Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-doch Structured version   Visualization version   GIF version

Definition df-doch 41342
Description: Define subspace orthocomplement for DVecH vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 14-Mar-2014.)
Assertion
Ref Expression
df-doch ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
Distinct variable group:   𝑤,𝑘,𝑥,𝑦

Detailed syntax breakdown of Definition df-doch
StepHypRef Expression
1 coch 41341 . 2 class ocH
2 vk . . 3 setvar 𝑘
3 cvv 3447 . . 3 class V
4 vw . . . 4 setvar 𝑤
52cv 1539 . . . . 5 class 𝑘
6 clh 39978 . . . . 5 class LHyp
75, 6cfv 6511 . . . 4 class (LHyp‘𝑘)
8 vx . . . . 5 setvar 𝑥
94cv 1539 . . . . . . . 8 class 𝑤
10 cdvh 41072 . . . . . . . . 9 class DVecH
115, 10cfv 6511 . . . . . . . 8 class (DVecH‘𝑘)
129, 11cfv 6511 . . . . . . 7 class ((DVecH‘𝑘)‘𝑤)
13 cbs 17179 . . . . . . 7 class Base
1412, 13cfv 6511 . . . . . 6 class (Base‘((DVecH‘𝑘)‘𝑤))
1514cpw 4563 . . . . 5 class 𝒫 (Base‘((DVecH‘𝑘)‘𝑤))
168cv 1539 . . . . . . . . . 10 class 𝑥
17 vy . . . . . . . . . . . 12 setvar 𝑦
1817cv 1539 . . . . . . . . . . 11 class 𝑦
19 cdih 41222 . . . . . . . . . . . . 13 class DIsoH
205, 19cfv 6511 . . . . . . . . . . . 12 class (DIsoH‘𝑘)
219, 20cfv 6511 . . . . . . . . . . 11 class ((DIsoH‘𝑘)‘𝑤)
2218, 21cfv 6511 . . . . . . . . . 10 class (((DIsoH‘𝑘)‘𝑤)‘𝑦)
2316, 22wss 3914 . . . . . . . . 9 wff 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)
245, 13cfv 6511 . . . . . . . . 9 class (Base‘𝑘)
2523, 17, 24crab 3405 . . . . . . . 8 class {𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}
26 cglb 18271 . . . . . . . . 9 class glb
275, 26cfv 6511 . . . . . . . 8 class (glb‘𝑘)
2825, 27cfv 6511 . . . . . . 7 class ((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})
29 coc 17228 . . . . . . . 8 class oc
305, 29cfv 6511 . . . . . . 7 class (oc‘𝑘)
3128, 30cfv 6511 . . . . . 6 class ((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))
3231, 21cfv 6511 . . . . 5 class (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})))
338, 15, 32cmpt 5188 . . . 4 class (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))
344, 7, 33cmpt 5188 . . 3 class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})))))
352, 3, 34cmpt 5188 . 2 class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
361, 35wceq 1540 1 wff ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
Colors of variables: wff setvar class
This definition is referenced by:  dochffval  41343
  Copyright terms: Public domain W3C validator