Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrfval Structured version   Visualization version   GIF version

Theorem dvrfval 19518
 Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
dvrval.b 𝐵 = (Base‘𝑅)
dvrval.t · = (.r𝑅)
dvrval.u 𝑈 = (Unit‘𝑅)
dvrval.i 𝐼 = (invr𝑅)
dvrval.d / = (/r𝑅)
Assertion
Ref Expression
dvrfval / = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥, · ,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   / (𝑥,𝑦)

Proof of Theorem dvrfval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dvrval.d . 2 / = (/r𝑅)
2 fveq2 6663 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 dvrval.b . . . . . 6 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2811 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
5 fveq2 6663 . . . . . 6 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
6 dvrval.u . . . . . 6 𝑈 = (Unit‘𝑅)
75, 6eqtr4di 2811 . . . . 5 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
8 fveq2 6663 . . . . . . 7 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
9 dvrval.t . . . . . . 7 · = (.r𝑅)
108, 9eqtr4di 2811 . . . . . 6 (𝑟 = 𝑅 → (.r𝑟) = · )
11 eqidd 2759 . . . . . 6 (𝑟 = 𝑅𝑥 = 𝑥)
12 fveq2 6663 . . . . . . . 8 (𝑟 = 𝑅 → (invr𝑟) = (invr𝑅))
13 dvrval.i . . . . . . . 8 𝐼 = (invr𝑅)
1412, 13eqtr4di 2811 . . . . . . 7 (𝑟 = 𝑅 → (invr𝑟) = 𝐼)
1514fveq1d 6665 . . . . . 6 (𝑟 = 𝑅 → ((invr𝑟)‘𝑦) = (𝐼𝑦))
1610, 11, 15oveq123d 7177 . . . . 5 (𝑟 = 𝑅 → (𝑥(.r𝑟)((invr𝑟)‘𝑦)) = (𝑥 · (𝐼𝑦)))
174, 7, 16mpoeq123dv 7229 . . . 4 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r𝑟)((invr𝑟)‘𝑦))) = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))))
18 df-dvr 19517 . . . 4 /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r𝑟)((invr𝑟)‘𝑦))))
193fvexi 6677 . . . . 5 𝐵 ∈ V
206fvexi 6677 . . . . 5 𝑈 ∈ V
2119, 20mpoex 7788 . . . 4 (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))) ∈ V
2217, 18, 21fvmpt 6764 . . 3 (𝑅 ∈ V → (/r𝑅) = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))))
23 fvprc 6655 . . . 4 𝑅 ∈ V → (/r𝑅) = ∅)
24 fvprc 6655 . . . . . . 7 𝑅 ∈ V → (Base‘𝑅) = ∅)
253, 24syl5eq 2805 . . . . . 6 𝑅 ∈ V → 𝐵 = ∅)
2625orcd 870 . . . . 5 𝑅 ∈ V → (𝐵 = ∅ ∨ 𝑈 = ∅))
27 0mpo0 7237 . . . . 5 ((𝐵 = ∅ ∨ 𝑈 = ∅) → (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))) = ∅)
2826, 27syl 17 . . . 4 𝑅 ∈ V → (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))) = ∅)
2923, 28eqtr4d 2796 . . 3 𝑅 ∈ V → (/r𝑅) = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))))
3022, 29pm2.61i 185 . 2 (/r𝑅) = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦)))
311, 30eqtri 2781 1 / = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∨ wo 844   = wceq 1538   ∈ wcel 2111  Vcvv 3409  ∅c0 4227  ‘cfv 6340  (class class class)co 7156   ∈ cmpo 7158  Basecbs 16554  .rcmulr 16637  Unitcui 19473  invrcinvr 19505  /rcdvr 19516 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-dvr 19517 This theorem is referenced by:  dvrval  19519  cnflddiv  20209  dvrcn  22897
 Copyright terms: Public domain W3C validator