Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-doch Structured version   Visualization version   GIF version

Definition df-doch 41470
Description: Define subspace orthocomplement for DVecH vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 14-Mar-2014.)
Assertion
Ref Expression
df-doch ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
Distinct variable group:   𝑤,𝑘,𝑥,𝑦

Detailed syntax breakdown of Definition df-doch
StepHypRef Expression
1 coch 41469 . 2 class ocH
2 vk . . 3 setvar 𝑘
3 cvv 3437 . . 3 class V
4 vw . . . 4 setvar 𝑤
52cv 1540 . . . . 5 class 𝑘
6 clh 40106 . . . . 5 class LHyp
75, 6cfv 6488 . . . 4 class (LHyp‘𝑘)
8 vx . . . . 5 setvar 𝑥
94cv 1540 . . . . . . . 8 class 𝑤
10 cdvh 41200 . . . . . . . . 9 class DVecH
115, 10cfv 6488 . . . . . . . 8 class (DVecH‘𝑘)
129, 11cfv 6488 . . . . . . 7 class ((DVecH‘𝑘)‘𝑤)
13 cbs 17124 . . . . . . 7 class Base
1412, 13cfv 6488 . . . . . 6 class (Base‘((DVecH‘𝑘)‘𝑤))
1514cpw 4551 . . . . 5 class 𝒫 (Base‘((DVecH‘𝑘)‘𝑤))
168cv 1540 . . . . . . . . . 10 class 𝑥
17 vy . . . . . . . . . . . 12 setvar 𝑦
1817cv 1540 . . . . . . . . . . 11 class 𝑦
19 cdih 41350 . . . . . . . . . . . . 13 class DIsoH
205, 19cfv 6488 . . . . . . . . . . . 12 class (DIsoH‘𝑘)
219, 20cfv 6488 . . . . . . . . . . 11 class ((DIsoH‘𝑘)‘𝑤)
2218, 21cfv 6488 . . . . . . . . . 10 class (((DIsoH‘𝑘)‘𝑤)‘𝑦)
2316, 22wss 3898 . . . . . . . . 9 wff 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)
245, 13cfv 6488 . . . . . . . . 9 class (Base‘𝑘)
2523, 17, 24crab 3396 . . . . . . . 8 class {𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}
26 cglb 18220 . . . . . . . . 9 class glb
275, 26cfv 6488 . . . . . . . 8 class (glb‘𝑘)
2825, 27cfv 6488 . . . . . . 7 class ((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})
29 coc 17173 . . . . . . . 8 class oc
305, 29cfv 6488 . . . . . . 7 class (oc‘𝑘)
3128, 30cfv 6488 . . . . . 6 class ((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))
3231, 21cfv 6488 . . . . 5 class (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})))
338, 15, 32cmpt 5176 . . . 4 class (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))
344, 7, 33cmpt 5176 . . 3 class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})))))
352, 3, 34cmpt 5176 . 2 class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
361, 35wceq 1541 1 wff ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
Colors of variables: wff setvar class
This definition is referenced by:  dochffval  41471
  Copyright terms: Public domain W3C validator