Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  docaffvalN Structured version   Visualization version   GIF version

Theorem docaffvalN 39135
Description: Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
docaval.j = (join‘𝐾)
docaval.m = (meet‘𝐾)
docaval.o = (oc‘𝐾)
docaval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
docaffvalN (𝐾𝑉 → (ocA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))))
Distinct variable groups:   𝑤,𝐻   𝑥,𝑤,𝑧,𝐾
Allowed substitution hints:   𝐻(𝑥,𝑧)   (𝑥,𝑧,𝑤)   (𝑥,𝑧,𝑤)   (𝑥,𝑧,𝑤)   𝑉(𝑥,𝑧,𝑤)

Proof of Theorem docaffvalN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6774 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 docaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2796 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6774 . . . . . . 7 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
65fveq1d 6776 . . . . . 6 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
76pweqd 4552 . . . . 5 (𝑘 = 𝐾 → 𝒫 ((LTrn‘𝑘)‘𝑤) = 𝒫 ((LTrn‘𝐾)‘𝑤))
8 fveq2 6774 . . . . . . 7 (𝑘 = 𝐾 → (DIsoA‘𝑘) = (DIsoA‘𝐾))
98fveq1d 6776 . . . . . 6 (𝑘 = 𝐾 → ((DIsoA‘𝑘)‘𝑤) = ((DIsoA‘𝐾)‘𝑤))
10 fveq2 6774 . . . . . . . 8 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
11 docaval.m . . . . . . . 8 = (meet‘𝐾)
1210, 11eqtr4di 2796 . . . . . . 7 (𝑘 = 𝐾 → (meet‘𝑘) = )
13 fveq2 6774 . . . . . . . . 9 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
14 docaval.j . . . . . . . . 9 = (join‘𝐾)
1513, 14eqtr4di 2796 . . . . . . . 8 (𝑘 = 𝐾 → (join‘𝑘) = )
16 fveq2 6774 . . . . . . . . . 10 (𝑘 = 𝐾 → (oc‘𝑘) = (oc‘𝐾))
17 docaval.o . . . . . . . . . 10 = (oc‘𝐾)
1816, 17eqtr4di 2796 . . . . . . . . 9 (𝑘 = 𝐾 → (oc‘𝑘) = )
199cnveqd 5784 . . . . . . . . . 10 (𝑘 = 𝐾((DIsoA‘𝑘)‘𝑤) = ((DIsoA‘𝐾)‘𝑤))
209rneqd 5847 . . . . . . . . . . . 12 (𝑘 = 𝐾 → ran ((DIsoA‘𝑘)‘𝑤) = ran ((DIsoA‘𝐾)‘𝑤))
2120rabeqdv 3419 . . . . . . . . . . 11 (𝑘 = 𝐾 → {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧} = {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})
2221inteqd 4884 . . . . . . . . . 10 (𝑘 = 𝐾 {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧} = {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})
2319, 22fveq12d 6781 . . . . . . . . 9 (𝑘 = 𝐾 → (((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}) = (((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧}))
2418, 23fveq12d 6781 . . . . . . . 8 (𝑘 = 𝐾 → ((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧})) = ( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})))
2518fveq1d 6776 . . . . . . . 8 (𝑘 = 𝐾 → ((oc‘𝑘)‘𝑤) = ( 𝑤))
2615, 24, 25oveq123d 7296 . . . . . . 7 (𝑘 = 𝐾 → (((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤)) = (( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)))
27 eqidd 2739 . . . . . . 7 (𝑘 = 𝐾𝑤 = 𝑤)
2812, 26, 27oveq123d 7296 . . . . . 6 (𝑘 = 𝐾 → ((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤) = ((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))
299, 28fveq12d 6781 . . . . 5 (𝑘 = 𝐾 → (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)) = (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))
307, 29mpteq12dv 5165 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))) = (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))))
314, 30mpteq12dv 5165 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))))
32 df-docaN 39134 . . 3 ocA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))))
3331, 32, 3mptfvmpt 7104 . 2 (𝐾 ∈ V → (ocA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))))
341, 33syl 17 1 (𝐾𝑉 → (ocA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  wss 3887  𝒫 cpw 4533   cint 4879  cmpt 5157  ccnv 5588  ran crn 5590  cfv 6433  (class class class)co 7275  occoc 16970  joincjn 18029  meetcmee 18030  LHypclh 37998  LTrncltrn 38115  DIsoAcdia 39042  ocAcocaN 39133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-docaN 39134
This theorem is referenced by:  docafvalN  39136
  Copyright terms: Public domain W3C validator