Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-docaN Structured version   Visualization version   GIF version

Definition df-docaN 41087
Description: Define subspace orthocomplement for DVecA partial vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 6-Dec-2013.)
Assertion
Ref Expression
df-docaN ocA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))))
Distinct variable group:   𝑤,𝑘,𝑥,𝑧

Detailed syntax breakdown of Definition df-docaN
StepHypRef Expression
1 cocaN 41086 . 2 class ocA
2 vk . . 3 setvar 𝑘
3 cvv 3444 . . 3 class V
4 vw . . . 4 setvar 𝑤
52cv 1539 . . . . 5 class 𝑘
6 clh 39951 . . . . 5 class LHyp
75, 6cfv 6499 . . . 4 class (LHyp‘𝑘)
8 vx . . . . 5 setvar 𝑥
94cv 1539 . . . . . . 7 class 𝑤
10 cltrn 40068 . . . . . . . 8 class LTrn
115, 10cfv 6499 . . . . . . 7 class (LTrn‘𝑘)
129, 11cfv 6499 . . . . . 6 class ((LTrn‘𝑘)‘𝑤)
1312cpw 4559 . . . . 5 class 𝒫 ((LTrn‘𝑘)‘𝑤)
148cv 1539 . . . . . . . . . . . . 13 class 𝑥
15 vz . . . . . . . . . . . . . 14 setvar 𝑧
1615cv 1539 . . . . . . . . . . . . 13 class 𝑧
1714, 16wss 3911 . . . . . . . . . . . 12 wff 𝑥𝑧
18 cdia 40995 . . . . . . . . . . . . . . 15 class DIsoA
195, 18cfv 6499 . . . . . . . . . . . . . 14 class (DIsoA‘𝑘)
209, 19cfv 6499 . . . . . . . . . . . . 13 class ((DIsoA‘𝑘)‘𝑤)
2120crn 5632 . . . . . . . . . . . 12 class ran ((DIsoA‘𝑘)‘𝑤)
2217, 15, 21crab 3402 . . . . . . . . . . 11 class {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}
2322cint 4906 . . . . . . . . . 10 class {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}
2420ccnv 5630 . . . . . . . . . 10 class ((DIsoA‘𝑘)‘𝑤)
2523, 24cfv 6499 . . . . . . . . 9 class (((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧})
26 coc 17204 . . . . . . . . . 10 class oc
275, 26cfv 6499 . . . . . . . . 9 class (oc‘𝑘)
2825, 27cfv 6499 . . . . . . . 8 class ((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))
299, 27cfv 6499 . . . . . . . 8 class ((oc‘𝑘)‘𝑤)
30 cjn 18248 . . . . . . . . 9 class join
315, 30cfv 6499 . . . . . . . 8 class (join‘𝑘)
3228, 29, 31co 7369 . . . . . . 7 class (((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))
33 cmee 18249 . . . . . . . 8 class meet
345, 33cfv 6499 . . . . . . 7 class (meet‘𝑘)
3532, 9, 34co 7369 . . . . . 6 class ((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)
3635, 20cfv 6499 . . . . 5 class (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))
378, 13, 36cmpt 5183 . . . 4 class (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))
384, 7, 37cmpt 5183 . . 3 class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))))
392, 3, 38cmpt 5183 . 2 class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))))
401, 39wceq 1540 1 wff ocA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))))
Colors of variables: wff setvar class
This definition is referenced by:  docaffvalN  41088
  Copyright terms: Public domain W3C validator