Step | Hyp | Ref
| Expression |
1 | | elex 3440 |
. 2
⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) |
2 | | fveq2 6756 |
. . . . 5
⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾)) |
3 | | docaval.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
4 | 2, 3 | eqtr4di 2797 |
. . . 4
⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻) |
5 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾)) |
6 | 5 | fveq1d 6758 |
. . . . . 6
⊢ (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤)) |
7 | 6 | pweqd 4549 |
. . . . 5
⊢ (𝑘 = 𝐾 → 𝒫 ((LTrn‘𝑘)‘𝑤) = 𝒫 ((LTrn‘𝐾)‘𝑤)) |
8 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (DIsoA‘𝑘) = (DIsoA‘𝐾)) |
9 | 8 | fveq1d 6758 |
. . . . . 6
⊢ (𝑘 = 𝐾 → ((DIsoA‘𝑘)‘𝑤) = ((DIsoA‘𝐾)‘𝑤)) |
10 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾)) |
11 | | docaval.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
12 | 10, 11 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (meet‘𝑘) = ∧ ) |
13 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾)) |
14 | | docaval.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
15 | 13, 14 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (join‘𝑘) = ∨ ) |
16 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (oc‘𝑘) = (oc‘𝐾)) |
17 | | docaval.o |
. . . . . . . . . 10
⊢ ⊥ =
(oc‘𝐾) |
18 | 16, 17 | eqtr4di 2797 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (oc‘𝑘) = ⊥ ) |
19 | 9 | cnveqd 5773 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → ◡((DIsoA‘𝑘)‘𝑤) = ◡((DIsoA‘𝐾)‘𝑤)) |
20 | 9 | rneqd 5836 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐾 → ran ((DIsoA‘𝑘)‘𝑤) = ran ((DIsoA‘𝐾)‘𝑤)) |
21 | 20 | rabeqdv 3409 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧} = {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧}) |
22 | 21 | inteqd 4881 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → ∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧} = ∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧}) |
23 | 19, 22 | fveq12d 6763 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}) = (◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) |
24 | 18, 23 | fveq12d 6763 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → ((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) = ( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))) |
25 | 18 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → ((oc‘𝑘)‘𝑤) = ( ⊥ ‘𝑤)) |
26 | 15, 24, 25 | oveq123d 7276 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤)) = (( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤))) |
27 | | eqidd 2739 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → 𝑤 = 𝑤) |
28 | 12, 26, 27 | oveq123d 7276 |
. . . . . 6
⊢ (𝑘 = 𝐾 → ((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤) = ((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤)) |
29 | 9, 28 | fveq12d 6763 |
. . . . 5
⊢ (𝑘 = 𝐾 → (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)) = (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤))) |
30 | 7, 29 | mpteq12dv 5161 |
. . . 4
⊢ (𝑘 = 𝐾 → (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))) = (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤)))) |
31 | 4, 30 | mpteq12dv 5161 |
. . 3
⊢ (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤))))) |
32 | | df-docaN 39061 |
. . 3
⊢ ocA =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))))) |
33 | 31, 32, 3 | mptfvmpt 7086 |
. 2
⊢ (𝐾 ∈ V →
(ocA‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤))))) |
34 | 1, 33 | syl 17 |
1
⊢ (𝐾 ∈ 𝑉 → (ocA‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤))))) |