Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochffval Structured version   Visualization version   GIF version

Theorem dochffval 41387
Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.)
Hypotheses
Ref Expression
dochval.b 𝐵 = (Base‘𝐾)
dochval.g 𝐺 = (glb‘𝐾)
dochval.o = (oc‘𝐾)
dochval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dochffval (𝐾𝑉 → (ocH‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))))
Distinct variable groups:   𝑦,𝐵   𝑤,𝐻   𝑥,𝑤,𝑦,𝐾
Allowed substitution hints:   𝐵(𝑥,𝑤)   𝐺(𝑥,𝑦,𝑤)   𝐻(𝑥,𝑦)   (𝑥,𝑦,𝑤)   𝑉(𝑥,𝑦,𝑤)

Proof of Theorem dochffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6822 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 dochval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2784 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6822 . . . . . . . 8 (𝑘 = 𝐾 → (DVecH‘𝑘) = (DVecH‘𝐾))
65fveq1d 6824 . . . . . . 7 (𝑘 = 𝐾 → ((DVecH‘𝑘)‘𝑤) = ((DVecH‘𝐾)‘𝑤))
76fveq2d 6826 . . . . . 6 (𝑘 = 𝐾 → (Base‘((DVecH‘𝑘)‘𝑤)) = (Base‘((DVecH‘𝐾)‘𝑤)))
87pweqd 4567 . . . . 5 (𝑘 = 𝐾 → 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) = 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)))
9 fveq2 6822 . . . . . . 7 (𝑘 = 𝐾 → (DIsoH‘𝑘) = (DIsoH‘𝐾))
109fveq1d 6824 . . . . . 6 (𝑘 = 𝐾 → ((DIsoH‘𝑘)‘𝑤) = ((DIsoH‘𝐾)‘𝑤))
11 fveq2 6822 . . . . . . . 8 (𝑘 = 𝐾 → (oc‘𝑘) = (oc‘𝐾))
12 dochval.o . . . . . . . 8 = (oc‘𝐾)
1311, 12eqtr4di 2784 . . . . . . 7 (𝑘 = 𝐾 → (oc‘𝑘) = )
14 fveq2 6822 . . . . . . . . 9 (𝑘 = 𝐾 → (glb‘𝑘) = (glb‘𝐾))
15 dochval.g . . . . . . . . 9 𝐺 = (glb‘𝐾)
1614, 15eqtr4di 2784 . . . . . . . 8 (𝑘 = 𝐾 → (glb‘𝑘) = 𝐺)
17 fveq2 6822 . . . . . . . . . 10 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
18 dochval.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
1917, 18eqtr4di 2784 . . . . . . . . 9 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
2010fveq1d 6824 . . . . . . . . . 10 (𝑘 = 𝐾 → (((DIsoH‘𝑘)‘𝑤)‘𝑦) = (((DIsoH‘𝐾)‘𝑤)‘𝑦))
2120sseq2d 3967 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦) ↔ 𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)))
2219, 21rabeqbidv 3413 . . . . . . . 8 (𝑘 = 𝐾 → {𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)} = {𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})
2316, 22fveq12d 6829 . . . . . . 7 (𝑘 = 𝐾 → ((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}) = (𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))
2413, 23fveq12d 6829 . . . . . 6 (𝑘 = 𝐾 → ((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})) = ( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))
2510, 24fveq12d 6829 . . . . 5 (𝑘 = 𝐾 → (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))) = (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))
268, 25mpteq12dv 5178 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})))) = (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))))
274, 26mpteq12dv 5178 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))))
28 df-doch 41386 . . 3 ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
2927, 28, 3mptfvmpt 7162 . 2 (𝐾 ∈ V → (ocH‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))))
301, 29syl 17 1 (𝐾𝑉 → (ocH‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3902  𝒫 cpw 4550  cmpt 5172  cfv 6481  Basecbs 17117  occoc 17166  glbcglb 18213  LHypclh 40022  DVecHcdvh 41116  DIsoHcdih 41266  ocHcoch 41385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-doch 41386
This theorem is referenced by:  dochfval  41388
  Copyright terms: Public domain W3C validator