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 -s (𝐵 -s 𝐶)) = (𝐴 +s (𝐶 -s 𝐵))) | ||
| Theorem | nncansd 28023 | Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 -s (𝐴 -s 𝐵)) = 𝐵) | ||
| Theorem | posdifsd 28024 | Comparison of two surreals whose difference is positive. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ 0s <s (𝐵 -s 𝐴))) | ||
| Theorem | sltsubposd 28025 | Subtraction of a positive number decreases the sum. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ( 0s <s 𝐴 ↔ (𝐵 -s 𝐴) <s 𝐵)) | ||
| Theorem | subsge0d 28026 | Non-negative subtraction. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ( 0s ≤s (𝐴 -s 𝐵) ↔ 𝐵 ≤s 𝐴)) | ||
| Theorem | addsubs4d 28027 | Rearrangement of four terms in mixed addition and subtraction. Surreal version. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) -s (𝐶 +s 𝐷)) = ((𝐴 -s 𝐶) +s (𝐵 -s 𝐷))) | ||
| Theorem | sltm1d 28028 | A surreal is greater than itself minus one. (Contributed by Scott Fenton, 20-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 -s 1s ) <s 𝐴) | ||
| Theorem | subscan1d 28029 | Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐶 -s 𝐴) = (𝐶 -s 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | subscan2d 28030 | Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐶) = (𝐵 -s 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | subseq0d 28031 | The difference between two surreals is zero iff they are equal. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) = 0s ↔ 𝐴 = 𝐵)) | ||
| Syntax | cmuls 28032 | Set up the syntax for surreal multiplication. |
| class ·s | ||
| Definition | df-muls 28033* | Define surreal multiplication. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ·s = norec2 ((𝑧 ∈ V, 𝑚 ∈ V ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))) | ||
| Theorem | mulsfn 28034 | Surreal multiplication is a function over surreals. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ·s Fn ( No × No ) | ||
| Theorem | mulsval 28035* | The value of surreal multiplication. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) | ||
| Theorem | mulsval2lem 28036* | Lemma for mulsval2 28037. Change bound variables in one of the cases. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ {𝑎 ∣ ∃𝑝 ∈ 𝑋 ∃𝑞 ∈ 𝑌 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑏 ∣ ∃𝑟 ∈ 𝑋 ∃𝑠 ∈ 𝑌 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} | ||
| Theorem | mulsval2 28037* | The value of surreal multiplication, expressed with fewer distinct variable conditions. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) | ||
| Theorem | muls01 28038 | Surreal multiplication by zero. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 ·s 0s ) = 0s ) | ||
| Theorem | mulsrid 28039 | Surreal one is a right identity element for multiplication. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 ·s 1s ) = 𝐴) | ||
| Theorem | mulsridd 28040 | Surreal one is a right identity element for multiplication. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s 1s ) = 𝐴) | ||
| Theorem | mulsproplemcbv 28041* | Lemma for surreal multiplication. Change some bound variables for later use. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) ⇒ ⊢ (𝜑 → ∀𝑔 ∈ No ∀ℎ ∈ No ∀𝑖 ∈ No ∀𝑗 ∈ No ∀𝑘 ∈ No ∀𝑙 ∈ No (((( bday ‘𝑔) +no ( bday ‘ℎ)) ∪ (((( bday ‘𝑖) +no ( bday ‘𝑘)) ∪ (( bday ‘𝑗) +no ( bday ‘𝑙))) ∪ ((( bday ‘𝑖) +no ( bday ‘𝑙)) ∪ (( bday ‘𝑗) +no ( bday ‘𝑘))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑔 ·s ℎ) ∈ No ∧ ((𝑖 <s 𝑗 ∧ 𝑘 <s 𝑙) → ((𝑖 ·s 𝑙) -s (𝑖 ·s 𝑘)) <s ((𝑗 ·s 𝑙) -s (𝑗 ·s 𝑘)))))) | ||
| Theorem | mulsproplem1 28042* | Lemma for surreal multiplication. Instantiate some variables. (Contributed by Scott Fenton, 4-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → 𝑍 ∈ No ) & ⊢ (𝜑 → 𝑊 ∈ No ) & ⊢ (𝜑 → 𝑇 ∈ No ) & ⊢ (𝜑 → 𝑈 ∈ No ) & ⊢ (𝜑 → ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday ‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday ‘𝑊) +no ( bday ‘𝑈))) ∪ ((( bday ‘𝑍) +no ( bday ‘𝑈)) ∪ (( bday ‘𝑊) +no ( bday ‘𝑇))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸)))))) ⇒ ⊢ (𝜑 → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊 ∧ 𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇))))) | ||
| Theorem | mulsproplem2 28043* | Lemma for surreal multiplication. Under the inductive hypothesis, the product of a member of the old set of 𝐴 and 𝐵 itself is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝑋 ∈ ( O ‘( bday ‘𝐴))) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝑋 ·s 𝐵) ∈ No ) | ||
| Theorem | mulsproplem3 28044* | Lemma for surreal multiplication. Under the inductive hypothesis, the product of 𝐴 itself and a member of the old set of 𝐵 is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ ( O ‘( bday ‘𝐵))) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝑌) ∈ No ) | ||
| Theorem | mulsproplem4 28045* | Lemma for surreal multiplication. Under the inductive hypothesis, the product of a member of the old set of 𝐴 and a member of the old set of 𝐵 is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝑋 ∈ ( O ‘( bday ‘𝐴))) & ⊢ (𝜑 → 𝑌 ∈ ( O ‘( bday ‘𝐵))) ⇒ ⊢ (𝜑 → (𝑋 ·s 𝑌) ∈ No ) | ||
| Theorem | mulsproplem5 28046* | Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 4-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑃 ∈ ( L ‘𝐴)) & ⊢ (𝜑 → 𝑄 ∈ ( L ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ ( L ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ ( R ‘𝐵)) ⇒ ⊢ (𝜑 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) | ||
| Theorem | mulsproplem6 28047* | Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑃 ∈ ( L ‘𝐴)) & ⊢ (𝜑 → 𝑄 ∈ ( L ‘𝐵)) & ⊢ (𝜑 → 𝑉 ∈ ( R ‘𝐴)) & ⊢ (𝜑 → 𝑊 ∈ ( L ‘𝐵)) ⇒ ⊢ (𝜑 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊))) | ||
| Theorem | mulsproplem7 28048* | Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑅 ∈ ( R ‘𝐴)) & ⊢ (𝜑 → 𝑆 ∈ ( R ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ ( L ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ ( R ‘𝐵)) ⇒ ⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) | ||
| Theorem | mulsproplem8 28049* | Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑅 ∈ ( R ‘𝐴)) & ⊢ (𝜑 → 𝑆 ∈ ( R ‘𝐵)) & ⊢ (𝜑 → 𝑉 ∈ ( R ‘𝐴)) & ⊢ (𝜑 → 𝑊 ∈ ( L ‘𝐵)) ⇒ ⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊))) | ||
| Theorem | mulsproplem9 28050* | Lemma for surreal multiplication. Show that the cut involved in surreal multiplication makes sense. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) | ||
| Theorem | mulsproplem10 28051* | Lemma for surreal multiplication. State the cut properties of surreal multiplication. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) | ||
| Theorem | mulsproplem11 28052* | Lemma for surreal multiplication. Under the inductive hypothesis, demonstrate closure of surreal multiplication. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) | ||
| Theorem | mulsproplem12 28053* | Lemma for surreal multiplication. Demonstrate the second half of the inductive statement assuming 𝐶 and 𝐷 are not the same age and 𝐸 and 𝐹 are not the same age. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐸 ∈ No ) & ⊢ (𝜑 → 𝐹 ∈ No ) & ⊢ (𝜑 → 𝐶 <s 𝐷) & ⊢ (𝜑 → 𝐸 <s 𝐹) & ⊢ (𝜑 → (( bday ‘𝐶) ∈ ( bday ‘𝐷) ∨ ( bday ‘𝐷) ∈ ( bday ‘𝐶))) & ⊢ (𝜑 → (( bday ‘𝐸) ∈ ( bday ‘𝐹) ∨ ( bday ‘𝐹) ∈ ( bday ‘𝐸))) ⇒ ⊢ (𝜑 → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸))) | ||
| Theorem | mulsproplem13 28054* | Lemma for surreal multiplication. Remove the restriction on 𝐶 and 𝐷 from mulsproplem12 28053. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐸 ∈ No ) & ⊢ (𝜑 → 𝐹 ∈ No ) & ⊢ (𝜑 → 𝐶 <s 𝐷) & ⊢ (𝜑 → 𝐸 <s 𝐹) & ⊢ (𝜑 → (( bday ‘𝐸) ∈ ( bday ‘𝐹) ∨ ( bday ‘𝐹) ∈ ( bday ‘𝐸))) ⇒ ⊢ (𝜑 → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸))) | ||
| Theorem | mulsproplem14 28055* | Lemma for surreal multiplication. Finally, we remove the restriction on 𝐸 and 𝐹 from mulsproplem12 28053 and mulsproplem13 28054. This completes the induction on surreal multiplication. mulsprop 28056 brings all this together technically. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐸 ∈ No ) & ⊢ (𝜑 → 𝐹 ∈ No ) & ⊢ (𝜑 → 𝐶 <s 𝐷) & ⊢ (𝜑 → 𝐸 <s 𝐹) ⇒ ⊢ (𝜑 → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸))) | ||
| Theorem | mulsprop 28056 | Surreals are closed under multiplication and obey a particular ordering law. Theorem 3.4 of [Gonshor] p. 17. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (𝐶 ∈ No ∧ 𝐷 ∈ No ) ∧ (𝐸 ∈ No ∧ 𝐹 ∈ No )) → ((𝐴 ·s 𝐵) ∈ No ∧ ((𝐶 <s 𝐷 ∧ 𝐸 <s 𝐹) → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸))))) | ||
| Theorem | mulscutlem 28057* | Lemma for mulscut 28058. State the theorem with extra DV conditions. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) | ||
| Theorem | mulscut 28058* | Show the cut properties of surreal multiplication. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) | ||
| Theorem | mulscut2 28059* | Show that the cut involved in surreal multiplication is actually a cut. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) | ||
| Theorem | mulscl 28060 | The surreals are closed under multiplication. Theorem 8(i) of [Conway] p. 19. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) ∈ No ) | ||
| Theorem | mulscld 28061 | The surreals are closed under multiplication. Theorem 8(i) of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) | ||
| Theorem | sltmul 28062 | An ordering relationship for surreal multiplication. Compare theorem 8(iii) of [Conway] p. 19. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (𝐶 ∈ No ∧ 𝐷 ∈ No )) → ((𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))) | ||
| Theorem | sltmuld 28063 | An ordering relationship for surreal multiplication. Compare theorem 8(iii) of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → 𝐶 <s 𝐷) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) | ||
| Theorem | slemuld 28064 | An ordering relationship for surreal multiplication. Compare theorem 8(iii) of [Conway] p. 19. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐴 ≤s 𝐵) & ⊢ (𝜑 → 𝐶 ≤s 𝐷) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) | ||
| Theorem | mulscom 28065 | Surreal multiplication commutes. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) = (𝐵 ·s 𝐴)) | ||
| Theorem | mulscomd 28066 | Surreal multiplication commutes. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (𝐵 ·s 𝐴)) | ||
| Theorem | muls02 28067 | Surreal multiplication by zero. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ( 0s ·s 𝐴) = 0s ) | ||
| Theorem | mulslid 28068 | Surreal one is a left identity element for multiplication. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ( 1s ·s 𝐴) = 𝐴) | ||
| Theorem | mulslidd 28069 | Surreal one is a left identity element for multiplication. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → ( 1s ·s 𝐴) = 𝐴) | ||
| Theorem | mulsgt0 28070 | The product of two positive surreals is positive. Theorem 9 of [Conway] p. 20. (Contributed by Scott Fenton, 6-Mar-2025.) |
| ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵)) | ||
| Theorem | mulsgt0d 28071 | The product of two positive surreals is positive. Theorem 9 of [Conway] p. 20. (Contributed by Scott Fenton, 6-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → 0s <s 𝐵) ⇒ ⊢ (𝜑 → 0s <s (𝐴 ·s 𝐵)) | ||
| Theorem | mulsge0d 28072 | The product of two non-negative surreals is non-negative. (Contributed by Scott Fenton, 6-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 0s ≤s 𝐴) & ⊢ (𝜑 → 0s ≤s 𝐵) ⇒ ⊢ (𝜑 → 0s ≤s (𝐴 ·s 𝐵)) | ||
| Theorem | ssltmul1 28073* | One surreal set less-than relationship for cuts of 𝐴 and 𝐵. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)}) | ||
| Theorem | ssltmul2 28074* | One surreal set less-than relationship for cuts of 𝐴 and 𝐵. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) | ||
| Theorem | mulsuniflem 28075* | Lemma for mulsunif 28076. State the theorem with some extra distinct variable conditions. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) | ||
| Theorem | mulsunif 28076* | Surreal multiplication has the uniformity property. That is, any cuts that define 𝐴 and 𝐵 can be used in the definition of (𝐴 ·s 𝐵). Theorem 3.5 of [Gonshor] p. 18. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) | ||
| Theorem | addsdilem1 28077* | Lemma for surreal distribution. Expand the left hand side of the main expression. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s (𝐵 +s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))})))) | ||
| Theorem | addsdilem2 28078* | Lemma for surreal distribution. Expand the right hand side of the main expression. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))})))) | ||
| Theorem | addsdilem3 28079* | Lemma for addsdi 28081. Show one of the equalities involved in the final expression. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))(𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝐴 ·s (𝑦𝑂 +s 𝐶)) = ((𝐴 ·s 𝑦𝑂) +s (𝐴 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝑥𝑂 ·s (𝑦𝑂 +s 𝐶)) = ((𝑥𝑂 ·s 𝑦𝑂) +s (𝑥𝑂 ·s 𝐶))) & ⊢ (𝜓 → 𝑋 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) & ⊢ (𝜓 → 𝑌 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑌 +s 𝐶))) -s (𝑋 ·s (𝑌 +s 𝐶))) = ((((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) -s (𝑋 ·s 𝑌)) +s (𝐴 ·s 𝐶))) | ||
| Theorem | addsdilem4 28080* | Lemma for addsdi 28081. Show one of the equalities involved in the final expression. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))(𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))(𝐴 ·s (𝐵 +s 𝑧𝑂)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))(𝑥𝑂 ·s (𝐵 +s 𝑧𝑂)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝑧𝑂))) & ⊢ (𝜓 → 𝑋 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) & ⊢ (𝜓 → 𝑍 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑍))) -s (𝑋 ·s (𝐵 +s 𝑍))) = ((𝐴 ·s 𝐵) +s (((𝑋 ·s 𝐶) +s (𝐴 ·s 𝑍)) -s (𝑋 ·s 𝑍)))) | ||
| Theorem | addsdi 28081 | Distributive law for surreal numbers. Commuted form of part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ·s (𝐵 +s 𝐶)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝐶))) | ||
| Theorem | addsdid 28082 | Distributive law for surreal numbers. Commuted form of part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s (𝐵 +s 𝐶)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝐶))) | ||
| Theorem | addsdird 28083 | Distributive law for surreal numbers. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) ·s 𝐶) = ((𝐴 ·s 𝐶) +s (𝐵 ·s 𝐶))) | ||
| Theorem | subsdid 28084 | Distribution of surreal multiplication over subtraction. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s (𝐵 -s 𝐶)) = ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝐶))) | ||
| Theorem | subsdird 28085 | Distribution of surreal multiplication over subtraction. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) ·s 𝐶) = ((𝐴 ·s 𝐶) -s (𝐵 ·s 𝐶))) | ||
| Theorem | mulnegs1d 28086 | Product with negative is negative of product. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (( -us ‘𝐴) ·s 𝐵) = ( -us ‘(𝐴 ·s 𝐵))) | ||
| Theorem | mulnegs2d 28087 | Product with negative is negative of product. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s ( -us ‘𝐵)) = ( -us ‘(𝐴 ·s 𝐵))) | ||
| Theorem | mul2negsd 28088 | Surreal product of two negatives. (Contributed by Scott Fenton, 15-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (( -us ‘𝐴) ·s ( -us ‘𝐵)) = (𝐴 ·s 𝐵)) | ||
| Theorem | mulsasslem1 28089* | Lemma for mulsass 28092. Expand the left hand side of the formula. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ·s 𝐶) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))})))) | ||
| Theorem | mulsasslem2 28090* | Lemma for mulsass 28092. Expand the right hand side of the formula. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s (𝐵 ·s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))})))) | ||
| Theorem | mulsasslem3 28091* | Lemma for mulsass 28092. Demonstrate the central equality. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ 𝑃 ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴)) & ⊢ 𝑄 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵)) & ⊢ 𝑅 ⊆ (( L ‘𝐶) ∪ ( R ‘𝐶)) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝐶) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝑥𝑂 ·s 𝐵) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝐵 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝐴 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝐴 ·s (𝑦𝑂 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))((𝑥𝑂 ·s 𝐵) ·s 𝐶) = (𝑥𝑂 ·s (𝐵 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))((𝐴 ·s 𝑦𝑂) ·s 𝐶) = (𝐴 ·s (𝑦𝑂 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝐴 ·s 𝐵) ·s 𝑧𝑂) = (𝐴 ·s (𝐵 ·s 𝑧𝑂))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑄 ∃𝑧 ∈ 𝑅 𝑎 = ((((((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧)) -s ((((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ·s 𝑧)) ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑄 ∃𝑧 ∈ 𝑅 𝑎 = (((𝑥 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦 ·s 𝐶) +s (𝐵 ·s 𝑧)) -s (𝑦 ·s 𝑧)))) -s (𝑥 ·s (((𝑦 ·s 𝐶) +s (𝐵 ·s 𝑧)) -s (𝑦 ·s 𝑧)))))) | ||
| Theorem | mulsass 28092 | Associative law for surreal multiplication. Part of theorem 7 of [Conway] p. 19. Much like the case for additive groups, this theorem together with mulscom 28065, addsdi 28081, mulsgt0 28070, and the addition theorems would make the surreals into an ordered ring except that they are a proper class. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶))) | ||
| Theorem | mulsassd 28093 | Associative law for surreal multiplication. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶))) | ||
| Theorem | muls4d 28094 | Rearrangement of four surreal factors. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ·s (𝐶 ·s 𝐷)) = ((𝐴 ·s 𝐶) ·s (𝐵 ·s 𝐷))) | ||
| Theorem | mulsunif2lem 28095* | Lemma for mulsunif2 28096. State the theorem with extra disjoint variable conditions. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}))) | ||
| Theorem | mulsunif2 28096* | Alternate expression for surreal multiplication. Note from [Conway] p. 19. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}))) | ||
| Theorem | sltmul2 28097 | Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 <s 𝐶 ↔ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶))) | ||
| Theorem | sltmul2d 28098 | Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 ·s 𝐴) <s (𝐶 ·s 𝐵))) | ||
| Theorem | sltmul1d 28099 | Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 ·s 𝐶) <s (𝐵 ·s 𝐶))) | ||
| Theorem | slemul2d 28100 | Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐶 ·s 𝐴) ≤s (𝐶 ·s 𝐵))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |