Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djhffval Structured version   Visualization version   GIF version

Theorem djhffval 38651
Description: Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
Hypothesis
Ref Expression
djhval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
djhffval (𝐾𝑋 → (joinH‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦))))))
Distinct variable groups:   𝑤,𝐻   𝑥,𝑤,𝑦,𝐾
Allowed substitution hints:   𝐻(𝑥,𝑦)   𝑋(𝑥,𝑦,𝑤)

Proof of Theorem djhffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3487 . 2 (𝐾𝑋𝐾 ∈ V)
2 fveq2 6652 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 djhval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2875 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6652 . . . . . . . 8 (𝑘 = 𝐾 → (DVecH‘𝑘) = (DVecH‘𝐾))
65fveq1d 6654 . . . . . . 7 (𝑘 = 𝐾 → ((DVecH‘𝑘)‘𝑤) = ((DVecH‘𝐾)‘𝑤))
76fveq2d 6656 . . . . . 6 (𝑘 = 𝐾 → (Base‘((DVecH‘𝑘)‘𝑤)) = (Base‘((DVecH‘𝐾)‘𝑤)))
87pweqd 4530 . . . . 5 (𝑘 = 𝐾 → 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) = 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)))
9 fveq2 6652 . . . . . . 7 (𝑘 = 𝐾 → (ocH‘𝑘) = (ocH‘𝐾))
109fveq1d 6654 . . . . . 6 (𝑘 = 𝐾 → ((ocH‘𝑘)‘𝑤) = ((ocH‘𝐾)‘𝑤))
1110fveq1d 6654 . . . . . . 7 (𝑘 = 𝐾 → (((ocH‘𝑘)‘𝑤)‘𝑥) = (((ocH‘𝐾)‘𝑤)‘𝑥))
1210fveq1d 6654 . . . . . . 7 (𝑘 = 𝐾 → (((ocH‘𝑘)‘𝑤)‘𝑦) = (((ocH‘𝐾)‘𝑤)‘𝑦))
1311, 12ineq12d 4164 . . . . . 6 (𝑘 = 𝐾 → ((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦)) = ((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦)))
1410, 13fveq12d 6659 . . . . 5 (𝑘 = 𝐾 → (((ocH‘𝑘)‘𝑤)‘((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦))) = (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦))))
158, 8, 14mpoeq123dv 7213 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((ocH‘𝑘)‘𝑤)‘((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦)))) = (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦)))))
164, 15mpteq12dv 5127 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((ocH‘𝑘)‘𝑤)‘((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦))))) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦))))))
17 df-djh 38650 . . 3 joinH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((ocH‘𝑘)‘𝑤)‘((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦))))))
1816, 17, 3mptfvmpt 6973 . 2 (𝐾 ∈ V → (joinH‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦))))))
191, 18syl 17 1 (𝐾𝑋 → (joinH‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2114  Vcvv 3469  cin 3907  𝒫 cpw 4511  cmpt 5122  cfv 6334  cmpo 7142  Basecbs 16474  LHypclh 37239  DVecHcdvh 38333  ocHcoch 38602  joinHcdjh 38649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-oprab 7144  df-mpo 7145  df-djh 38650
This theorem is referenced by:  djhfval  38652
  Copyright terms: Public domain W3C validator