Step | Hyp | Ref
| Expression |
1 | | cdvr 20207 |
. 2
class
/r |
2 | | vr |
. . 3
setvar π |
3 | | cvv 3475 |
. . 3
class
V |
4 | | vx |
. . . 4
setvar π₯ |
5 | | vy |
. . . 4
setvar π¦ |
6 | 2 | cv 1541 |
. . . . 5
class π |
7 | | cbs 17141 |
. . . . 5
class
Base |
8 | 6, 7 | cfv 6541 |
. . . 4
class
(Baseβπ) |
9 | | cui 20162 |
. . . . 5
class
Unit |
10 | 6, 9 | cfv 6541 |
. . . 4
class
(Unitβπ) |
11 | 4 | cv 1541 |
. . . . 5
class π₯ |
12 | 5 | cv 1541 |
. . . . . 6
class π¦ |
13 | | cinvr 20194 |
. . . . . . 7
class
invr |
14 | 6, 13 | cfv 6541 |
. . . . . 6
class
(invrβπ) |
15 | 12, 14 | cfv 6541 |
. . . . 5
class
((invrβπ)βπ¦) |
16 | | cmulr 17195 |
. . . . . 6
class
.r |
17 | 6, 16 | cfv 6541 |
. . . . 5
class
(.rβπ) |
18 | 11, 15, 17 | co 7406 |
. . . 4
class (π₯(.rβπ)((invrβπ)βπ¦)) |
19 | 4, 5, 8, 10, 18 | cmpo 7408 |
. . 3
class (π₯ β (Baseβπ), π¦ β (Unitβπ) β¦ (π₯(.rβπ)((invrβπ)βπ¦))) |
20 | 2, 3, 19 | cmpt 5231 |
. 2
class (π β V β¦ (π₯ β (Baseβπ), π¦ β (Unitβπ) β¦ (π₯(.rβπ)((invrβπ)βπ¦)))) |
21 | 1, 20 | wceq 1542 |
1
wff
/r = (π
β V β¦ (π₯ β
(Baseβπ), π¦ β (Unitβπ) β¦ (π₯(.rβπ)((invrβπ)βπ¦)))) |