MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrfval Structured version   Visualization version   GIF version

Theorem dvrfval 20362
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
dvrval.b 𝐵 = (Base‘𝑅)
dvrval.t · = (.r𝑅)
dvrval.u 𝑈 = (Unit‘𝑅)
dvrval.i 𝐼 = (invr𝑅)
dvrval.d / = (/r𝑅)
Assertion
Ref Expression
dvrfval / = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥, · ,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   / (𝑥,𝑦)

Proof of Theorem dvrfval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dvrval.d . 2 / = (/r𝑅)
2 fveq2 6876 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 dvrval.b . . . . . 6 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2788 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
5 fveq2 6876 . . . . . 6 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
6 dvrval.u . . . . . 6 𝑈 = (Unit‘𝑅)
75, 6eqtr4di 2788 . . . . 5 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
8 fveq2 6876 . . . . . . 7 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
9 dvrval.t . . . . . . 7 · = (.r𝑅)
108, 9eqtr4di 2788 . . . . . 6 (𝑟 = 𝑅 → (.r𝑟) = · )
11 eqidd 2736 . . . . . 6 (𝑟 = 𝑅𝑥 = 𝑥)
12 fveq2 6876 . . . . . . . 8 (𝑟 = 𝑅 → (invr𝑟) = (invr𝑅))
13 dvrval.i . . . . . . . 8 𝐼 = (invr𝑅)
1412, 13eqtr4di 2788 . . . . . . 7 (𝑟 = 𝑅 → (invr𝑟) = 𝐼)
1514fveq1d 6878 . . . . . 6 (𝑟 = 𝑅 → ((invr𝑟)‘𝑦) = (𝐼𝑦))
1610, 11, 15oveq123d 7426 . . . . 5 (𝑟 = 𝑅 → (𝑥(.r𝑟)((invr𝑟)‘𝑦)) = (𝑥 · (𝐼𝑦)))
174, 7, 16mpoeq123dv 7482 . . . 4 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r𝑟)((invr𝑟)‘𝑦))) = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))))
18 df-dvr 20361 . . . 4 /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r𝑟)((invr𝑟)‘𝑦))))
193fvexi 6890 . . . . 5 𝐵 ∈ V
206fvexi 6890 . . . . 5 𝑈 ∈ V
2119, 20mpoex 8078 . . . 4 (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))) ∈ V
2217, 18, 21fvmpt 6986 . . 3 (𝑅 ∈ V → (/r𝑅) = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))))
23 fvprc 6868 . . . 4 𝑅 ∈ V → (/r𝑅) = ∅)
24 fvprc 6868 . . . . . . 7 𝑅 ∈ V → (Base‘𝑅) = ∅)
253, 24eqtrid 2782 . . . . . 6 𝑅 ∈ V → 𝐵 = ∅)
2625orcd 873 . . . . 5 𝑅 ∈ V → (𝐵 = ∅ ∨ 𝑈 = ∅))
27 0mpo0 7490 . . . . 5 ((𝐵 = ∅ ∨ 𝑈 = ∅) → (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))) = ∅)
2826, 27syl 17 . . . 4 𝑅 ∈ V → (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))) = ∅)
2923, 28eqtr4d 2773 . . 3 𝑅 ∈ V → (/r𝑅) = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))))
3022, 29pm2.61i 182 . 2 (/r𝑅) = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦)))
311, 30eqtri 2758 1 / = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1540  wcel 2108  Vcvv 3459  c0 4308  cfv 6531  (class class class)co 7405  cmpo 7407  Basecbs 17228  .rcmulr 17272  Unitcui 20315  invrcinvr 20347  /rcdvr 20360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-dvr 20361
This theorem is referenced by:  dvrval  20363  cnflddiv  21363  cnflddivOLD  21364  dvrcn  24122
  Copyright terms: Public domain W3C validator