MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrfval Structured version   Visualization version   GIF version

Theorem dvrfval 20348
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
dvrval.b 𝐡 = (Baseβ€˜π‘…)
dvrval.t Β· = (.rβ€˜π‘…)
dvrval.u π‘ˆ = (Unitβ€˜π‘…)
dvrval.i 𝐼 = (invrβ€˜π‘…)
dvrval.d / = (/rβ€˜π‘…)
Assertion
Ref Expression
dvrfval / = (π‘₯ ∈ 𝐡, 𝑦 ∈ π‘ˆ ↦ (π‘₯ Β· (πΌβ€˜π‘¦)))
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯,𝐼,𝑦   π‘₯,𝑅,𝑦   π‘₯, Β· ,𝑦   π‘₯,π‘ˆ,𝑦
Allowed substitution hints:   / (π‘₯,𝑦)

Proof of Theorem dvrfval
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 dvrval.d . 2 / = (/rβ€˜π‘…)
2 fveq2 6902 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = (Baseβ€˜π‘…))
3 dvrval.b . . . . . 6 𝐡 = (Baseβ€˜π‘…)
42, 3eqtr4di 2786 . . . . 5 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = 𝐡)
5 fveq2 6902 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (Unitβ€˜π‘Ÿ) = (Unitβ€˜π‘…))
6 dvrval.u . . . . . 6 π‘ˆ = (Unitβ€˜π‘…)
75, 6eqtr4di 2786 . . . . 5 (π‘Ÿ = 𝑅 β†’ (Unitβ€˜π‘Ÿ) = π‘ˆ)
8 fveq2 6902 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (.rβ€˜π‘Ÿ) = (.rβ€˜π‘…))
9 dvrval.t . . . . . . 7 Β· = (.rβ€˜π‘…)
108, 9eqtr4di 2786 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (.rβ€˜π‘Ÿ) = Β· )
11 eqidd 2729 . . . . . 6 (π‘Ÿ = 𝑅 β†’ π‘₯ = π‘₯)
12 fveq2 6902 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (invrβ€˜π‘Ÿ) = (invrβ€˜π‘…))
13 dvrval.i . . . . . . . 8 𝐼 = (invrβ€˜π‘…)
1412, 13eqtr4di 2786 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (invrβ€˜π‘Ÿ) = 𝐼)
1514fveq1d 6904 . . . . . 6 (π‘Ÿ = 𝑅 β†’ ((invrβ€˜π‘Ÿ)β€˜π‘¦) = (πΌβ€˜π‘¦))
1610, 11, 15oveq123d 7447 . . . . 5 (π‘Ÿ = 𝑅 β†’ (π‘₯(.rβ€˜π‘Ÿ)((invrβ€˜π‘Ÿ)β€˜π‘¦)) = (π‘₯ Β· (πΌβ€˜π‘¦)))
174, 7, 16mpoeq123dv 7501 . . . 4 (π‘Ÿ = 𝑅 β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ), 𝑦 ∈ (Unitβ€˜π‘Ÿ) ↦ (π‘₯(.rβ€˜π‘Ÿ)((invrβ€˜π‘Ÿ)β€˜π‘¦))) = (π‘₯ ∈ 𝐡, 𝑦 ∈ π‘ˆ ↦ (π‘₯ Β· (πΌβ€˜π‘¦))))
18 df-dvr 20347 . . . 4 /r = (π‘Ÿ ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘Ÿ), 𝑦 ∈ (Unitβ€˜π‘Ÿ) ↦ (π‘₯(.rβ€˜π‘Ÿ)((invrβ€˜π‘Ÿ)β€˜π‘¦))))
193fvexi 6916 . . . . 5 𝐡 ∈ V
206fvexi 6916 . . . . 5 π‘ˆ ∈ V
2119, 20mpoex 8090 . . . 4 (π‘₯ ∈ 𝐡, 𝑦 ∈ π‘ˆ ↦ (π‘₯ Β· (πΌβ€˜π‘¦))) ∈ V
2217, 18, 21fvmpt 7010 . . 3 (𝑅 ∈ V β†’ (/rβ€˜π‘…) = (π‘₯ ∈ 𝐡, 𝑦 ∈ π‘ˆ ↦ (π‘₯ Β· (πΌβ€˜π‘¦))))
23 fvprc 6894 . . . 4 (Β¬ 𝑅 ∈ V β†’ (/rβ€˜π‘…) = βˆ…)
24 fvprc 6894 . . . . . . 7 (Β¬ 𝑅 ∈ V β†’ (Baseβ€˜π‘…) = βˆ…)
253, 24eqtrid 2780 . . . . . 6 (Β¬ 𝑅 ∈ V β†’ 𝐡 = βˆ…)
2625orcd 871 . . . . 5 (Β¬ 𝑅 ∈ V β†’ (𝐡 = βˆ… ∨ π‘ˆ = βˆ…))
27 0mpo0 7509 . . . . 5 ((𝐡 = βˆ… ∨ π‘ˆ = βˆ…) β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ π‘ˆ ↦ (π‘₯ Β· (πΌβ€˜π‘¦))) = βˆ…)
2826, 27syl 17 . . . 4 (Β¬ 𝑅 ∈ V β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ π‘ˆ ↦ (π‘₯ Β· (πΌβ€˜π‘¦))) = βˆ…)
2923, 28eqtr4d 2771 . . 3 (Β¬ 𝑅 ∈ V β†’ (/rβ€˜π‘…) = (π‘₯ ∈ 𝐡, 𝑦 ∈ π‘ˆ ↦ (π‘₯ Β· (πΌβ€˜π‘¦))))
3022, 29pm2.61i 182 . 2 (/rβ€˜π‘…) = (π‘₯ ∈ 𝐡, 𝑦 ∈ π‘ˆ ↦ (π‘₯ Β· (πΌβ€˜π‘¦)))
311, 30eqtri 2756 1 / = (π‘₯ ∈ 𝐡, 𝑦 ∈ π‘ˆ ↦ (π‘₯ Β· (πΌβ€˜π‘¦)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∨ wo 845   = wceq 1533   ∈ wcel 2098  Vcvv 3473  βˆ…c0 4326  β€˜cfv 6553  (class class class)co 7426   ∈ cmpo 7428  Basecbs 17187  .rcmulr 17241  Unitcui 20301  invrcinvr 20333  /rcdvr 20346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-dvr 20347
This theorem is referenced by:  dvrval  20349  cnflddiv  21335  cnflddivOLD  21336  dvrcn  24108
  Copyright terms: Public domain W3C validator