Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-docaN Structured version   Visualization version   GIF version

Definition df-docaN 39134
Description: Define subspace orthocomplement for DVecA partial vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 6-Dec-2013.)
Assertion
Ref Expression
df-docaN ocA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))))
Distinct variable group:   𝑤,𝑘,𝑥,𝑧

Detailed syntax breakdown of Definition df-docaN
StepHypRef Expression
1 cocaN 39133 . 2 class ocA
2 vk . . 3 setvar 𝑘
3 cvv 3432 . . 3 class V
4 vw . . . 4 setvar 𝑤
52cv 1538 . . . . 5 class 𝑘
6 clh 37998 . . . . 5 class LHyp
75, 6cfv 6433 . . . 4 class (LHyp‘𝑘)
8 vx . . . . 5 setvar 𝑥
94cv 1538 . . . . . . 7 class 𝑤
10 cltrn 38115 . . . . . . . 8 class LTrn
115, 10cfv 6433 . . . . . . 7 class (LTrn‘𝑘)
129, 11cfv 6433 . . . . . 6 class ((LTrn‘𝑘)‘𝑤)
1312cpw 4533 . . . . 5 class 𝒫 ((LTrn‘𝑘)‘𝑤)
148cv 1538 . . . . . . . . . . . . 13 class 𝑥
15 vz . . . . . . . . . . . . . 14 setvar 𝑧
1615cv 1538 . . . . . . . . . . . . 13 class 𝑧
1714, 16wss 3887 . . . . . . . . . . . 12 wff 𝑥𝑧
18 cdia 39042 . . . . . . . . . . . . . . 15 class DIsoA
195, 18cfv 6433 . . . . . . . . . . . . . 14 class (DIsoA‘𝑘)
209, 19cfv 6433 . . . . . . . . . . . . 13 class ((DIsoA‘𝑘)‘𝑤)
2120crn 5590 . . . . . . . . . . . 12 class ran ((DIsoA‘𝑘)‘𝑤)
2217, 15, 21crab 3068 . . . . . . . . . . 11 class {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}
2322cint 4879 . . . . . . . . . 10 class {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}
2420ccnv 5588 . . . . . . . . . 10 class ((DIsoA‘𝑘)‘𝑤)
2523, 24cfv 6433 . . . . . . . . 9 class (((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧})
26 coc 16970 . . . . . . . . . 10 class oc
275, 26cfv 6433 . . . . . . . . 9 class (oc‘𝑘)
2825, 27cfv 6433 . . . . . . . 8 class ((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))
299, 27cfv 6433 . . . . . . . 8 class ((oc‘𝑘)‘𝑤)
30 cjn 18029 . . . . . . . . 9 class join
315, 30cfv 6433 . . . . . . . 8 class (join‘𝑘)
3228, 29, 31co 7275 . . . . . . 7 class (((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))
33 cmee 18030 . . . . . . . 8 class meet
345, 33cfv 6433 . . . . . . 7 class (meet‘𝑘)
3532, 9, 34co 7275 . . . . . 6 class ((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)
3635, 20cfv 6433 . . . . 5 class (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))
378, 13, 36cmpt 5157 . . . 4 class (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))
384, 7, 37cmpt 5157 . . 3 class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))))
392, 3, 38cmpt 5157 . 2 class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))))
401, 39wceq 1539 1 wff ocA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))))
Colors of variables: wff setvar class
This definition is referenced by:  docaffvalN  39135
  Copyright terms: Public domain W3C validator