![]() |
Metamath
Proof Explorer Theorem List (p. 203 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | drngmcl 20201 | The product of two nonzero elements of a division ring is nonzero. (Contributed by NM, 7-Sep-2011.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ (𝐵 ∖ { 0 }) ∧ 𝑌 ∈ (𝐵 ∖ { 0 })) → (𝑋 · 𝑌) ∈ (𝐵 ∖ { 0 })) | ||
Theorem | drngid 20202 | A division ring's unity is the identity element of its multiplicative group. (Contributed by NM, 7-Sep-2011.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ⇒ ⊢ (𝑅 ∈ DivRing → 1 = (0g‘𝐺)) | ||
Theorem | drngunz 20203 | A division ring's unity is different from its zero. (Contributed by NM, 8-Sep-2011.) |
⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 1 ≠ 0 ) | ||
Theorem | drngid2 20204 | Properties showing that an element 𝐼 is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼)) | ||
Theorem | drnginvrcl 20205 | Closure of the multiplicative inverse in a division ring. (reccl 11820 analog). (Contributed by NM, 19-Apr-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐵) | ||
Theorem | drnginvrn0 20206 | The multiplicative inverse in a division ring is nonzero. (recne0 11826 analog). (Contributed by NM, 19-Apr-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ≠ 0 ) | ||
Theorem | drnginvrcld 20207 | Closure of the multiplicative inverse in a division ring. (reccld 11924 analog). (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) ∈ 𝐵) | ||
Theorem | drnginvrl 20208 | Property of the multiplicative inverse in a division ring. (recid2 11828 analog). (Contributed by NM, 19-Apr-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ((𝐼‘𝑋) · 𝑋) = 1 ) | ||
Theorem | drnginvrr 20209 | Property of the multiplicative inverse in a division ring. (recid 11827 analog). (Contributed by NM, 19-Apr-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑋 · (𝐼‘𝑋)) = 1 ) | ||
Theorem | drngmul0or 20210 | A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) | ||
Theorem | drngmulne0 20211 | A product is nonzero iff both its factors are nonzero. (Contributed by NM, 18-Oct-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) ≠ 0 ↔ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ))) | ||
Theorem | drngmuleq0 20212 | An element is zero iff its product with a nonzero element is zero. (Contributed by NM, 8-Oct-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑋 = 0 )) | ||
Theorem | opprdrng 20213 | The opposite of a division ring is also a division ring. (Contributed by NM, 18-Oct-2014.) |
⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing ↔ 𝑂 ∈ DivRing) | ||
Theorem | isdrngd 20214* | Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element 𝑥 should have a left-inverse 𝐼(𝑥). See isdrngd 20214 for the characterization using right-inverses. (Contributed by NM, 2-Aug-2013.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 0 = (0g‘𝑅)) & ⊢ (𝜑 → 1 = (1r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑥 · 𝑦) ≠ 0 ) & ⊢ (𝜑 → 1 ≠ 0 ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → 𝐼 ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → 𝐼 ≠ 0 ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝐼 · 𝑥) = 1 ) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
Theorem | isdrngrd 20215* | Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element 𝑥 should have a right-inverse 𝐼(𝑥). See isdrngd 20214 for the characterization using left-inverses. (Contributed by NM, 10-Aug-2013.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 0 = (0g‘𝑅)) & ⊢ (𝜑 → 1 = (1r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑥 · 𝑦) ≠ 0 ) & ⊢ (𝜑 → 1 ≠ 0 ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → 𝐼 ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → 𝐼 ≠ 0 ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝑥 · 𝐼) = 1 ) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
Theorem | drngpropd 20216* | If two structures have the same group components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)) | ||
Theorem | fldpropd 20217* | If two structures have the same group components (properties), one is a field iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Field ↔ 𝐿 ∈ Field)) | ||
Syntax | csubrg 20218 | Extend class notation with all subrings of a ring. |
class SubRing | ||
Syntax | crgspn 20219 | Extend class notation with span of a set of elements over a ring. |
class RingSpan | ||
Definition | df-subrg 20220* |
Define a subring of a ring as a set of elements that is a ring in its
own right and contains the multiplicative identity.
The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset (ℤ × {0}) of (ℤ × ℤ) (where multiplication is componentwise) contains the false identity 〈1, 0〉 which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤 ↾s 𝑠) ∈ Ring ∧ (1r‘𝑤) ∈ 𝑠)}) | ||
Definition | df-rgspn 20221* | The ring-span of a set of elements in a ring is the smallest subring which contains all of them. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
⊢ RingSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠 ⊆ 𝑡})) | ||
Theorem | issubrg 20222 | The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴))) | ||
Theorem | subrgss 20223 | A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) | ||
Theorem | subrgid 20224 | Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) | ||
Theorem | subrgring 20225 | A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) | ||
Theorem | subrgcrng 20226 | A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing) | ||
Theorem | subrgrcl 20227 | Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.) |
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | ||
Theorem | subrgsubg 20228 | A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | ||
Theorem | subrg0 20229 | A subring always has the same additive identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘𝑆)) | ||
Theorem | subrg1cl 20230 | A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) | ||
Theorem | subrgbas 20231 | Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) | ||
Theorem | subrg1 20232 | A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r‘𝑆)) | ||
Theorem | subrgacl 20233 | A subring is closed under addition. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 + 𝑌) ∈ 𝐴) | ||
Theorem | subrgmcl 20234 | A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 · 𝑌) ∈ 𝐴) | ||
Theorem | subrgsubm 20235 | A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) | ||
Theorem | subrgdvds 20236 | If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝐸 = (∥r‘𝑆) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐸 ⊆ ∥ ) | ||
Theorem | subrguss 20237 | A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑉 = (Unit‘𝑆) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) | ||
Theorem | subrginv 20238 | A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑆) & ⊢ 𝐽 = (invr‘𝑆) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) = (𝐽‘𝑋)) | ||
Theorem | subrgdv 20239 | A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ / = (/r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑆) & ⊢ 𝐸 = (/r‘𝑆) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌)) | ||
Theorem | subrgunit 20240 | An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑉 = (Unit‘𝑆) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴))) | ||
Theorem | subrgugrp 20241 | The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑉 = (Unit‘𝑆) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) | ||
Theorem | issubrg2 20242* | Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴))) | ||
Theorem | opprsubrg 20243 | Being a subring is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.) |
⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (SubRing‘𝑅) = (SubRing‘𝑂) | ||
Theorem | subrgint 20244 | The intersection of a nonempty collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
⊢ ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRing‘𝑅)) | ||
Theorem | subrgin 20245 | The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑅)) → (𝐴 ∩ 𝐵) ∈ (SubRing‘𝑅)) | ||
Theorem | subrgmre 20246 | The subrings of a ring are a Moore system. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (Moore‘𝐵)) | ||
Theorem | issubdrg 20247* | Characterize the subfields of a division ring. (Contributed by Mario Carneiro, 3-Dec-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑆 ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴)) | ||
Theorem | subsubrg 20248 | A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) | ||
Theorem | subsubrg2 20249 | The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (SubRing‘𝑆) = ((SubRing‘𝑅) ∩ 𝒫 𝐴)) | ||
Theorem | issubrg3 20250 | A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)))) | ||
Theorem | resrhm 20251 | Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.) |
⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇)) | ||
Theorem | rhmeql 20252 | The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubRing‘𝑆)) | ||
Theorem | rhmima 20253 | The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubRing‘𝑁)) | ||
Theorem | rnrhmsubrg 20254 | The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.) |
⊢ (𝐹 ∈ (𝑀 RingHom 𝑁) → ran 𝐹 ∈ (SubRing‘𝑁)) | ||
Theorem | cntzsubr 20255 | Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubRing‘𝑅)) | ||
Theorem | pwsdiagrhm 20256* | Diagonal homomorphism into a structure power (Rings). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌)) | ||
Theorem | subrgpropd 20257* | If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿)) | ||
Theorem | rhmpropd 20258* | Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐽)𝑦) = (𝑥(.r‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀)) | ||
Syntax | csdrg 20259 | Syntax for subfields (sub-division-rings). |
class SubDRing | ||
Definition | df-sdrg 20260* | Define the function associating with a ring the set of its sub-division-rings. A sub-division-ring of a ring is a subset of its base set which is a division ring when equipped with the induced structure (sum, multiplication, zero, and unity). If a ring is commutative (resp., a field), then its sub-division-rings are commutative (resp., are fields) (fldsdrgfld 20265), so we do not make a specific definition for subfields. (Contributed by Stefan O'Rear, 3-Oct-2015.) TODO: extend this definition to a function with domain V or at least Ring and not only DivRing. |
⊢ SubDRing = (𝑤 ∈ DivRing ↦ {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ DivRing}) | ||
Theorem | issdrg 20261 | Property of a division subring. (Contributed by Stefan O'Rear, 3-Oct-2015.) |
⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) | ||
Theorem | sdrgid 20262 | Every division ring is a division subring of itself. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝑅)) | ||
Theorem | sdrgss 20263 | A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑆 ⊆ 𝐵) | ||
Theorem | issdrg2 20264* | Property of a division subring (closure version). (Contributed by Mario Carneiro, 3-Oct-2015.) |
⊢ 𝐼 = (invr‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑆 ∖ { 0 })(𝐼‘𝑥) ∈ 𝑆)) | ||
Theorem | fldsdrgfld 20265 | A sub-division-ring of a field is itself a field, so it is a subfield. We can therefore use SubDRing to express subfields. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
⊢ ((𝐹 ∈ Field ∧ 𝐴 ∈ (SubDRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ Field) | ||
Theorem | acsfn1p 20266* | Construction of a closure rule from a one-parameter partial operation. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
Theorem | subrgacs 20267 | Closure property of subrings. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (ACS‘𝐵)) | ||
Theorem | sdrgacs 20268 | Closure property of division subrings. (Contributed by Mario Carneiro, 3-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵)) | ||
Theorem | cntzsdrg 20269 | Centralizers in division rings/fields are subfields. (Contributed by Mario Carneiro, 3-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubDRing‘𝑅)) | ||
Theorem | subdrgint 20270* | The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
⊢ 𝐿 = (𝑅 ↾s ∩ 𝑆) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑆 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → (𝑅 ↾s 𝑠) ∈ DivRing) ⇒ ⊢ (𝜑 → 𝐿 ∈ DivRing) | ||
Theorem | sdrgint 20271 | The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubDRing‘𝑅)) | ||
Theorem | primefld 20272 | The smallest sub division ring of a division ring, here named 𝑃, is a field, called the Prime Field of 𝑅. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 21-Aug-2023.) |
⊢ 𝑃 = (𝑅 ↾s ∩ (SubDRing‘𝑅)) ⇒ ⊢ (𝑅 ∈ DivRing → 𝑃 ∈ Field) | ||
Theorem | primefld0cl 20273 | The prime field contains the zero element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023.) |
⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 0 ∈ ∩ (SubDRing‘𝑅)) | ||
Theorem | primefld1cl 20274 | The prime field contains the unity element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023.) |
⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 1 ∈ ∩ (SubDRing‘𝑅)) | ||
Syntax | cabv 20275 | The set of absolute values on a ring. |
class AbsVal | ||
Definition | df-abv 20276* | Define the set of absolute values on a ring. An absolute value is a generalization of the usual absolute value function df-abs 15121 to arbitrary rings. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | ||
Theorem | abvfval 20277* | Value of the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐴 = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | ||
Theorem | isabv 20278* | Elementhood in the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) | ||
Theorem | isabvd 20279* | Properties that determine an absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 4-Dec-2014.) |
⊢ (𝜑 → 𝐴 = (AbsVal‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 0 = (0g‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹:𝐵⟶ℝ) & ⊢ (𝜑 → (𝐹‘ 0 ) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → 0 < (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐴) | ||
Theorem | abvrcl 20280 | Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) | ||
Theorem | abvfge0 20281 | An absolute value is a function from the ring to the nonnegative real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶(0[,)+∞)) | ||
Theorem | abvf 20282 | An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶ℝ) | ||
Theorem | abvcl 20283 | An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) | ||
Theorem | abvge0 20284 | The absolute value of a number is greater than or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 0 ≤ (𝐹‘𝑋)) | ||
Theorem | abveq0 20285 | The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) | ||
Theorem | abvne0 20286 | The absolute value of a nonzero number is nonzero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐹‘𝑋) ≠ 0) | ||
Theorem | abvgt0 20287 | The absolute value of a nonzero number is strictly positive. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 0 < (𝐹‘𝑋)) | ||
Theorem | abvmul 20288 | An absolute value distributes under multiplication. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹‘𝑋) · (𝐹‘𝑌))) | ||
Theorem | abvtri 20289 | An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) | ||
Theorem | abv0 20290 | The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) | ||
Theorem | abv1z 20291 | The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = 1) | ||
Theorem | abv1 20292 | The absolute value of one is one in a division ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) → (𝐹‘ 1 ) = 1) | ||
Theorem | abvneg 20293 | The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁‘𝑋)) = (𝐹‘𝑋)) | ||
Theorem | abvsubtri 20294 | An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ − = (-g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 − 𝑌)) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) | ||
Theorem | abvrec 20295 | The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) = (1 / (𝐹‘𝑋))) | ||
Theorem | abvdiv 20296 | The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹‘𝑋) / (𝐹‘𝑌))) | ||
Theorem | abvdom 20297 | Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) | ||
Theorem | abvres 20298 | The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝑆 = (𝑅 ↾s 𝐶) & ⊢ 𝐵 = (AbsVal‘𝑆) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝐶 ∈ (SubRing‘𝑅)) → (𝐹 ↾ 𝐶) ∈ 𝐵) | ||
Theorem | abvtrivd 20299* | The trivial absolute value. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑦 · 𝑧) ≠ 0 ) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐴) | ||
Theorem | abvtriv 20300* | The trivial absolute value. (This theorem is true as long as 𝑅 is a domain, but it is not true for rings with zero divisors, which violate the multiplication axiom; abvdom 20297 is the converse of this remark.) (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) ⇒ ⊢ (𝑅 ∈ DivRing → 𝐹 ∈ 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |