Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvrfval | Structured version Visualization version GIF version |
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.) |
Ref | Expression |
---|---|
dvrval.b | ⊢ 𝐵 = (Base‘𝑅) |
dvrval.t | ⊢ · = (.r‘𝑅) |
dvrval.u | ⊢ 𝑈 = (Unit‘𝑅) |
dvrval.i | ⊢ 𝐼 = (invr‘𝑅) |
dvrval.d | ⊢ / = (/r‘𝑅) |
Ref | Expression |
---|---|
dvrfval | ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrval.d | . 2 ⊢ / = (/r‘𝑅) | |
2 | fveq2 6756 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
3 | dvrval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 2, 3 | eqtr4di 2797 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
5 | fveq2 6756 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
6 | dvrval.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
7 | 5, 6 | eqtr4di 2797 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
8 | fveq2 6756 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | |
9 | dvrval.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
10 | 8, 9 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
11 | eqidd 2739 | . . . . . 6 ⊢ (𝑟 = 𝑅 → 𝑥 = 𝑥) | |
12 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (invr‘𝑟) = (invr‘𝑅)) | |
13 | dvrval.i | . . . . . . . 8 ⊢ 𝐼 = (invr‘𝑅) | |
14 | 12, 13 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (invr‘𝑟) = 𝐼) |
15 | 14 | fveq1d 6758 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((invr‘𝑟)‘𝑦) = (𝐼‘𝑦)) |
16 | 10, 11, 15 | oveq123d 7276 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)) = (𝑥 · (𝐼‘𝑦))) |
17 | 4, 7, 16 | mpoeq123dv 7328 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
18 | df-dvr 19840 | . . . 4 ⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) | |
19 | 3 | fvexi 6770 | . . . . 5 ⊢ 𝐵 ∈ V |
20 | 6 | fvexi 6770 | . . . . 5 ⊢ 𝑈 ∈ V |
21 | 19, 20 | mpoex 7893 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) ∈ V |
22 | 17, 18, 21 | fvmpt 6857 | . . 3 ⊢ (𝑅 ∈ V → (/r‘𝑅) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
23 | fvprc 6748 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (/r‘𝑅) = ∅) | |
24 | fvprc 6748 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → (Base‘𝑅) = ∅) | |
25 | 3, 24 | eqtrid 2790 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝐵 = ∅) |
26 | 25 | orcd 869 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (𝐵 = ∅ ∨ 𝑈 = ∅)) |
27 | 0mpo0 7336 | . . . . 5 ⊢ ((𝐵 = ∅ ∨ 𝑈 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) = ∅) | |
28 | 26, 27 | syl 17 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) = ∅) |
29 | 23, 28 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝑅 ∈ V → (/r‘𝑅) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
30 | 22, 29 | pm2.61i 182 | . 2 ⊢ (/r‘𝑅) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
31 | 1, 30 | eqtri 2766 | 1 ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 843 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Basecbs 16840 .rcmulr 16889 Unitcui 19796 invrcinvr 19828 /rcdvr 19839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-dvr 19840 |
This theorem is referenced by: dvrval 19842 cnflddiv 20540 dvrcn 23243 |
Copyright terms: Public domain | W3C validator |