Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvrfval | Structured version Visualization version GIF version |
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.) |
Ref | Expression |
---|---|
dvrval.b | ⊢ 𝐵 = (Base‘𝑅) |
dvrval.t | ⊢ · = (.r‘𝑅) |
dvrval.u | ⊢ 𝑈 = (Unit‘𝑅) |
dvrval.i | ⊢ 𝐼 = (invr‘𝑅) |
dvrval.d | ⊢ / = (/r‘𝑅) |
Ref | Expression |
---|---|
dvrfval | ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrval.d | . 2 ⊢ / = (/r‘𝑅) | |
2 | fveq2 6774 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
3 | dvrval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 2, 3 | eqtr4di 2796 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
5 | fveq2 6774 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
6 | dvrval.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
7 | 5, 6 | eqtr4di 2796 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
8 | fveq2 6774 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | |
9 | dvrval.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
10 | 8, 9 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
11 | eqidd 2739 | . . . . . 6 ⊢ (𝑟 = 𝑅 → 𝑥 = 𝑥) | |
12 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (invr‘𝑟) = (invr‘𝑅)) | |
13 | dvrval.i | . . . . . . . 8 ⊢ 𝐼 = (invr‘𝑅) | |
14 | 12, 13 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (invr‘𝑟) = 𝐼) |
15 | 14 | fveq1d 6776 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((invr‘𝑟)‘𝑦) = (𝐼‘𝑦)) |
16 | 10, 11, 15 | oveq123d 7296 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)) = (𝑥 · (𝐼‘𝑦))) |
17 | 4, 7, 16 | mpoeq123dv 7350 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
18 | df-dvr 19925 | . . . 4 ⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) | |
19 | 3 | fvexi 6788 | . . . . 5 ⊢ 𝐵 ∈ V |
20 | 6 | fvexi 6788 | . . . . 5 ⊢ 𝑈 ∈ V |
21 | 19, 20 | mpoex 7920 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) ∈ V |
22 | 17, 18, 21 | fvmpt 6875 | . . 3 ⊢ (𝑅 ∈ V → (/r‘𝑅) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
23 | fvprc 6766 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (/r‘𝑅) = ∅) | |
24 | fvprc 6766 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → (Base‘𝑅) = ∅) | |
25 | 3, 24 | eqtrid 2790 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝐵 = ∅) |
26 | 25 | orcd 870 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (𝐵 = ∅ ∨ 𝑈 = ∅)) |
27 | 0mpo0 7358 | . . . . 5 ⊢ ((𝐵 = ∅ ∨ 𝑈 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) = ∅) | |
28 | 26, 27 | syl 17 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) = ∅) |
29 | 23, 28 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝑅 ∈ V → (/r‘𝑅) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
30 | 22, 29 | pm2.61i 182 | . 2 ⊢ (/r‘𝑅) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
31 | 1, 30 | eqtri 2766 | 1 ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 844 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 Basecbs 16912 .rcmulr 16963 Unitcui 19881 invrcinvr 19913 /rcdvr 19924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-dvr 19925 |
This theorem is referenced by: dvrval 19927 cnflddiv 20628 dvrcn 23335 |
Copyright terms: Public domain | W3C validator |