Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-docaN Structured version   Visualization version   GIF version

Definition df-docaN 41103
Description: Define subspace orthocomplement for DVecA partial vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 6-Dec-2013.)
Assertion
Ref Expression
df-docaN ocA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))))
Distinct variable group:   𝑤,𝑘,𝑥,𝑧

Detailed syntax breakdown of Definition df-docaN
StepHypRef Expression
1 cocaN 41102 . 2 class ocA
2 vk . . 3 setvar 𝑘
3 cvv 3478 . . 3 class V
4 vw . . . 4 setvar 𝑤
52cv 1536 . . . . 5 class 𝑘
6 clh 39967 . . . . 5 class LHyp
75, 6cfv 6563 . . . 4 class (LHyp‘𝑘)
8 vx . . . . 5 setvar 𝑥
94cv 1536 . . . . . . 7 class 𝑤
10 cltrn 40084 . . . . . . . 8 class LTrn
115, 10cfv 6563 . . . . . . 7 class (LTrn‘𝑘)
129, 11cfv 6563 . . . . . 6 class ((LTrn‘𝑘)‘𝑤)
1312cpw 4605 . . . . 5 class 𝒫 ((LTrn‘𝑘)‘𝑤)
148cv 1536 . . . . . . . . . . . . 13 class 𝑥
15 vz . . . . . . . . . . . . . 14 setvar 𝑧
1615cv 1536 . . . . . . . . . . . . 13 class 𝑧
1714, 16wss 3963 . . . . . . . . . . . 12 wff 𝑥𝑧
18 cdia 41011 . . . . . . . . . . . . . . 15 class DIsoA
195, 18cfv 6563 . . . . . . . . . . . . . 14 class (DIsoA‘𝑘)
209, 19cfv 6563 . . . . . . . . . . . . 13 class ((DIsoA‘𝑘)‘𝑤)
2120crn 5690 . . . . . . . . . . . 12 class ran ((DIsoA‘𝑘)‘𝑤)
2217, 15, 21crab 3433 . . . . . . . . . . 11 class {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}
2322cint 4951 . . . . . . . . . 10 class {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}
2420ccnv 5688 . . . . . . . . . 10 class ((DIsoA‘𝑘)‘𝑤)
2523, 24cfv 6563 . . . . . . . . 9 class (((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧})
26 coc 17306 . . . . . . . . . 10 class oc
275, 26cfv 6563 . . . . . . . . 9 class (oc‘𝑘)
2825, 27cfv 6563 . . . . . . . 8 class ((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))
299, 27cfv 6563 . . . . . . . 8 class ((oc‘𝑘)‘𝑤)
30 cjn 18369 . . . . . . . . 9 class join
315, 30cfv 6563 . . . . . . . 8 class (join‘𝑘)
3228, 29, 31co 7431 . . . . . . 7 class (((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))
33 cmee 18370 . . . . . . . 8 class meet
345, 33cfv 6563 . . . . . . 7 class (meet‘𝑘)
3532, 9, 34co 7431 . . . . . 6 class ((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)
3635, 20cfv 6563 . . . . 5 class (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))
378, 13, 36cmpt 5231 . . . 4 class (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))
384, 7, 37cmpt 5231 . . 3 class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))))
392, 3, 38cmpt 5231 . 2 class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))))
401, 39wceq 1537 1 wff ocA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))))
Colors of variables: wff setvar class
This definition is referenced by:  docaffvalN  41104
  Copyright terms: Public domain W3C validator