Home | Metamath
Proof Explorer Theorem List (p. 408 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | jm2.24 40701 | Lemma 2.24 of [JonesMatijasevic] p. 697 extended to ℤ. Could be eliminated with a more careful proof of jm2.26lem3 40739. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁)) | ||
Theorem | rmygeid 40702 | Y(n) increases faster than n. Used implicitly without proof or comment in lemma 2.27 of [JonesMatijasevic] p. 697. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝐴 Yrm 𝑁)) | ||
Theorem | congtr 40703 | A wff of the form 𝐴 ∥ (𝐵 − 𝐶) is interpreted as a congruential equation. This is similar to (𝐵 mod 𝐴) = (𝐶 mod 𝐴), but is defined such that behavior is regular for zero and negative values of 𝐴. To use this concept effectively, we need to show that congruential equations behave similarly to normal equations; first a transitivity law. Idea for the future: If there was a congruential equation symbol, it could incorporate type constraints, so that most of these would not need them. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → 𝐴 ∥ (𝐵 − 𝐷)) | ||
Theorem | congadd 40704 | If two pairs of numbers are componentwise congruent, so are their sums. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐷 − 𝐸))) → 𝐴 ∥ ((𝐵 + 𝐷) − (𝐶 + 𝐸))) | ||
Theorem | congmul 40705 | If two pairs of numbers are componentwise congruent, so are their products. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐷 − 𝐸))) → 𝐴 ∥ ((𝐵 · 𝐷) − (𝐶 · 𝐸))) | ||
Theorem | congsym 40706 | Congruence mod 𝐴 is a symmetric/commutative relation. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵 − 𝐶))) → 𝐴 ∥ (𝐶 − 𝐵)) | ||
Theorem | congneg 40707 | If two integers are congruent mod 𝐴, so are their negatives. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵 − 𝐶))) → 𝐴 ∥ (-𝐵 − -𝐶)) | ||
Theorem | congsub 40708 | If two pairs of numbers are componentwise congruent, so are their differences. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐷 − 𝐸))) → 𝐴 ∥ ((𝐵 − 𝐷) − (𝐶 − 𝐸))) | ||
Theorem | congid 40709 | Every integer is congruent to itself mod every base. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐵 − 𝐵)) | ||
Theorem | mzpcong 40710* | Polynomials commute with congruences. (Does this characterize them?) (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ ((𝐹 ∈ (mzPoly‘𝑉) ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘 ∈ 𝑉 𝑁 ∥ ((𝑋‘𝑘) − (𝑌‘𝑘)))) → 𝑁 ∥ ((𝐹‘𝑋) − (𝐹‘𝑌))) | ||
Theorem | congrep 40711* | Every integer is congruent to some number in the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) | ||
Theorem | congabseq 40712 | If two integers are congruent, they are either equal or separated by at least the congruence base. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 − 𝐶)) → ((abs‘(𝐵 − 𝐶)) < 𝐴 ↔ 𝐵 = 𝐶)) | ||
Theorem | acongid 40713 |
A wff like that in this theorem will be known as an "alternating
congruence". A special symbol might be considered if more uses come
up.
They have many of the same properties as normal congruences, starting with
reflexivity.
JonesMatijasevic uses "a ≡ ± b (mod c)" for this construction. The disjunction of divisibility constraints seems to adequately capture the concept, but it's rather verbose and somewhat inelegant. Use of an explicit equivalence relation might also work. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ (𝐵 − 𝐵) ∨ 𝐴 ∥ (𝐵 − -𝐵))) | ||
Theorem | acongsym 40714 | Symmetry of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶))) → (𝐴 ∥ (𝐶 − 𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))) | ||
Theorem | acongneg2 40715 | Negate right side of alternating congruence. Makes essential use of the "alternating" part. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∨ 𝐴 ∥ (𝐵 − --𝐶))) → (𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶))) | ||
Theorem | acongtr 40716 | Transitivity of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶 − 𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷)))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))) | ||
Theorem | acongeq12d 40717 | Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
⊢ (𝜑 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐷 = 𝐸) ⇒ ⊢ (𝜑 → ((𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)) ↔ (𝐴 ∥ (𝐶 − 𝐸) ∨ 𝐴 ∥ (𝐶 − -𝐸)))) | ||
Theorem | acongrep 40718* | Every integer is alternating-congruent to some number in the first half of the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎 − 𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁))) | ||
Theorem | fzmaxdif 40719 | Bound on the difference between two integers constrained to two possibly overlapping finite ranges. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (abs‘(𝐴 − 𝐷)) ≤ (𝐹 − 𝐵)) | ||
Theorem | fzneg 40720 | Reflection of a finite range of integers about 0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ -𝐴 ∈ (-𝐶...-𝐵))) | ||
Theorem | acongeq 40721 | Two numbers in the fundamental domain are alternating-congruent iff they are equal. TODO: could be used to shorten jm2.26 40740. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 = 𝐶 ↔ ((2 · 𝐴) ∥ (𝐵 − 𝐶) ∨ (2 · 𝐴) ∥ (𝐵 − -𝐶)))) | ||
Theorem | dvdsacongtr 40722 | Alternating congruence passes from a base to a dividing base. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐷 ∥ 𝐴 ∧ (𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)))) → (𝐷 ∥ (𝐵 − 𝐶) ∨ 𝐷 ∥ (𝐵 − -𝐶))) | ||
Theorem | coprmdvdsb 40723 | Multiplication by a coprime number does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝐾 gcd 𝑀) = 1)) → (𝐾 ∥ 𝑁 ↔ 𝐾 ∥ (𝑀 · 𝑁))) | ||
Theorem | modabsdifz 40724 | Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ) | ||
Theorem | dvdsabsmod0 40725 | Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 24-Sep-2014.) (Proof shortened by OpenAI, 3-Jul-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 ∥ 𝑁 ↔ (𝑁 mod (abs‘𝑀)) = 0)) | ||
Theorem | jm2.18 40726 | Theorem 2.18 of [JonesMatijasevic] p. 696. Direct relationship of the exponential function to X and Y sequences. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) − (𝐾↑𝑁))) | ||
Theorem | jm2.19lem1 40727 | Lemma for jm2.19 40731. X and Y values are coprime. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → ((𝐴 Xrm 𝑀) gcd (𝐴 Yrm 𝑀)) = 1) | ||
Theorem | jm2.19lem2 40728 | Lemma for jm2.19 40731. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + 𝑀)))) | ||
Theorem | jm2.19lem3 40729 | Lemma for jm2.19 40731. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))) | ||
Theorem | jm2.19lem4 40730 | Lemma for jm2.19 40731. Extend to ZZ by symmetry. TODO: use zindbi 40684. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))) | ||
Theorem | jm2.19 40731 | Lemma 2.19 of [JonesMatijasevic] p. 696. Transfer divisibility constraints between Y-values and their indices. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁))) | ||
Theorem | jm2.21 40732 | Lemma for jm2.20nn 40735. Express X and Y values as a binomial. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽)) | ||
Theorem | jm2.22 40733* | Lemma for jm2.20nn 40735. Applying binomial theorem and taking irrational part. (Contributed by Stefan O'Rear, 26-Sep-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽 − 𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) | ||
Theorem | jm2.23 40734 | Lemma for jm2.20nn 40735. Truncate binomial expansion p-adicly. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁))))) | ||
Theorem | jm2.20nn 40735 | Lemma 2.20 of [JonesMatijasevic] p. 696, the "first step down lemma". (Contributed by Stefan O'Rear, 27-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ↔ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀)) | ||
Theorem | jm2.25lem1 40736 | Lemma for jm2.26 40740. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶 − 𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) → ((𝐴 ∥ (𝐷 − 𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵)) ↔ (𝐴 ∥ (𝐶 − 𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵)))) | ||
Theorem | jm2.25 40737 | Lemma for jm2.26 40740. Remainders mod X(2n) are negaperiodic mod 2n. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) | ||
Theorem | jm2.26a 40738 | Lemma for jm2.26 40740. Reverse direction is required to prove forward direction, so do it separately. Induction on difference between K and M, together with the addition formula fact that adding 2N only inverts sign. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾 − 𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) | ||
Theorem | jm2.26lem3 40739 | Lemma for jm2.26 40740. Use acongrep 40718 to find K', M' ~ K, M in [ 0,N ]. Thus Y(K') ~ Y(M') and both are small; K' = M' on pain of contradicting 2.24, so K ~ M. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 = 𝑀) | ||
Theorem | jm2.26 40740 | Lemma 2.26 of [JonesMatijasevic] p. 697, the "second step down lemma". (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ((2 · 𝑁) ∥ (𝐾 − 𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))) | ||
Theorem | jm2.15nn0 40741 | Lemma 2.15 of [JonesMatijasevic] p. 695. Yrm is a polynomial for fixed N, so has the expected congruence property. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁))) | ||
Theorem | jm2.16nn0 40742 | Lemma 2.16 of [JonesMatijasevic] p. 695. This may be regarded as a special case of jm2.15nn0 40741 if Yrm is redefined as described in rmyluc 40675. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁)) | ||
Theorem | jm2.27a 40743 | Lemma for jm2.27 40746. Reverse direction after existential quantifiers are expanded. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐸 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ℕ0) & ⊢ (𝜑 → 𝐺 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ ℕ0) & ⊢ (𝜑 → 𝐼 ∈ ℕ0) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1) & ⊢ (𝜑 → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1) & ⊢ (𝜑 → 𝐺 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1) & ⊢ (𝜑 → 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2)))) & ⊢ (𝜑 → 𝐹 ∥ (𝐺 − 𝐴)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1)) & ⊢ (𝜑 → 𝐹 ∥ (𝐻 − 𝐶)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐻 − 𝐵)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) & ⊢ (𝜑 → 𝑃 ∈ ℤ) & ⊢ (𝜑 → 𝐷 = (𝐴 Xrm 𝑃)) & ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝑃)) & ⊢ (𝜑 → 𝑄 ∈ ℤ) & ⊢ (𝜑 → 𝐹 = (𝐴 Xrm 𝑄)) & ⊢ (𝜑 → 𝐸 = (𝐴 Yrm 𝑄)) & ⊢ (𝜑 → 𝑅 ∈ ℤ) & ⊢ (𝜑 → 𝐼 = (𝐺 Xrm 𝑅)) & ⊢ (𝜑 → 𝐻 = (𝐺 Yrm 𝑅)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝐵)) | ||
Theorem | jm2.27b 40744 | Lemma for jm2.27 40746. Expand existential quantifiers for reverse direction. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐸 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ℕ0) & ⊢ (𝜑 → 𝐺 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ ℕ0) & ⊢ (𝜑 → 𝐼 ∈ ℕ0) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1) & ⊢ (𝜑 → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1) & ⊢ (𝜑 → 𝐺 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1) & ⊢ (𝜑 → 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2)))) & ⊢ (𝜑 → 𝐹 ∥ (𝐺 − 𝐴)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1)) & ⊢ (𝜑 → 𝐹 ∥ (𝐻 − 𝐶)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐻 − 𝐵)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝐵)) | ||
Theorem | jm2.27c 40745 | Lemma for jm2.27 40746. Forward direction with substitutions. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝐵)) & ⊢ 𝐷 = (𝐴 Xrm 𝐵) & ⊢ 𝑄 = (𝐵 · (𝐴 Yrm 𝐵)) & ⊢ 𝐸 = (𝐴 Yrm (2 · 𝑄)) & ⊢ 𝐹 = (𝐴 Xrm (2 · 𝑄)) & ⊢ 𝐺 = (𝐴 + ((𝐹↑2) · ((𝐹↑2) − 𝐴))) & ⊢ 𝐻 = (𝐺 Yrm 𝐵) & ⊢ 𝐼 = (𝐺 Xrm 𝐵) & ⊢ 𝐽 = ((𝐸 / (2 · (𝐶↑2))) − 1) ⇒ ⊢ (𝜑 → (((𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ∧ 𝐹 ∈ ℕ0) ∧ (𝐺 ∈ ℕ0 ∧ 𝐻 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0)) ∧ (𝐽 ∈ ℕ0 ∧ (((((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1 ∧ 𝐺 ∈ (ℤ≥‘2)) ∧ (((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1 ∧ 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))) ∧ 𝐹 ∥ (𝐺 − 𝐴))) ∧ (((2 · 𝐶) ∥ (𝐺 − 1) ∧ 𝐹 ∥ (𝐻 − 𝐶)) ∧ ((2 · 𝐶) ∥ (𝐻 − 𝐵) ∧ 𝐵 ≤ 𝐶)))))) | ||
Theorem | jm2.27 40746* | Lemma 2.27 of [JonesMatijasevic] p. 697; rmY is a diophantine relation. 0 was excluded from the range of B and the lower limit of G was imposed because the source proof does not seem to work otherwise; quite possible I'm just missing something. The source proof uses both i and I; i has been changed to j to avoid collision. This theorem is basically nothing but substitution instances, all the work is done in jm2.27a 40743 and jm2.27c 40745. Once Diophantine relations have been defined, the content of the theorem is "rmY is Diophantine". (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 = (𝐴 Yrm 𝐵) ↔ ∃𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∃𝑓 ∈ ℕ0 ∃𝑔 ∈ ℕ0 ∃ℎ ∈ ℕ0 ∃𝑖 ∈ ℕ0 ∃𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ≥‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (ℎ↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔 − 𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (ℎ − 𝐶)) ∧ ((2 · 𝐶) ∥ (ℎ − 𝐵) ∧ 𝐵 ≤ 𝐶))))) | ||
Theorem | jm2.27dlem1 40747* | Lemma for rmydioph 40752. Substitution of a tuple restriction into a projection that doesn't care. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ 𝐴 ∈ (1...𝐵) ⇒ ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = (𝑏‘𝐴)) | ||
Theorem | jm2.27dlem2 40748 | Lemma for rmydioph 40752. This theorem is used along with the next three to efficiently infer steps like 7 ∈ (1...;10). (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ 𝐴 ∈ (1...𝐵) & ⊢ 𝐶 = (𝐵 + 1) & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ 𝐴 ∈ (1...𝐶) | ||
Theorem | jm2.27dlem3 40749 | Lemma for rmydioph 40752. Infer membership of the endpoint of a range. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ∈ (1...𝐴) | ||
Theorem | jm2.27dlem4 40750 | Lemma for rmydioph 40752. Infer ℕ-hood of large numbers. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 = (𝐴 + 1) ⇒ ⊢ 𝐵 ∈ ℕ | ||
Theorem | jm2.27dlem5 40751 | Lemma for rmydioph 40752. Used with sselii 3914 to infer membership of midpoints of range; jm2.27dlem2 40748 is deprecated. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ 𝐵 = (𝐴 + 1) & ⊢ (1...𝐵) ⊆ (1...𝐶) ⇒ ⊢ (1...𝐴) ⊆ (1...𝐶) | ||
Theorem | rmydioph 40752 | jm2.27 40746 restated in terms of Diophantine sets. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ≥‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3) | ||
Theorem | rmxdiophlem 40753* | X can be expressed in terms of Y, so it is also Diophantine. (Contributed by Stefan O'Rear, 15-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (𝑋 = (𝐴 Xrm 𝑁) ↔ ∃𝑦 ∈ ℕ0 (𝑦 = (𝐴 Yrm 𝑁) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))) | ||
Theorem | rmxdioph 40754 | X is a Diophantine function. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ≥‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3) | ||
Theorem | jm3.1lem1 40755 | Lemma for jm3.1 40758. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐾↑𝑁) < 𝐴) | ||
Theorem | jm3.1lem2 40756 | Lemma for jm3.1 40758. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐾↑𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1)) | ||
Theorem | jm3.1lem3 40757 | Lemma for jm3.1 40758. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) ⇒ ⊢ (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℕ) | ||
Theorem | jm3.1 40758 | Diophantine expression for exponentiation. Lemma 3.1 of [JonesMatijasevic] p. 698. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → (𝐾↑𝑁) = (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) mod ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))) | ||
Theorem | expdiophlem1 40759* | Lemma for expdioph 40761. Fully expanded expression for exponential. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
⊢ (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴↑𝐵)) ↔ ∃𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ≥‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ≥‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑 − 𝐴) · 𝑒)) − 𝐶)))))))) | ||
Theorem | expdiophlem2 40760 | Lemma for expdioph 40761. Exponentiation on a restricted domain is Diophantine. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ≥‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3) | ||
Theorem | expdioph 40761 | The exponential function is Diophantine. This result completes and encapsulates our development using Pell equation solution sequences and is sometimes regarded as Matiyasevich's theorem properly. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} ∈ (Dioph‘3) | ||
Theorem | setindtr 40762* | Set induction for sets contained in a transitive set. If we are allowed to assume Infinity, then all sets have a transitive closure and this reduces to setind 9423; however, this version is useful without Infinity. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (∃𝑦(Tr 𝑦 ∧ 𝐵 ∈ 𝑦) → 𝐵 ∈ 𝐴)) | ||
Theorem | setindtrs 40763* | Set induction scheme without Infinity. See comments at setindtr 40762. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃𝑧(Tr 𝑧 ∧ 𝐵 ∈ 𝑧) → 𝜒) | ||
Theorem | dford3lem1 40764* | Lemma for dford3 40766. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦)) | ||
Theorem | dford3lem2 40765* | Lemma for dford3 40766. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ ((Tr 𝑥 ∧ ∀𝑦 ∈ 𝑥 Tr 𝑦) → 𝑥 ∈ On) | ||
Theorem | dford3 40766* | Ordinals are precisely the hereditarily transitive classes. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑥 ∈ 𝑁 Tr 𝑥)) | ||
Theorem | dford4 40767* | dford3 40766 expressed in primitives to demonstrate shortness. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ (Ord 𝑁 ↔ ∀𝑎∀𝑏∀𝑐((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑎) → (𝑏 ∈ 𝑁 ∧ (𝑐 ∈ 𝑏 → 𝑐 ∈ 𝑎)))) | ||
Theorem | wopprc 40768 | Unrelated: Wiener pairs treat proper classes symmetrically. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ ¬ 1o ∈ {{{𝐴}, ∅}, {{𝐵}}}) | ||
Theorem | rpnnen3lem 40769* | Lemma for rpnnen3 40770. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑎 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) | ||
Theorem | rpnnen3 40770 | Dedekind cut injection of ℝ into 𝒫 ℚ. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ ℝ ≼ 𝒫 ℚ | ||
Theorem | axac10 40771 | Characterization of choice similar to dffin1-5 10075. (Contributed by Stefan O'Rear, 6-Jan-2015.) |
⊢ ( ≈ “ On) = V | ||
Theorem | harinf 40772 | The Hartogs number of an infinite set is at least ω. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆)) | ||
Theorem | wdom2d2 40773* | Deduction for weak dominance by a Cartesian product. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) ⇒ ⊢ (𝜑 → 𝐴 ≼* (𝐵 × 𝐶)) | ||
Theorem | ttac 40774 | Tarski's theorem about choice: infxpidm 10249 is equivalent to ax-ac 10146. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Stefan O'Rear, 10-Jul-2015.) |
⊢ (CHOICE ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐)) | ||
Theorem | pw2f1ocnv 40775* | Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 8819, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 9-Jul-2015.) |
⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐹:(2o ↑m 𝐴)–1-1-onto→𝒫 𝐴 ∧ ◡𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))))) | ||
Theorem | pw2f1o2 40776* | Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 8819, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹:(2o ↑m 𝐴)–1-1-onto→𝒫 𝐴) | ||
Theorem | pw2f1o2val 40777* | Function value of the pw2f1o2 40776 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) | ||
Theorem | pw2f1o2val2 40778* | Membership in a mapped set under the pw2f1o2 40776 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋‘𝑌) = 1o)) | ||
Theorem | soeq12d 40779 | Equality deduction for total orderings. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
⊢ (𝜑 → 𝑅 = 𝑆) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵)) | ||
Theorem | freq12d 40780 | Equality deduction for founded relations. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
⊢ (𝜑 → 𝑅 = 𝑆) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵)) | ||
Theorem | weeq12d 40781 | Equality deduction for well-orders. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
⊢ (𝜑 → 𝑅 = 𝑆) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) | ||
Theorem | limsuc2 40782 | Limit ordinals in the sense inclusive of zero contain all successors of their members. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) | ||
Theorem | wepwsolem 40783* | Transfer an ordering on characteristic functions by isomorphism to the power set. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} & ⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝐹 = (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) ⇒ ⊢ (𝐴 ∈ V → 𝐹 Isom 𝑈, 𝑇 ((2o ↑m 𝐴), 𝒫 𝐴)) | ||
Theorem | wepwso 40784* | A well-ordering induces a strict ordering on the power set. EDITORIAL: when well-orderings are set like, this can be strengthened to remove 𝐴 ∈ 𝑉. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴) | ||
Theorem | dnnumch1 40785* | Define an enumeration of a set from a choice function; second part, it restricts to a bijection. EDITORIAL: overlaps dfac8a 9717. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) | ||
Theorem | dnnumch2 40786* | Define an enumeration (weak dominance version) of a set from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) | ||
Theorem | dnnumch3lem 40787* | Value of the ordinal injection function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) ⇒ ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥}))‘𝑤) = ∩ (◡𝐹 “ {𝑤})) | ||
Theorem | dnnumch3 40788* | Define an injection from a set into the ordinals using a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥})):𝐴–1-1→On) | ||
Theorem | dnwech 40789* | Define a well-ordering from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) & ⊢ 𝐻 = {〈𝑣, 𝑤〉 ∣ ∩ (◡𝐹 “ {𝑣}) ∈ ∩ (◡𝐹 “ {𝑤})} ⇒ ⊢ (𝜑 → 𝐻 We 𝐴) | ||
Theorem | fnwe2val 40790* | Lemma for fnwe2 40794. Substitute variables. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} ⇒ ⊢ (𝑎𝑇𝑏 ↔ ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ∨ ((𝐹‘𝑎) = (𝐹‘𝑏) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏))) | ||
Theorem | fnwe2lem1 40791* | Lemma for fnwe2 40794. Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) | ||
Theorem | fnwe2lem2 40792* | Lemma for fnwe2 40794. An element which is in a minimal fiber and minimal within its fiber is minimal globally; thus 𝑇 is well-founded. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) & ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝐵) & ⊢ (𝜑 → 𝑅 We 𝐵) & ⊢ (𝜑 → 𝑎 ⊆ 𝐴) & ⊢ (𝜑 → 𝑎 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑏) | ||
Theorem | fnwe2lem3 40793* | Lemma for fnwe2 40794. Trichotomy. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) & ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝐵) & ⊢ (𝜑 → 𝑅 We 𝐵) & ⊢ (𝜑 → 𝑎 ∈ 𝐴) & ⊢ (𝜑 → 𝑏 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎)) | ||
Theorem | fnwe2 40794* | A well-ordering can be constructed on a partitioned set by patching together well-orderings on each partition using a well-ordering on the partitions themselves. Similar to fnwe 7944 but does not require the within-partition ordering to be globally well. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) & ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝐵) & ⊢ (𝜑 → 𝑅 We 𝐵) ⇒ ⊢ (𝜑 → 𝑇 We 𝐴) | ||
Theorem | aomclem1 40795* |
Lemma for dfac11 40803. This is the beginning of the proof that
multiple
choice is equivalent to choice. Our goal is to construct, by
transfinite recursion, a well-ordering of (𝑅1‘𝐴). In what
follows, 𝐴 is the index of the rank we wish to
well-order, 𝑧 is
the collection of well-orderings constructed so far, dom 𝑧 is
the
set of ordinal indices of constructed ranks i.e. the next rank to
construct, and 𝑦 is a postulated multiple-choice
function.
Successor case 1, define a simple ordering from the well-ordered predecessor. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ (𝜑 → dom 𝑧 ∈ On) & ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) ⇒ ⊢ (𝜑 → 𝐵 Or (𝑅1‘dom 𝑧)) | ||
Theorem | aomclem2 40796* | Lemma for dfac11 40803. Successor case 2, a choice function for subsets of (𝑅1‘dom 𝑧). (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) & ⊢ (𝜑 → dom 𝑧 ∈ On) & ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎)) | ||
Theorem | aomclem3 40797* | Lemma for dfac11 40803. Successor case 3, our required well-ordering. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) & ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) & ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} & ⊢ (𝜑 → dom 𝑧 ∈ On) & ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → 𝐸 We (𝑅1‘dom 𝑧)) | ||
Theorem | aomclem4 40798* | Lemma for dfac11 40803. Limit case. Patch together well-orderings constructed so far using fnwe2 40794 to cover the limit rank. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} & ⊢ (𝜑 → dom 𝑧 ∈ On) & ⊢ (𝜑 → dom 𝑧 = ∪ dom 𝑧) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) ⇒ ⊢ (𝜑 → 𝐹 We (𝑅1‘dom 𝑧)) | ||
Theorem | aomclem5 40799* | Lemma for dfac11 40803. Combine the successor case with the limit case. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) & ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) & ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} & ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} & ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) & ⊢ (𝜑 → dom 𝑧 ∈ On) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → 𝐺 We (𝑅1‘dom 𝑧)) | ||
Theorem | aomclem6 40800* | Lemma for dfac11 40803. Transfinite induction, close over 𝑧. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) & ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) & ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} & ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} & ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) & ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → (𝐻‘𝐴) We (𝑅1‘𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |