Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-doch Structured version   Visualization version   GIF version

Definition df-doch 39341
Description: Define subspace orthocomplement for DVecH vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 14-Mar-2014.)
Assertion
Ref Expression
df-doch ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
Distinct variable group:   𝑤,𝑘,𝑥,𝑦

Detailed syntax breakdown of Definition df-doch
StepHypRef Expression
1 coch 39340 . 2 class ocH
2 vk . . 3 setvar 𝑘
3 cvv 3430 . . 3 class V
4 vw . . . 4 setvar 𝑤
52cv 1540 . . . . 5 class 𝑘
6 clh 37977 . . . . 5 class LHyp
75, 6cfv 6430 . . . 4 class (LHyp‘𝑘)
8 vx . . . . 5 setvar 𝑥
94cv 1540 . . . . . . . 8 class 𝑤
10 cdvh 39071 . . . . . . . . 9 class DVecH
115, 10cfv 6430 . . . . . . . 8 class (DVecH‘𝑘)
129, 11cfv 6430 . . . . . . 7 class ((DVecH‘𝑘)‘𝑤)
13 cbs 16893 . . . . . . 7 class Base
1412, 13cfv 6430 . . . . . 6 class (Base‘((DVecH‘𝑘)‘𝑤))
1514cpw 4538 . . . . 5 class 𝒫 (Base‘((DVecH‘𝑘)‘𝑤))
168cv 1540 . . . . . . . . . 10 class 𝑥
17 vy . . . . . . . . . . . 12 setvar 𝑦
1817cv 1540 . . . . . . . . . . 11 class 𝑦
19 cdih 39221 . . . . . . . . . . . . 13 class DIsoH
205, 19cfv 6430 . . . . . . . . . . . 12 class (DIsoH‘𝑘)
219, 20cfv 6430 . . . . . . . . . . 11 class ((DIsoH‘𝑘)‘𝑤)
2218, 21cfv 6430 . . . . . . . . . 10 class (((DIsoH‘𝑘)‘𝑤)‘𝑦)
2316, 22wss 3891 . . . . . . . . 9 wff 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)
245, 13cfv 6430 . . . . . . . . 9 class (Base‘𝑘)
2523, 17, 24crab 3069 . . . . . . . 8 class {𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}
26 cglb 18009 . . . . . . . . 9 class glb
275, 26cfv 6430 . . . . . . . 8 class (glb‘𝑘)
2825, 27cfv 6430 . . . . . . 7 class ((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})
29 coc 16951 . . . . . . . 8 class oc
305, 29cfv 6430 . . . . . . 7 class (oc‘𝑘)
3128, 30cfv 6430 . . . . . 6 class ((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))
3231, 21cfv 6430 . . . . 5 class (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})))
338, 15, 32cmpt 5161 . . . 4 class (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))
344, 7, 33cmpt 5161 . . 3 class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})))))
352, 3, 34cmpt 5161 . 2 class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
361, 35wceq 1541 1 wff ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
Colors of variables: wff setvar class
This definition is referenced by:  dochffval  39342
  Copyright terms: Public domain W3C validator