Home | Metamath
Proof Explorer Theorem List (p. 408 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | elpell1qr2 40701 | The first quadrant solutions are precisely the positive Pell solutions which are at least one. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴))) | ||
Theorem | pell1qrgaplem 40702 | Lemma for pell1qrgap 40703. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝐴 + ((√‘𝐷) · 𝐵))) | ||
Theorem | pell1qrgap 40703 | First-quadrant Pell solutions are bounded away from 1. (This particular bound allows us to prove exact values for the fundamental solution later.) (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) | ||
Theorem | pell14qrgap 40704 | Positive Pell solutions are bounded away from 1. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) | ||
Theorem | pell14qrgapw 40705 | Positive Pell solutions are bounded away from 1, with a friendlier bound. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → 2 < 𝐴) | ||
Theorem | pellqrexplicit 40706 | Condition for a calculated real to be a Pell solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷)) | ||
Theorem | infmrgelbi 40707* | Any lower bound of a nonempty set of real numbers is less than or equal to its infimum, one-direction version. (Contributed by Stefan O'Rear, 1-Sep-2013.) (Revised by AV, 17-Sep-2020.) |
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥) → 𝐵 ≤ inf(𝐴, ℝ, < )) | ||
Theorem | pellqrex 40708* | There is a nontrivial solution of a Pell equation in the first quadrant. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥) | ||
Theorem | pellfundval 40709* | Value of the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < )) | ||
Theorem | pellfundre 40710 | The fundamental solution of a Pell equation exists as a real number. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ) | ||
Theorem | pellfundge 40711 | Lower bound on the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷)) | ||
Theorem | pellfundgt1 40712 | Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷)) | ||
Theorem | pellfundlb 40713 | A nontrivial first quadrant solution is at least as large as the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Proof shortened by AV, 15-Sep-2020.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴) | ||
Theorem | pellfundglb 40714* | If a real is larger than the fundamental solution, there is a nontrivial solution less than it. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑥 ∧ 𝑥 < 𝐴)) | ||
Theorem | pellfundex 40715 |
The fundamental solution as an infimum is itself a solution, showing
that the solution set is discrete.
Since the fundamental solution is an infimum, there must be an element ge to Fund and lt 2*Fund. If this element is equal to the fundamental solution we're done, otherwise use the infimum again to find another element which must be ge Fund and lt the first element; their ratio is a group element in (1,2), contradicting pell14qrgapw 40705. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷)) | ||
Theorem | pellfund14gap 40716 | There are no solutions between 1 and the fundamental solution. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴 ∧ 𝐴 < (PellFund‘𝐷))) → 𝐴 = 1) | ||
Theorem | pellfundrp 40717 | The fundamental Pell solution is a positive real. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ+) | ||
Theorem | pellfundne1 40718 | The fundamental Pell solution is never 1. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ≠ 1) | ||
Section should be obsolete because its contents are covered by section "Logarithms to an arbitrary base" now. | ||
Theorem | reglogcl 40719 | General logarithm is a real number. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbcl 25932 instead. |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → ((log‘𝐴) / (log‘𝐵)) ∈ ℝ) | ||
Theorem | reglogltb 40720 | General logarithm preserves "less than". (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use logblt 25943 instead. |
⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝐶 ∈ ℝ+ ∧ 1 < 𝐶)) → (𝐴 < 𝐵 ↔ ((log‘𝐴) / (log‘𝐶)) < ((log‘𝐵) / (log‘𝐶)))) | ||
Theorem | reglogleb 40721 | General logarithm preserves ≤. (Contributed by Stefan O'Rear, 19-Oct-2014.) (New usage is discouraged.) Use logbleb 25942 instead. |
⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝐶 ∈ ℝ+ ∧ 1 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ ((log‘𝐴) / (log‘𝐶)) ≤ ((log‘𝐵) / (log‘𝐶)))) | ||
Theorem | reglogmul 40722 | Multiplication law for general log. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbmul 25936 instead. |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1)) → ((log‘(𝐴 · 𝐵)) / (log‘𝐶)) = (((log‘𝐴) / (log‘𝐶)) + ((log‘𝐵) / (log‘𝐶)))) | ||
Theorem | reglogexp 40723 | Power law for general log. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbzexp 25935 instead. |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ∧ (𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1)) → ((log‘(𝐴↑𝑁)) / (log‘𝐶)) = (𝑁 · ((log‘𝐴) / (log‘𝐶)))) | ||
Theorem | reglogbas 40724 | General log of the base is 1. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use logbid1 25927 instead. |
⊢ ((𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1) → ((log‘𝐶) / (log‘𝐶)) = 1) | ||
Theorem | reglog1 40725 | General log of 1 is 0. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use logb1 25928 instead. |
⊢ ((𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1) → ((log‘1) / (log‘𝐶)) = 0) | ||
Theorem | reglogexpbas 40726 | General log of a power of the base is the exponent. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbexp 25939 instead. |
⊢ ((𝑁 ∈ ℤ ∧ (𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1)) → ((log‘(𝐶↑𝑁)) / (log‘𝐶)) = 𝑁) | ||
Theorem | pellfund14 40727* | Every positive Pell solution is a power of the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥)) | ||
Theorem | pellfund14b 40728* | The positive Pell solutions are precisely the integer powers of the fundamental solution. To get the general solution set (which we will not be using), throw in a copy of Z/2Z. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))) | ||
Syntax | crmx 40729 | Extend class notation to include the Robertson-Matiyasevich X sequence. |
class Xrm | ||
Syntax | crmy 40730 | Extend class notation to include the Robertson-Matiyasevich Y sequence. |
class Yrm | ||
Definition | df-rmx 40731* | Define the X sequence as the rational part of some solution of a special Pell equation. See frmx 40742 and rmxyval 40744 for a more useful but non-eliminable definition. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ Xrm = (𝑎 ∈ (ℤ≥‘2), 𝑛 ∈ ℤ ↦ (1st ‘(◡(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd ‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) | ||
Definition | df-rmy 40732* | Define the X sequence as the irrational part of some solution of a special Pell equation. See frmy 40743 and rmxyval 40744 for a more useful but non-eliminable definition. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ Yrm = (𝑎 ∈ (ℤ≥‘2), 𝑛 ∈ ℤ ↦ (2nd ‘(◡(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd ‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) | ||
Theorem | rmxfval 40733* | Value of the X sequence. Not used after rmxyval 40744 is proved. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) = (1st ‘(◡(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))) | ||
Theorem | rmyfval 40734* | Value of the Y sequence. Not used after rmxyval 40744 is proved. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) = (2nd ‘(◡(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))) | ||
Theorem | rmspecsqrtnq 40735 | The discriminant used to define the X and Y sequences has an irrational square root. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof shortened by AV, 2-Aug-2021.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) | ||
Theorem | rmspecnonsq 40736 | The discriminant used to define the X and Y sequences is a nonsquare positive integer and thus a valid Pell equation discriminant. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) | ||
Theorem | qirropth 40737 | This lemma implements the concept of "equate rational and irrational parts", used to prove many arithmetical properties of the X and Y sequences. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐵 = 𝐷 ∧ 𝐶 = 𝐸))) | ||
Theorem | rmspecfund 40738 | The base of exponent used to define the X and Y sequences is the fundamental solution of the corresponding Pell equation. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1)))) | ||
Theorem | rmxyelqirr 40739* | The solutions used to construct the X and Y sequences are quadratic irrationals. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ∈ {𝑎 ∣ ∃𝑐 ∈ ℕ0 ∃𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))}) | ||
Theorem | rmxypairf1o 40740* | The function used to extract rational and irrational parts in df-rmx 40731 and df-rmy 40732 in fact achieves a one-to-one mapping from the quadratic irrationals to pairs of integers. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd ‘𝑏)))):(ℕ0 × ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0 ∃𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))}) | ||
Theorem | rmxyelxp 40741* | Lemma for frmx 40742 and frmy 40743. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (◡(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) ∈ (ℕ0 × ℤ)) | ||
Theorem | frmx 40742 | The X sequence is a nonnegative integer. See rmxnn 40780 for a strengthening. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | ||
Theorem | frmy 40743 | The Y sequence is an integer. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | ||
Theorem | rmxyval 40744 | Main definition of the X and Y sequences. Compare definition 2.3 of [JonesMatijasevic] p. 694. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) | ||
Theorem | rmspecpos 40745 | The discriminant used to define the X and Y sequences is a positive real. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℝ+) | ||
Theorem | rmxycomplete 40746* | The X and Y sequences taken together enumerate all solutions to the corresponding Pell equation in the right half-plane. This is Metamath 100 proof #39. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛)))) | ||
Theorem | rmxynorm 40747 | The X and Y sequences define a solution to the corresponding Pell equation. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1) | ||
Theorem | rmbaserp 40748 | The base of exponentiation for the X and Y sequences is a positive real. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+) | ||
Theorem | rmxyneg 40749 | Negation law for X and Y sequences. JonesMatijasevic is inconsistent on whether the X and Y sequences have domain ℕ0 or ℤ; we use ℤ consistently to avoid the need for a separate subtraction law. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁))) | ||
Theorem | rmxyadd 40750 | Addition formula for X and Y sequences. See rmxadd 40756 and rmyadd 40760 for most uses. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))) | ||
Theorem | rmxy1 40751 | Value of the X and Y sequences at 1. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 1) = 𝐴 ∧ (𝐴 Yrm 1) = 1)) | ||
Theorem | rmxy0 40752 | Value of the X and Y sequences at 0. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0)) | ||
Theorem | rmxneg 40753 | Negation law (even function) for the X sequence. The method of proof used for the previous four theorems rmxyneg 40749, rmxyadd 40750, rmxy0 40752, and rmxy1 40751 via qirropth 40737 results in two theorems at once, but typical use requires only one, so this group of theorems serves to separate the cases. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁)) | ||
Theorem | rmx0 40754 | Value of X sequence at 0. Part 1 of equation 2.11 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 0) = 1) | ||
Theorem | rmx1 40755 | Value of X sequence at 1. Part 2 of equation 2.11 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 1) = 𝐴) | ||
Theorem | rmxadd 40756 | Addition formula for X sequence. Equation 2.7 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))))) | ||
Theorem | rmyneg 40757 | Negation formula for Y sequence (odd function). (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁)) | ||
Theorem | rmy0 40758 | Value of Y sequence at 0. Part 1 of equation 2.12 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 0) = 0) | ||
Theorem | rmy1 40759 | Value of Y sequence at 1. Part 2 of equation 2.12 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 1) = 1) | ||
Theorem | rmyadd 40760 | Addition formula for Y sequence. Equation 2.8 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))) | ||
Theorem | rmxp1 40761 | Special addition-of-1 formula for X sequence. Part 1 of equation 2.9 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + 1)) = (((𝐴 Xrm 𝑁) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) | ||
Theorem | rmyp1 40762 | Special addition of 1 formula for Y sequence. Part 2 of equation 2.9 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) = (((𝐴 Yrm 𝑁) · 𝐴) + (𝐴 Xrm 𝑁))) | ||
Theorem | rmxm1 40763 | Subtraction of 1 formula for X sequence. Part 1 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) | ||
Theorem | rmym1 40764 | Subtraction of 1 formula for Y sequence. Part 2 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁))) | ||
Theorem | rmxluc 40765 | The X sequence is a Lucas (second-order integer recurrence) sequence. Part 3 of equation 2.11 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + 1)) = (((2 · 𝐴) · (𝐴 Xrm 𝑁)) − (𝐴 Xrm (𝑁 − 1)))) | ||
Theorem | rmyluc 40766 | The Y sequence is a Lucas sequence, definable via this second-order recurrence with rmy0 40758 and rmy1 40759. Part 3 of equation 2.12 of [JonesMatijasevic] p. 695. JonesMatijasevic uses this theorem to redefine the X and Y sequences to have domain (ℤ × ℤ), which simplifies some later theorems. It may shorten the derivation to use this as our initial definition. Incidentally, the X sequence satisfies the exact same recurrence. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) = ((2 · ((𝐴 Yrm 𝑁) · 𝐴)) − (𝐴 Yrm (𝑁 − 1)))) | ||
Theorem | rmyluc2 40767 | Lucas sequence property of Y with better output ordering. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) = (((2 · 𝐴) · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1)))) | ||
Theorem | rmxdbl 40768 | "Double-angle formula" for X-values. Equation 2.13 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (2 · 𝑁)) = ((2 · ((𝐴 Xrm 𝑁)↑2)) − 1)) | ||
Theorem | rmydbl 40769 | "Double-angle formula" for Y-values. Equation 2.14 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (2 · 𝑁)) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Yrm 𝑁))) | ||
Theorem | monotuz 40770* | A function defined on an upper set of integers which increases at every adjacent pair is globally strictly monotonic by induction. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐻) → 𝐹 < 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝐶 ∈ ℝ) & ⊢ 𝐻 = (ℤ≥‘𝐼) & ⊢ (𝑥 = (𝑦 + 1) → 𝐶 = 𝐺) & ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐹) & ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻)) → (𝐴 < 𝐵 ↔ 𝐷 < 𝐸)) | ||
Theorem | monotoddzzfi 40771* | A function which is odd and monotonic on ℕ0 is monotonic on ℤ. This proof is far too long. (Contributed by Stefan O'Rear, 25-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐹‘𝑥) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐹‘-𝑥) = -(𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐹‘𝐴) < (𝐹‘𝐵))) | ||
Theorem | monotoddzz 40772* | A function (given implicitly) which is odd and monotonic on ℕ0 is monotonic on ℤ. This proof is far too long. (Contributed by Stefan O'Rear, 25-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝑥 < 𝑦 → 𝐸 < 𝐹)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝐸 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℤ) → 𝐺 = -𝐹) & ⊢ (𝑥 = 𝐴 → 𝐸 = 𝐶) & ⊢ (𝑥 = 𝐵 → 𝐸 = 𝐷) & ⊢ (𝑥 = 𝑦 → 𝐸 = 𝐹) & ⊢ (𝑥 = -𝑦 → 𝐸 = 𝐺) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ 𝐶 < 𝐷)) | ||
Theorem | oddcomabszz 40773* | An odd function which takes nonnegative values on nonnegative arguments commutes with abs. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℤ) → 𝐶 = -𝐵) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = -𝑦 → 𝐴 = 𝐶) & ⊢ (𝑥 = 𝐷 → 𝐴 = 𝐸) & ⊢ (𝑥 = (abs‘𝐷) → 𝐴 = 𝐹) ⇒ ⊢ ((𝜑 ∧ 𝐷 ∈ ℤ) → (abs‘𝐸) = 𝐹) | ||
Theorem | 2nn0ind 40774* | Induction on nonnegative integers with two base cases, for use with Lucas-type sequences. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ 𝜓 & ⊢ 𝜒 & ⊢ (𝑦 ∈ ℕ → ((𝜃 ∧ 𝜏) → 𝜂)) & ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 − 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜂)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜌)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜌) | ||
Theorem | zindbi 40775* | Inductively transfer a property to the integers if it holds for zero and passes between adjacent integers in either direction. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (𝑦 ∈ ℤ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝐴 ∈ ℤ → (𝜃 ↔ 𝜏)) | ||
Theorem | rmxypos 40776 | For all nonnegative indices, X is positive and Y is nonnegative. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁))) | ||
Theorem | ltrmynn0 40777 | The Y-sequence is strictly monotonic on ℕ0. Strengthened by ltrmy 40781. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Yrm 𝑀) < (𝐴 Yrm 𝑁))) | ||
Theorem | ltrmxnn0 40778 | The X-sequence is strictly monotonic on ℕ0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁))) | ||
Theorem | lermxnn0 40779 | The X-sequence is monotonic on ℕ0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝐴 Xrm 𝑀) ≤ (𝐴 Xrm 𝑁))) | ||
Theorem | rmxnn 40780 | The X-sequence is defined to range over ℕ0 but never actually takes the value 0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ) | ||
Theorem | ltrmy 40781 | The Y-sequence is strictly monotonic over ℤ. (Contributed by Stefan O'Rear, 25-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝐴 Yrm 𝑀) < (𝐴 Yrm 𝑁))) | ||
Theorem | rmyeq0 40782 | Y is zero only at zero. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ↔ (𝐴 Yrm 𝑁) = 0)) | ||
Theorem | rmyeq 40783 | Y is one-to-one. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝐴 Yrm 𝑀) = (𝐴 Yrm 𝑁))) | ||
Theorem | lermy 40784 | Y is monotonic (non-strict). (Contributed by Stefan O'Rear, 3-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁))) | ||
Theorem | rmynn 40785 | Yrm is positive for positive arguments. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℕ) | ||
Theorem | rmynn0 40786 | Yrm is nonnegative for nonnegative arguments. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℕ0) | ||
Theorem | rmyabs 40787 | Yrm commutes with abs. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) → (abs‘(𝐴 Yrm 𝐵)) = (𝐴 Yrm (abs‘𝐵))) | ||
Theorem | jm2.24nn 40788 | X(n) is strictly greater than Y(n) + Y(n-1). Lemma 2.24 of [JonesMatijasevic] p. 697 restricted to ℕ. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁)) | ||
Theorem | jm2.17a 40789 | First half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1))) | ||
Theorem | jm2.17b 40790 | Weak form of the second half of lemma 2.17 of [JonesMatijasevic] p. 696, allowing induction to start lower. (Contributed by Stefan O'Rear, 15-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)) | ||
Theorem | jm2.17c 40791 | Second half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 15-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) + 1)) < ((2 · 𝐴)↑(𝑁 + 1))) | ||
Theorem | jm2.24 40792 | Lemma 2.24 of [JonesMatijasevic] p. 697 extended to ℤ. Could be eliminated with a more careful proof of jm2.26lem3 40830. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁)) | ||
Theorem | rmygeid 40793 | Y(n) increases faster than n. Used implicitly without proof or comment in lemma 2.27 of [JonesMatijasevic] p. 697. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝐴 Yrm 𝑁)) | ||
Theorem | congtr 40794 | A wff of the form 𝐴 ∥ (𝐵 − 𝐶) is interpreted as a congruential equation. This is similar to (𝐵 mod 𝐴) = (𝐶 mod 𝐴), but is defined such that behavior is regular for zero and negative values of 𝐴. To use this concept effectively, we need to show that congruential equations behave similarly to normal equations; first a transitivity law. Idea for the future: If there was a congruential equation symbol, it could incorporate type constraints, so that most of these would not need them. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → 𝐴 ∥ (𝐵 − 𝐷)) | ||
Theorem | congadd 40795 | If two pairs of numbers are componentwise congruent, so are their sums. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐷 − 𝐸))) → 𝐴 ∥ ((𝐵 + 𝐷) − (𝐶 + 𝐸))) | ||
Theorem | congmul 40796 | If two pairs of numbers are componentwise congruent, so are their products. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐷 − 𝐸))) → 𝐴 ∥ ((𝐵 · 𝐷) − (𝐶 · 𝐸))) | ||
Theorem | congsym 40797 | Congruence mod 𝐴 is a symmetric/commutative relation. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵 − 𝐶))) → 𝐴 ∥ (𝐶 − 𝐵)) | ||
Theorem | congneg 40798 | If two integers are congruent mod 𝐴, so are their negatives. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵 − 𝐶))) → 𝐴 ∥ (-𝐵 − -𝐶)) | ||
Theorem | congsub 40799 | If two pairs of numbers are componentwise congruent, so are their differences. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐷 − 𝐸))) → 𝐴 ∥ ((𝐵 − 𝐷) − (𝐶 − 𝐸))) | ||
Theorem | congid 40800 | Every integer is congruent to itself mod every base. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐵 − 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |