Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-doch Structured version   Visualization version   GIF version

Definition df-doch 41367
Description: Define subspace orthocomplement for DVecH vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 14-Mar-2014.)
Assertion
Ref Expression
df-doch ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
Distinct variable group:   𝑤,𝑘,𝑥,𝑦

Detailed syntax breakdown of Definition df-doch
StepHypRef Expression
1 coch 41366 . 2 class ocH
2 vk . . 3 setvar 𝑘
3 cvv 3459 . . 3 class V
4 vw . . . 4 setvar 𝑤
52cv 1539 . . . . 5 class 𝑘
6 clh 40003 . . . . 5 class LHyp
75, 6cfv 6531 . . . 4 class (LHyp‘𝑘)
8 vx . . . . 5 setvar 𝑥
94cv 1539 . . . . . . . 8 class 𝑤
10 cdvh 41097 . . . . . . . . 9 class DVecH
115, 10cfv 6531 . . . . . . . 8 class (DVecH‘𝑘)
129, 11cfv 6531 . . . . . . 7 class ((DVecH‘𝑘)‘𝑤)
13 cbs 17228 . . . . . . 7 class Base
1412, 13cfv 6531 . . . . . 6 class (Base‘((DVecH‘𝑘)‘𝑤))
1514cpw 4575 . . . . 5 class 𝒫 (Base‘((DVecH‘𝑘)‘𝑤))
168cv 1539 . . . . . . . . . 10 class 𝑥
17 vy . . . . . . . . . . . 12 setvar 𝑦
1817cv 1539 . . . . . . . . . . 11 class 𝑦
19 cdih 41247 . . . . . . . . . . . . 13 class DIsoH
205, 19cfv 6531 . . . . . . . . . . . 12 class (DIsoH‘𝑘)
219, 20cfv 6531 . . . . . . . . . . 11 class ((DIsoH‘𝑘)‘𝑤)
2218, 21cfv 6531 . . . . . . . . . 10 class (((DIsoH‘𝑘)‘𝑤)‘𝑦)
2316, 22wss 3926 . . . . . . . . 9 wff 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)
245, 13cfv 6531 . . . . . . . . 9 class (Base‘𝑘)
2523, 17, 24crab 3415 . . . . . . . 8 class {𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}
26 cglb 18322 . . . . . . . . 9 class glb
275, 26cfv 6531 . . . . . . . 8 class (glb‘𝑘)
2825, 27cfv 6531 . . . . . . 7 class ((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})
29 coc 17279 . . . . . . . 8 class oc
305, 29cfv 6531 . . . . . . 7 class (oc‘𝑘)
3128, 30cfv 6531 . . . . . 6 class ((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))
3231, 21cfv 6531 . . . . 5 class (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})))
338, 15, 32cmpt 5201 . . . 4 class (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))
344, 7, 33cmpt 5201 . . 3 class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})))))
352, 3, 34cmpt 5201 . 2 class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
361, 35wceq 1540 1 wff ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
Colors of variables: wff setvar class
This definition is referenced by:  dochffval  41368
  Copyright terms: Public domain W3C validator