Detailed syntax breakdown of Definition df-docaN
Step | Hyp | Ref
| Expression |
1 | | cocaN 39133 |
. 2
class
ocA |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
6 | | clh 37998 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6433 |
. . . 4
class
(LHyp‘𝑘) |
8 | | vx |
. . . . 5
setvar 𝑥 |
9 | 4 | cv 1538 |
. . . . . . 7
class 𝑤 |
10 | | cltrn 38115 |
. . . . . . . 8
class
LTrn |
11 | 5, 10 | cfv 6433 |
. . . . . . 7
class
(LTrn‘𝑘) |
12 | 9, 11 | cfv 6433 |
. . . . . 6
class
((LTrn‘𝑘)‘𝑤) |
13 | 12 | cpw 4533 |
. . . . 5
class 𝒫
((LTrn‘𝑘)‘𝑤) |
14 | 8 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑥 |
15 | | vz |
. . . . . . . . . . . . . 14
setvar 𝑧 |
16 | 15 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑧 |
17 | 14, 16 | wss 3887 |
. . . . . . . . . . . 12
wff 𝑥 ⊆ 𝑧 |
18 | | cdia 39042 |
. . . . . . . . . . . . . . 15
class
DIsoA |
19 | 5, 18 | cfv 6433 |
. . . . . . . . . . . . . 14
class
(DIsoA‘𝑘) |
20 | 9, 19 | cfv 6433 |
. . . . . . . . . . . . 13
class
((DIsoA‘𝑘)‘𝑤) |
21 | 20 | crn 5590 |
. . . . . . . . . . . 12
class ran
((DIsoA‘𝑘)‘𝑤) |
22 | 17, 15, 21 | crab 3068 |
. . . . . . . . . . 11
class {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧} |
23 | 22 | cint 4879 |
. . . . . . . . . 10
class ∩ {𝑧
∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧} |
24 | 20 | ccnv 5588 |
. . . . . . . . . 10
class ◡((DIsoA‘𝑘)‘𝑤) |
25 | 23, 24 | cfv 6433 |
. . . . . . . . 9
class (◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}) |
26 | | coc 16970 |
. . . . . . . . . 10
class
oc |
27 | 5, 26 | cfv 6433 |
. . . . . . . . 9
class
(oc‘𝑘) |
28 | 25, 27 | cfv 6433 |
. . . . . . . 8
class
((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) |
29 | 9, 27 | cfv 6433 |
. . . . . . . 8
class
((oc‘𝑘)‘𝑤) |
30 | | cjn 18029 |
. . . . . . . . 9
class
join |
31 | 5, 30 | cfv 6433 |
. . . . . . . 8
class
(join‘𝑘) |
32 | 28, 29, 31 | co 7275 |
. . . . . . 7
class
(((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤)) |
33 | | cmee 18030 |
. . . . . . . 8
class
meet |
34 | 5, 33 | cfv 6433 |
. . . . . . 7
class
(meet‘𝑘) |
35 | 32, 9, 34 | co 7275 |
. . . . . 6
class
((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤) |
36 | 35, 20 | cfv 6433 |
. . . . 5
class
(((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)) |
37 | 8, 13, 36 | cmpt 5157 |
. . . 4
class (𝑥 ∈ 𝒫
((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))) |
38 | 4, 7, 37 | cmpt 5157 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))) |
39 | 2, 3, 38 | cmpt 5157 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))))) |
40 | 1, 39 | wceq 1539 |
1
wff ocA =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))))) |