![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvrfval | Structured version Visualization version GIF version |
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.) |
Ref | Expression |
---|---|
dvrval.b | ⊢ 𝐵 = (Base‘𝑅) |
dvrval.t | ⊢ · = (.r‘𝑅) |
dvrval.u | ⊢ 𝑈 = (Unit‘𝑅) |
dvrval.i | ⊢ 𝐼 = (invr‘𝑅) |
dvrval.d | ⊢ / = (/r‘𝑅) |
Ref | Expression |
---|---|
dvrfval | ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrval.d | . 2 ⊢ / = (/r‘𝑅) | |
2 | fveq2 6920 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
3 | dvrval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 2, 3 | eqtr4di 2798 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
5 | fveq2 6920 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
6 | dvrval.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
7 | 5, 6 | eqtr4di 2798 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
8 | fveq2 6920 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | |
9 | dvrval.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
10 | 8, 9 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
11 | eqidd 2741 | . . . . . 6 ⊢ (𝑟 = 𝑅 → 𝑥 = 𝑥) | |
12 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (invr‘𝑟) = (invr‘𝑅)) | |
13 | dvrval.i | . . . . . . . 8 ⊢ 𝐼 = (invr‘𝑅) | |
14 | 12, 13 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (invr‘𝑟) = 𝐼) |
15 | 14 | fveq1d 6922 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((invr‘𝑟)‘𝑦) = (𝐼‘𝑦)) |
16 | 10, 11, 15 | oveq123d 7469 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)) = (𝑥 · (𝐼‘𝑦))) |
17 | 4, 7, 16 | mpoeq123dv 7525 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
18 | df-dvr 20427 | . . . 4 ⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) | |
19 | 3 | fvexi 6934 | . . . . 5 ⊢ 𝐵 ∈ V |
20 | 6 | fvexi 6934 | . . . . 5 ⊢ 𝑈 ∈ V |
21 | 19, 20 | mpoex 8120 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) ∈ V |
22 | 17, 18, 21 | fvmpt 7029 | . . 3 ⊢ (𝑅 ∈ V → (/r‘𝑅) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
23 | fvprc 6912 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (/r‘𝑅) = ∅) | |
24 | fvprc 6912 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → (Base‘𝑅) = ∅) | |
25 | 3, 24 | eqtrid 2792 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝐵 = ∅) |
26 | 25 | orcd 872 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (𝐵 = ∅ ∨ 𝑈 = ∅)) |
27 | 0mpo0 7533 | . . . . 5 ⊢ ((𝐵 = ∅ ∨ 𝑈 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) = ∅) | |
28 | 26, 27 | syl 17 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) = ∅) |
29 | 23, 28 | eqtr4d 2783 | . . 3 ⊢ (¬ 𝑅 ∈ V → (/r‘𝑅) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
30 | 22, 29 | pm2.61i 182 | . 2 ⊢ (/r‘𝑅) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
31 | 1, 30 | eqtri 2768 | 1 ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 846 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 Basecbs 17258 .rcmulr 17312 Unitcui 20381 invrcinvr 20413 /rcdvr 20426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-dvr 20427 |
This theorem is referenced by: dvrval 20429 cnflddiv 21436 cnflddivOLD 21437 dvrcn 24213 |
Copyright terms: Public domain | W3C validator |