| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvrfval | Structured version Visualization version GIF version | ||
| Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.) |
| Ref | Expression |
|---|---|
| dvrval.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvrval.t | ⊢ · = (.r‘𝑅) |
| dvrval.u | ⊢ 𝑈 = (Unit‘𝑅) |
| dvrval.i | ⊢ 𝐼 = (invr‘𝑅) |
| dvrval.d | ⊢ / = (/r‘𝑅) |
| Ref | Expression |
|---|---|
| dvrfval | ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrval.d | . 2 ⊢ / = (/r‘𝑅) | |
| 2 | fveq2 6822 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
| 3 | dvrval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 2, 3 | eqtr4di 2784 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
| 5 | fveq2 6822 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 6 | dvrval.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 7 | 5, 6 | eqtr4di 2784 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
| 8 | fveq2 6822 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | |
| 9 | dvrval.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 10 | 8, 9 | eqtr4di 2784 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
| 11 | eqidd 2732 | . . . . . 6 ⊢ (𝑟 = 𝑅 → 𝑥 = 𝑥) | |
| 12 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (invr‘𝑟) = (invr‘𝑅)) | |
| 13 | dvrval.i | . . . . . . . 8 ⊢ 𝐼 = (invr‘𝑅) | |
| 14 | 12, 13 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (invr‘𝑟) = 𝐼) |
| 15 | 14 | fveq1d 6824 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((invr‘𝑟)‘𝑦) = (𝐼‘𝑦)) |
| 16 | 10, 11, 15 | oveq123d 7367 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)) = (𝑥 · (𝐼‘𝑦))) |
| 17 | 4, 7, 16 | mpoeq123dv 7421 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
| 18 | df-dvr 20317 | . . . 4 ⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) | |
| 19 | 3 | fvexi 6836 | . . . . 5 ⊢ 𝐵 ∈ V |
| 20 | 6 | fvexi 6836 | . . . . 5 ⊢ 𝑈 ∈ V |
| 21 | 19, 20 | mpoex 8011 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) ∈ V |
| 22 | 17, 18, 21 | fvmpt 6929 | . . 3 ⊢ (𝑅 ∈ V → (/r‘𝑅) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
| 23 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (/r‘𝑅) = ∅) | |
| 24 | fvprc 6814 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → (Base‘𝑅) = ∅) | |
| 25 | 3, 24 | eqtrid 2778 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝐵 = ∅) |
| 26 | 25 | orcd 873 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (𝐵 = ∅ ∨ 𝑈 = ∅)) |
| 27 | 0mpo0 7429 | . . . . 5 ⊢ ((𝐵 = ∅ ∨ 𝑈 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) = ∅) | |
| 28 | 26, 27 | syl 17 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) = ∅) |
| 29 | 23, 28 | eqtr4d 2769 | . . 3 ⊢ (¬ 𝑅 ∈ V → (/r‘𝑅) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
| 30 | 22, 29 | pm2.61i 182 | . 2 ⊢ (/r‘𝑅) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
| 31 | 1, 30 | eqtri 2754 | 1 ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17117 .rcmulr 17159 Unitcui 20271 invrcinvr 20303 /rcdvr 20316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-dvr 20317 |
| This theorem is referenced by: dvrval 20319 cnflddiv 21335 cnflddivOLD 21336 dvrcn 24097 |
| Copyright terms: Public domain | W3C validator |