Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochffval Structured version   Visualization version   GIF version

Theorem dochffval 40215
Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.)
Hypotheses
Ref Expression
dochval.b 𝐡 = (Baseβ€˜πΎ)
dochval.g 𝐺 = (glbβ€˜πΎ)
dochval.o βŠ₯ = (ocβ€˜πΎ)
dochval.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
dochffval (𝐾 ∈ 𝑉 β†’ (ocHβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)}))))))
Distinct variable groups:   𝑦,𝐡   𝑀,𝐻   π‘₯,𝑀,𝑦,𝐾
Allowed substitution hints:   𝐡(π‘₯,𝑀)   𝐺(π‘₯,𝑦,𝑀)   𝐻(π‘₯,𝑦)   βŠ₯ (π‘₯,𝑦,𝑀)   𝑉(π‘₯,𝑦,𝑀)

Proof of Theorem dochffval
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾 ∈ 𝑉 β†’ 𝐾 ∈ V)
2 fveq2 6891 . . . . 5 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = (LHypβ€˜πΎ))
3 dochval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
42, 3eqtr4di 2790 . . . 4 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = 𝐻)
5 fveq2 6891 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (DVecHβ€˜π‘˜) = (DVecHβ€˜πΎ))
65fveq1d 6893 . . . . . . 7 (π‘˜ = 𝐾 β†’ ((DVecHβ€˜π‘˜)β€˜π‘€) = ((DVecHβ€˜πΎ)β€˜π‘€))
76fveq2d 6895 . . . . . 6 (π‘˜ = 𝐾 β†’ (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) = (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))
87pweqd 4619 . . . . 5 (π‘˜ = 𝐾 β†’ 𝒫 (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) = 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))
9 fveq2 6891 . . . . . . 7 (π‘˜ = 𝐾 β†’ (DIsoHβ€˜π‘˜) = (DIsoHβ€˜πΎ))
109fveq1d 6893 . . . . . 6 (π‘˜ = 𝐾 β†’ ((DIsoHβ€˜π‘˜)β€˜π‘€) = ((DIsoHβ€˜πΎ)β€˜π‘€))
11 fveq2 6891 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (ocβ€˜π‘˜) = (ocβ€˜πΎ))
12 dochval.o . . . . . . . 8 βŠ₯ = (ocβ€˜πΎ)
1311, 12eqtr4di 2790 . . . . . . 7 (π‘˜ = 𝐾 β†’ (ocβ€˜π‘˜) = βŠ₯ )
14 fveq2 6891 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (glbβ€˜π‘˜) = (glbβ€˜πΎ))
15 dochval.g . . . . . . . . 9 𝐺 = (glbβ€˜πΎ)
1614, 15eqtr4di 2790 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (glbβ€˜π‘˜) = 𝐺)
17 fveq2 6891 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = (Baseβ€˜πΎ))
18 dochval.b . . . . . . . . . 10 𝐡 = (Baseβ€˜πΎ)
1917, 18eqtr4di 2790 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = 𝐡)
2010fveq1d 6893 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ (((DIsoHβ€˜π‘˜)β€˜π‘€)β€˜π‘¦) = (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦))
2120sseq2d 4014 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (π‘₯ βŠ† (((DIsoHβ€˜π‘˜)β€˜π‘€)β€˜π‘¦) ↔ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)))
2219, 21rabeqbidv 3449 . . . . . . . 8 (π‘˜ = 𝐾 β†’ {𝑦 ∈ (Baseβ€˜π‘˜) ∣ π‘₯ βŠ† (((DIsoHβ€˜π‘˜)β€˜π‘€)β€˜π‘¦)} = {𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)})
2316, 22fveq12d 6898 . . . . . . 7 (π‘˜ = 𝐾 β†’ ((glbβ€˜π‘˜)β€˜{𝑦 ∈ (Baseβ€˜π‘˜) ∣ π‘₯ βŠ† (((DIsoHβ€˜π‘˜)β€˜π‘€)β€˜π‘¦)}) = (πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)}))
2413, 23fveq12d 6898 . . . . . 6 (π‘˜ = 𝐾 β†’ ((ocβ€˜π‘˜)β€˜((glbβ€˜π‘˜)β€˜{𝑦 ∈ (Baseβ€˜π‘˜) ∣ π‘₯ βŠ† (((DIsoHβ€˜π‘˜)β€˜π‘€)β€˜π‘¦)})) = ( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)})))
2510, 24fveq12d 6898 . . . . 5 (π‘˜ = 𝐾 β†’ (((DIsoHβ€˜π‘˜)β€˜π‘€)β€˜((ocβ€˜π‘˜)β€˜((glbβ€˜π‘˜)β€˜{𝑦 ∈ (Baseβ€˜π‘˜) ∣ π‘₯ βŠ† (((DIsoHβ€˜π‘˜)β€˜π‘€)β€˜π‘¦)}))) = (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)}))))
268, 25mpteq12dv 5239 . . . 4 (π‘˜ = 𝐾 β†’ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (((DIsoHβ€˜π‘˜)β€˜π‘€)β€˜((ocβ€˜π‘˜)β€˜((glbβ€˜π‘˜)β€˜{𝑦 ∈ (Baseβ€˜π‘˜) ∣ π‘₯ βŠ† (((DIsoHβ€˜π‘˜)β€˜π‘€)β€˜π‘¦)})))) = (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)})))))
274, 26mpteq12dv 5239 . . 3 (π‘˜ = 𝐾 β†’ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (((DIsoHβ€˜π‘˜)β€˜π‘€)β€˜((ocβ€˜π‘˜)β€˜((glbβ€˜π‘˜)β€˜{𝑦 ∈ (Baseβ€˜π‘˜) ∣ π‘₯ βŠ† (((DIsoHβ€˜π‘˜)β€˜π‘€)β€˜π‘¦)}))))) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)}))))))
28 df-doch 40214 . . 3 ocH = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (((DIsoHβ€˜π‘˜)β€˜π‘€)β€˜((ocβ€˜π‘˜)β€˜((glbβ€˜π‘˜)β€˜{𝑦 ∈ (Baseβ€˜π‘˜) ∣ π‘₯ βŠ† (((DIsoHβ€˜π‘˜)β€˜π‘€)β€˜π‘¦)}))))))
2927, 28, 3mptfvmpt 7229 . 2 (𝐾 ∈ V β†’ (ocHβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)}))))))
301, 29syl 17 1 (𝐾 ∈ 𝑉 β†’ (ocHβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)}))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   βŠ† wss 3948  π’« cpw 4602   ↦ cmpt 5231  β€˜cfv 6543  Basecbs 17143  occoc 17204  glbcglb 18262  LHypclh 38850  DVecHcdvh 39944  DIsoHcdih 40094  ocHcoch 40213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-doch 40214
This theorem is referenced by:  dochfval  40216
  Copyright terms: Public domain W3C validator