Detailed syntax breakdown of Definition df-djh
Step | Hyp | Ref
| Expression |
1 | | cdjh 39335 |
. 2
class
joinH |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3422 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
6 | | clh 37925 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6418 |
. . . 4
class
(LHyp‘𝑘) |
8 | | vx |
. . . . 5
setvar 𝑥 |
9 | | vy |
. . . . 5
setvar 𝑦 |
10 | 4 | cv 1538 |
. . . . . . . 8
class 𝑤 |
11 | | cdvh 39019 |
. . . . . . . . 9
class
DVecH |
12 | 5, 11 | cfv 6418 |
. . . . . . . 8
class
(DVecH‘𝑘) |
13 | 10, 12 | cfv 6418 |
. . . . . . 7
class
((DVecH‘𝑘)‘𝑤) |
14 | | cbs 16840 |
. . . . . . 7
class
Base |
15 | 13, 14 | cfv 6418 |
. . . . . 6
class
(Base‘((DVecH‘𝑘)‘𝑤)) |
16 | 15 | cpw 4530 |
. . . . 5
class 𝒫
(Base‘((DVecH‘𝑘)‘𝑤)) |
17 | 8 | cv 1538 |
. . . . . . . 8
class 𝑥 |
18 | | coch 39288 |
. . . . . . . . . 10
class
ocH |
19 | 5, 18 | cfv 6418 |
. . . . . . . . 9
class
(ocH‘𝑘) |
20 | 10, 19 | cfv 6418 |
. . . . . . . 8
class
((ocH‘𝑘)‘𝑤) |
21 | 17, 20 | cfv 6418 |
. . . . . . 7
class
(((ocH‘𝑘)‘𝑤)‘𝑥) |
22 | 9 | cv 1538 |
. . . . . . . 8
class 𝑦 |
23 | 22, 20 | cfv 6418 |
. . . . . . 7
class
(((ocH‘𝑘)‘𝑤)‘𝑦) |
24 | 21, 23 | cin 3882 |
. . . . . 6
class
((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦)) |
25 | 24, 20 | cfv 6418 |
. . . . 5
class
(((ocH‘𝑘)‘𝑤)‘((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦))) |
26 | 8, 9, 16, 16, 25 | cmpo 7257 |
. . . 4
class (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝑘)‘𝑤)), 𝑦 ∈ 𝒫
(Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((ocH‘𝑘)‘𝑤)‘((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦)))) |
27 | 4, 7, 26 | cmpt 5153 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝑘)‘𝑤)), 𝑦 ∈ 𝒫
(Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((ocH‘𝑘)‘𝑤)‘((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦))))) |
28 | 2, 3, 27 | cmpt 5153 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝑘)‘𝑤)), 𝑦 ∈ 𝒫
(Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((ocH‘𝑘)‘𝑤)‘((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦)))))) |
29 | 1, 28 | wceq 1539 |
1
wff joinH =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝑘)‘𝑤)), 𝑦 ∈ 𝒫
(Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((ocH‘𝑘)‘𝑤)‘((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦)))))) |