Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-docaN Structured version   Visualization version   GIF version

Definition df-docaN 39986
Description: Define subspace orthocomplement for DVecA partial vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 6-Dec-2013.)
Assertion
Ref Expression
df-docaN ocA = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ 𝒫 ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜((((ocβ€˜π‘˜)β€˜(β—‘((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜βˆ© {𝑧 ∈ ran ((DIsoAβ€˜π‘˜)β€˜π‘€) ∣ π‘₯ βŠ† 𝑧}))(joinβ€˜π‘˜)((ocβ€˜π‘˜)β€˜π‘€))(meetβ€˜π‘˜)𝑀)))))
Distinct variable group:   𝑀,π‘˜,π‘₯,𝑧

Detailed syntax breakdown of Definition df-docaN
StepHypRef Expression
1 cocaN 39985 . 2 class ocA
2 vk . . 3 setvar π‘˜
3 cvv 3474 . . 3 class V
4 vw . . . 4 setvar 𝑀
52cv 1540 . . . . 5 class π‘˜
6 clh 38850 . . . . 5 class LHyp
75, 6cfv 6543 . . . 4 class (LHypβ€˜π‘˜)
8 vx . . . . 5 setvar π‘₯
94cv 1540 . . . . . . 7 class 𝑀
10 cltrn 38967 . . . . . . . 8 class LTrn
115, 10cfv 6543 . . . . . . 7 class (LTrnβ€˜π‘˜)
129, 11cfv 6543 . . . . . 6 class ((LTrnβ€˜π‘˜)β€˜π‘€)
1312cpw 4602 . . . . 5 class 𝒫 ((LTrnβ€˜π‘˜)β€˜π‘€)
148cv 1540 . . . . . . . . . . . . 13 class π‘₯
15 vz . . . . . . . . . . . . . 14 setvar 𝑧
1615cv 1540 . . . . . . . . . . . . 13 class 𝑧
1714, 16wss 3948 . . . . . . . . . . . 12 wff π‘₯ βŠ† 𝑧
18 cdia 39894 . . . . . . . . . . . . . . 15 class DIsoA
195, 18cfv 6543 . . . . . . . . . . . . . 14 class (DIsoAβ€˜π‘˜)
209, 19cfv 6543 . . . . . . . . . . . . 13 class ((DIsoAβ€˜π‘˜)β€˜π‘€)
2120crn 5677 . . . . . . . . . . . 12 class ran ((DIsoAβ€˜π‘˜)β€˜π‘€)
2217, 15, 21crab 3432 . . . . . . . . . . 11 class {𝑧 ∈ ran ((DIsoAβ€˜π‘˜)β€˜π‘€) ∣ π‘₯ βŠ† 𝑧}
2322cint 4950 . . . . . . . . . 10 class ∩ {𝑧 ∈ ran ((DIsoAβ€˜π‘˜)β€˜π‘€) ∣ π‘₯ βŠ† 𝑧}
2420ccnv 5675 . . . . . . . . . 10 class β—‘((DIsoAβ€˜π‘˜)β€˜π‘€)
2523, 24cfv 6543 . . . . . . . . 9 class (β—‘((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜βˆ© {𝑧 ∈ ran ((DIsoAβ€˜π‘˜)β€˜π‘€) ∣ π‘₯ βŠ† 𝑧})
26 coc 17204 . . . . . . . . . 10 class oc
275, 26cfv 6543 . . . . . . . . 9 class (ocβ€˜π‘˜)
2825, 27cfv 6543 . . . . . . . 8 class ((ocβ€˜π‘˜)β€˜(β—‘((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜βˆ© {𝑧 ∈ ran ((DIsoAβ€˜π‘˜)β€˜π‘€) ∣ π‘₯ βŠ† 𝑧}))
299, 27cfv 6543 . . . . . . . 8 class ((ocβ€˜π‘˜)β€˜π‘€)
30 cjn 18263 . . . . . . . . 9 class join
315, 30cfv 6543 . . . . . . . 8 class (joinβ€˜π‘˜)
3228, 29, 31co 7408 . . . . . . 7 class (((ocβ€˜π‘˜)β€˜(β—‘((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜βˆ© {𝑧 ∈ ran ((DIsoAβ€˜π‘˜)β€˜π‘€) ∣ π‘₯ βŠ† 𝑧}))(joinβ€˜π‘˜)((ocβ€˜π‘˜)β€˜π‘€))
33 cmee 18264 . . . . . . . 8 class meet
345, 33cfv 6543 . . . . . . 7 class (meetβ€˜π‘˜)
3532, 9, 34co 7408 . . . . . 6 class ((((ocβ€˜π‘˜)β€˜(β—‘((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜βˆ© {𝑧 ∈ ran ((DIsoAβ€˜π‘˜)β€˜π‘€) ∣ π‘₯ βŠ† 𝑧}))(joinβ€˜π‘˜)((ocβ€˜π‘˜)β€˜π‘€))(meetβ€˜π‘˜)𝑀)
3635, 20cfv 6543 . . . . 5 class (((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜((((ocβ€˜π‘˜)β€˜(β—‘((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜βˆ© {𝑧 ∈ ran ((DIsoAβ€˜π‘˜)β€˜π‘€) ∣ π‘₯ βŠ† 𝑧}))(joinβ€˜π‘˜)((ocβ€˜π‘˜)β€˜π‘€))(meetβ€˜π‘˜)𝑀))
378, 13, 36cmpt 5231 . . . 4 class (π‘₯ ∈ 𝒫 ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜((((ocβ€˜π‘˜)β€˜(β—‘((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜βˆ© {𝑧 ∈ ran ((DIsoAβ€˜π‘˜)β€˜π‘€) ∣ π‘₯ βŠ† 𝑧}))(joinβ€˜π‘˜)((ocβ€˜π‘˜)β€˜π‘€))(meetβ€˜π‘˜)𝑀)))
384, 7, 37cmpt 5231 . . 3 class (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ 𝒫 ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜((((ocβ€˜π‘˜)β€˜(β—‘((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜βˆ© {𝑧 ∈ ran ((DIsoAβ€˜π‘˜)β€˜π‘€) ∣ π‘₯ βŠ† 𝑧}))(joinβ€˜π‘˜)((ocβ€˜π‘˜)β€˜π‘€))(meetβ€˜π‘˜)𝑀))))
392, 3, 38cmpt 5231 . 2 class (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ 𝒫 ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜((((ocβ€˜π‘˜)β€˜(β—‘((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜βˆ© {𝑧 ∈ ran ((DIsoAβ€˜π‘˜)β€˜π‘€) ∣ π‘₯ βŠ† 𝑧}))(joinβ€˜π‘˜)((ocβ€˜π‘˜)β€˜π‘€))(meetβ€˜π‘˜)𝑀)))))
401, 39wceq 1541 1 wff ocA = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ 𝒫 ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜((((ocβ€˜π‘˜)β€˜(β—‘((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜βˆ© {𝑧 ∈ ran ((DIsoAβ€˜π‘˜)β€˜π‘€) ∣ π‘₯ βŠ† 𝑧}))(joinβ€˜π‘˜)((ocβ€˜π‘˜)β€˜π‘€))(meetβ€˜π‘˜)𝑀)))))
Colors of variables: wff setvar class
This definition is referenced by:  docaffvalN  39987
  Copyright terms: Public domain W3C validator