Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-doch Structured version   Visualization version   GIF version

Definition df-doch 39404
Description: Define subspace orthocomplement for DVecH vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 14-Mar-2014.)
Assertion
Ref Expression
df-doch ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
Distinct variable group:   𝑤,𝑘,𝑥,𝑦

Detailed syntax breakdown of Definition df-doch
StepHypRef Expression
1 coch 39403 . 2 class ocH
2 vk . . 3 setvar 𝑘
3 cvv 3437 . . 3 class V
4 vw . . . 4 setvar 𝑤
52cv 1538 . . . . 5 class 𝑘
6 clh 38040 . . . . 5 class LHyp
75, 6cfv 6458 . . . 4 class (LHyp‘𝑘)
8 vx . . . . 5 setvar 𝑥
94cv 1538 . . . . . . . 8 class 𝑤
10 cdvh 39134 . . . . . . . . 9 class DVecH
115, 10cfv 6458 . . . . . . . 8 class (DVecH‘𝑘)
129, 11cfv 6458 . . . . . . 7 class ((DVecH‘𝑘)‘𝑤)
13 cbs 16957 . . . . . . 7 class Base
1412, 13cfv 6458 . . . . . 6 class (Base‘((DVecH‘𝑘)‘𝑤))
1514cpw 4539 . . . . 5 class 𝒫 (Base‘((DVecH‘𝑘)‘𝑤))
168cv 1538 . . . . . . . . . 10 class 𝑥
17 vy . . . . . . . . . . . 12 setvar 𝑦
1817cv 1538 . . . . . . . . . . 11 class 𝑦
19 cdih 39284 . . . . . . . . . . . . 13 class DIsoH
205, 19cfv 6458 . . . . . . . . . . . 12 class (DIsoH‘𝑘)
219, 20cfv 6458 . . . . . . . . . . 11 class ((DIsoH‘𝑘)‘𝑤)
2218, 21cfv 6458 . . . . . . . . . 10 class (((DIsoH‘𝑘)‘𝑤)‘𝑦)
2316, 22wss 3892 . . . . . . . . 9 wff 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)
245, 13cfv 6458 . . . . . . . . 9 class (Base‘𝑘)
2523, 17, 24crab 3284 . . . . . . . 8 class {𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}
26 cglb 18073 . . . . . . . . 9 class glb
275, 26cfv 6458 . . . . . . . 8 class (glb‘𝑘)
2825, 27cfv 6458 . . . . . . 7 class ((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})
29 coc 17015 . . . . . . . 8 class oc
305, 29cfv 6458 . . . . . . 7 class (oc‘𝑘)
3128, 30cfv 6458 . . . . . 6 class ((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))
3231, 21cfv 6458 . . . . 5 class (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})))
338, 15, 32cmpt 5164 . . . 4 class (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))
344, 7, 33cmpt 5164 . . 3 class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})))))
352, 3, 34cmpt 5164 . 2 class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
361, 35wceq 1539 1 wff ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
Colors of variables: wff setvar class
This definition is referenced by:  dochffval  39405
  Copyright terms: Public domain W3C validator