Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  docaffvalN Structured version   Visualization version   GIF version

Theorem docaffvalN 41103
Description: Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
docaval.j = (join‘𝐾)
docaval.m = (meet‘𝐾)
docaval.o = (oc‘𝐾)
docaval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
docaffvalN (𝐾𝑉 → (ocA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))))
Distinct variable groups:   𝑤,𝐻   𝑥,𝑤,𝑧,𝐾
Allowed substitution hints:   𝐻(𝑥,𝑧)   (𝑥,𝑧,𝑤)   (𝑥,𝑧,𝑤)   (𝑥,𝑧,𝑤)   𝑉(𝑥,𝑧,𝑤)

Proof of Theorem docaffvalN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6826 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 docaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2782 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6826 . . . . . . 7 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
65fveq1d 6828 . . . . . 6 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
76pweqd 4570 . . . . 5 (𝑘 = 𝐾 → 𝒫 ((LTrn‘𝑘)‘𝑤) = 𝒫 ((LTrn‘𝐾)‘𝑤))
8 fveq2 6826 . . . . . . 7 (𝑘 = 𝐾 → (DIsoA‘𝑘) = (DIsoA‘𝐾))
98fveq1d 6828 . . . . . 6 (𝑘 = 𝐾 → ((DIsoA‘𝑘)‘𝑤) = ((DIsoA‘𝐾)‘𝑤))
10 fveq2 6826 . . . . . . . 8 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
11 docaval.m . . . . . . . 8 = (meet‘𝐾)
1210, 11eqtr4di 2782 . . . . . . 7 (𝑘 = 𝐾 → (meet‘𝑘) = )
13 fveq2 6826 . . . . . . . . 9 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
14 docaval.j . . . . . . . . 9 = (join‘𝐾)
1513, 14eqtr4di 2782 . . . . . . . 8 (𝑘 = 𝐾 → (join‘𝑘) = )
16 fveq2 6826 . . . . . . . . . 10 (𝑘 = 𝐾 → (oc‘𝑘) = (oc‘𝐾))
17 docaval.o . . . . . . . . . 10 = (oc‘𝐾)
1816, 17eqtr4di 2782 . . . . . . . . 9 (𝑘 = 𝐾 → (oc‘𝑘) = )
199cnveqd 5822 . . . . . . . . . 10 (𝑘 = 𝐾((DIsoA‘𝑘)‘𝑤) = ((DIsoA‘𝐾)‘𝑤))
209rneqd 5884 . . . . . . . . . . . 12 (𝑘 = 𝐾 → ran ((DIsoA‘𝑘)‘𝑤) = ran ((DIsoA‘𝐾)‘𝑤))
2120rabeqdv 3412 . . . . . . . . . . 11 (𝑘 = 𝐾 → {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧} = {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})
2221inteqd 4904 . . . . . . . . . 10 (𝑘 = 𝐾 {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧} = {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})
2319, 22fveq12d 6833 . . . . . . . . 9 (𝑘 = 𝐾 → (((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}) = (((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧}))
2418, 23fveq12d 6833 . . . . . . . 8 (𝑘 = 𝐾 → ((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧})) = ( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})))
2518fveq1d 6828 . . . . . . . 8 (𝑘 = 𝐾 → ((oc‘𝑘)‘𝑤) = ( 𝑤))
2615, 24, 25oveq123d 7374 . . . . . . 7 (𝑘 = 𝐾 → (((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤)) = (( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)))
27 eqidd 2730 . . . . . . 7 (𝑘 = 𝐾𝑤 = 𝑤)
2812, 26, 27oveq123d 7374 . . . . . 6 (𝑘 = 𝐾 → ((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤) = ((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))
299, 28fveq12d 6833 . . . . 5 (𝑘 = 𝐾 → (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)) = (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))
307, 29mpteq12dv 5182 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))) = (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))))
314, 30mpteq12dv 5182 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))))
32 df-docaN 41102 . . 3 ocA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))))
3331, 32, 3mptfvmpt 7168 . 2 (𝐾 ∈ V → (ocA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))))
341, 33syl 17 1 (𝐾𝑉 → (ocA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  wss 3905  𝒫 cpw 4553   cint 4899  cmpt 5176  ccnv 5622  ran crn 5624  cfv 6486  (class class class)co 7353  occoc 17187  joincjn 18235  meetcmee 18236  LHypclh 39966  LTrncltrn 40083  DIsoAcdia 41010  ocAcocaN 41101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-docaN 41102
This theorem is referenced by:  docafvalN  41104
  Copyright terms: Public domain W3C validator