Home | Metamath
Proof Explorer Theorem List (p. 203 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-lmic 20201 | Two modules are said to be isomorphic iff they are connected by at least one isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ ≃𝑚 = (◡ LMIso “ (V ∖ 1o)) | ||
Theorem | reldmlmhm 20202 | Lemma for module homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ Rel dom LMHom | ||
Theorem | lmimfn 20203 | Lemma for module isomorphisms. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
⊢ LMIso Fn (LMod × LMod) | ||
Theorem | islmhm 20204* | Property of being a homomorphism of left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐿 = (Scalar‘𝑇) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐸 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ × = ( ·𝑠 ‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) | ||
Theorem | islmhm3 20205* | Property of a module homomorphism, similar to ismhm 18347. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐿 = (Scalar‘𝑇) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐸 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ × = ( ·𝑠 ‘𝑇) ⇒ ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) | ||
Theorem | lmhmlem 20206 | Non-quantified consequences of a left module homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐿 = (Scalar‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) | ||
Theorem | lmhmsca 20207 | A homomorphism of left modules constrains both modules to the same ring of scalars. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐿 = (Scalar‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾) | ||
Theorem | lmghm 20208 | A homomorphism of left modules is a homomorphism of groups. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
Theorem | lmhmlmod2 20209 | A homomorphism of left modules has a left module as codomain. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) | ||
Theorem | lmhmlmod1 20210 | A homomorphism of left modules has a left module as domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) | ||
Theorem | lmhmf 20211 | A homomorphism of left modules is a function. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶𝐶) | ||
Theorem | lmhmlin 20212 | A homomorphism of left modules is 𝐾-linear. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐸 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ × = ( ·𝑠 ‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌))) | ||
Theorem | lmodvsinv 20213 | Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) & ⊢ 𝑀 = (invg‘𝐹) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑅) · 𝑋) = (𝑁‘(𝑅 · 𝑋))) | ||
Theorem | lmodvsinv2 20214 | Multiplying a negated vector by a scalar. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · (𝑁‘𝑋)) = (𝑁‘(𝑅 · 𝑋))) | ||
Theorem | islmhm2 20215* | A one-equation proof of linearity of a left module homomorphism, similar to df-lss 20109. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐿 = (Scalar‘𝑇) & ⊢ 𝐸 = (Base‘𝐾) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ × = ( ·𝑠 ‘𝑇) ⇒ ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))))) | ||
Theorem | islmhmd 20216* | Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
⊢ 𝑋 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ × = ( ·𝑠 ‘𝑇) & ⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐽 = (Scalar‘𝑇) & ⊢ 𝑁 = (Base‘𝐾) & ⊢ (𝜑 → 𝑆 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐽 = 𝐾) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) | ||
Theorem | 0lmhm 20217 | The constant zero linear function between two modules. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 0 = (0g‘𝑁) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑇 = (Scalar‘𝑁) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁)) | ||
Theorem | idlmhm 20218 | The identity function on a module is linear. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀)) | ||
Theorem | invlmhm 20219 | The negative function on a module is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐼 = (invg‘𝑀) ⇒ ⊢ (𝑀 ∈ LMod → 𝐼 ∈ (𝑀 LMHom 𝑀)) | ||
Theorem | lmhmco 20220 | The composition of two module-linear functions is module-linear. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹 ∘ 𝐺) ∈ (𝑀 LMHom 𝑂)) | ||
Theorem | lmhmplusg 20221 | The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ + = (+g‘𝑁) ⇒ ⊢ ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹 ∘f + 𝐺) ∈ (𝑀 LMHom 𝑁)) | ||
Theorem | lmhmvsca 20222 | The pointwise scalar product of a linear function and a constant is linear, over a commutative ring. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑉 = (Base‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑁) & ⊢ 𝐽 = (Scalar‘𝑁) & ⊢ 𝐾 = (Base‘𝐽) ⇒ ⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) ∈ (𝑀 LMHom 𝑁)) | ||
Theorem | lmhmf1o 20223 | A bijective module homomorphism is also converse homomorphic. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑇 LMHom 𝑆))) | ||
Theorem | lmhmima 20224 | The image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝑋 = (LSubSp‘𝑆) & ⊢ 𝑌 = (LSubSp‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → (𝐹 “ 𝑈) ∈ 𝑌) | ||
Theorem | lmhmpreima 20225 | The inverse image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝑋 = (LSubSp‘𝑆) & ⊢ 𝑌 = (LSubSp‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → (◡𝐹 “ 𝑈) ∈ 𝑋) | ||
Theorem | lmhmlsp 20226 | Homomorphisms preserve spans. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐾 = (LSpan‘𝑆) & ⊢ 𝐿 = (LSpan‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (𝐹 “ (𝐾‘𝑈)) = (𝐿‘(𝐹 “ 𝑈))) | ||
Theorem | lmhmrnlss 20227 | The range of a homomorphism is a submodule. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ (LSubSp‘𝑇)) | ||
Theorem | lmhmkerlss 20228 | The kernel of a homomorphism is a submodule. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝑈 = (LSubSp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ 𝑈) | ||
Theorem | reslmhm 20229 | Restriction of a homomorphism to a subspace. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝑈 = (LSubSp‘𝑆) & ⊢ 𝑅 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋 ∈ 𝑈) → (𝐹 ↾ 𝑋) ∈ (𝑅 LMHom 𝑇)) | ||
Theorem | reslmhm2 20230 | Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ 𝑈 = (𝑇 ↾s 𝑋) & ⊢ 𝐿 = (LSubSp‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | ||
Theorem | reslmhm2b 20231 | Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ 𝑈 = (𝑇 ↾s 𝑋) & ⊢ 𝐿 = (LSubSp‘𝑇) ⇒ ⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ 𝐹 ∈ (𝑆 LMHom 𝑈))) | ||
Theorem | lmhmeql 20232 | The equalizer of two module homomorphisms is a subspace. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ 𝑈 = (LSubSp‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ 𝑈) | ||
Theorem | lspextmo 20233* | A linear function is completely determined (or overdetermined) by its values on a spanning subset. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by NM, 17-Jun-2017.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐾 = (LSpan‘𝑆) ⇒ ⊢ ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) → ∃*𝑔 ∈ (𝑆 LMHom 𝑇)(𝑔 ↾ 𝑋) = 𝐹) | ||
Theorem | pwsdiaglmhm 20234* | Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌)) | ||
Theorem | pwssplit0 20235* | Splitting for structure powers, part 0: restriction is a function. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑊 ↑s 𝑈) & ⊢ 𝑍 = (𝑊 ↑s 𝑉) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⇒ ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵⟶𝐶) | ||
Theorem | pwssplit1 20236* | Splitting for structure powers, part 1: restriction is an onto function. The only actual monoid law we need here is that the base set is nonempty. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑊 ↑s 𝑈) & ⊢ 𝑍 = (𝑊 ↑s 𝑉) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⇒ ⊢ ((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵–onto→𝐶) | ||
Theorem | pwssplit2 20237* | Splitting for structure powers, part 2: restriction is a group homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑊 ↑s 𝑈) & ⊢ 𝑍 = (𝑊 ↑s 𝑉) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⇒ ⊢ ((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍)) | ||
Theorem | pwssplit3 20238* | Splitting for structure powers, part 3: restriction is a module homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑊 ↑s 𝑈) & ⊢ 𝑍 = (𝑊 ↑s 𝑉) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍)) | ||
Theorem | islmim 20239 | An isomorphism of left modules is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) | ||
Theorem | lmimf1o 20240 | An isomorphism of left modules is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | ||
Theorem | lmimlmhm 20241 | An isomorphism of modules is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 LMHom 𝑆)) | ||
Theorem | lmimgim 20242 | An isomorphism of modules is an isomorphism of groups. (Contributed by Stefan O'Rear, 21-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 GrpIso 𝑆)) | ||
Theorem | islmim2 20243 | An isomorphism of left modules is a homomorphism whose converse is a homomorphism. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 LMHom 𝑅))) | ||
Theorem | lmimcnv 20244 | The converse of a bijective module homomorphism is a bijective module homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → ◡𝐹 ∈ (𝑇 LMIso 𝑆)) | ||
Theorem | brlmic 20245 | The relation "is isomorphic to" for modules. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) | ||
Theorem | brlmici 20246 | Prove isomorphic by an explicit isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝑅 ≃𝑚 𝑆) | ||
Theorem | lmiclcl 20247 | Isomorphism implies the left side is a module. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝑅 ≃𝑚 𝑆 → 𝑅 ∈ LMod) | ||
Theorem | lmicrcl 20248 | Isomorphism implies the right side is a module. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝑅 ≃𝑚 𝑆 → 𝑆 ∈ LMod) | ||
Theorem | lmicsym 20249 | Module isomorphism is symmetric. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
⊢ (𝑅 ≃𝑚 𝑆 → 𝑆 ≃𝑚 𝑅) | ||
Theorem | lmhmpropd 20250* | Module homomorphism depends only on the module attributes of structures. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐽)) & ⊢ (𝜑 → 𝐺 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ (𝜑 → 𝐺 = (Scalar‘𝑀)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ 𝑄 = (Base‘𝐺) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐽)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝐶)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 LMHom 𝐾) = (𝐿 LMHom 𝑀)) | ||
Syntax | clbs 20251 | Extend class notation with the set of bases for a vector space. |
class LBasis | ||
Definition | df-lbs 20252* | Define the set of bases to a left module or left vector space. (Contributed by Mario Carneiro, 24-Jun-2014.) |
⊢ LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ [(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑠]((𝑛‘𝑏) = (Base‘𝑤) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑦( ·𝑠 ‘𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})))}) | ||
Theorem | islbs 20253* | The predicate "𝐵 is a basis for the left module or vector space 𝑊". A subset of the base set is a basis if zero is not in the set, it spans the set, and no nonzero multiple of an element of the basis is in the span of the rest of the family. (Contributed by Mario Carneiro, 24-Jun-2014.) (Revised by Mario Carneiro, 14-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝐹) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) | ||
Theorem | lbsss 20254 | A basis is a set of vectors. (Contributed by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉) | ||
Theorem | lbsel 20255 | An element of a basis is a vector. (Contributed by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ ((𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 𝐸 ∈ 𝑉) | ||
Theorem | lbssp 20256 | The span of a basis is the whole space. (Contributed by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝐵 ∈ 𝐽 → (𝑁‘𝐵) = 𝑉) | ||
Theorem | lbsind 20257 | A basis is linearly independent; that is, every element has a span which trivially intersects the span of the remainder of the basis. (Contributed by Mario Carneiro, 12-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) ⇒ ⊢ (((𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))) | ||
Theorem | lbsind2 20258 | A basis is linearly independent; that is, every element is not in the span of the remainder of the basis. (Contributed by Mario Carneiro, 25-Jun-2014.) (Revised by Mario Carneiro, 12-Jan-2015.) |
⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 1 = (1r‘𝐹) & ⊢ 0 = (0g‘𝐹) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → ¬ 𝐸 ∈ (𝑁‘(𝐵 ∖ {𝐸}))) | ||
Theorem | lbspss 20259 | No proper subset of a basis spans the space. (Contributed by Mario Carneiro, 25-Jun-2014.) |
⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 1 = (1r‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵) → (𝑁‘𝐶) ≠ 𝑉) | ||
Theorem | lsmcl 20260 | The sum of two subspaces is a subspace. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) ∈ 𝑆) | ||
Theorem | lsmspsn 20261* | Member of subspace sum of spans of singletons. (Contributed by NM, 8-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ↔ ∃𝑗 ∈ 𝐾 ∃𝑘 ∈ 𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌)))) | ||
Theorem | lsmelval2 20262* | Subspace sum membership in terms of a sum of 1-dim subspaces (atoms), which can be useful for treating subspaces as projective lattice elements. (Contributed by NM, 9-Aug-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))))) | ||
Theorem | lsmsp 20263 | Subspace sum in terms of span. (Contributed by NM, 6-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑁‘(𝑇 ∪ 𝑈))) | ||
Theorem | lsmsp2 20264 | Subspace sum of spans of subsets is the span of their union. (spanuni 29807 analog.) (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ⊕ (𝑁‘𝑈)) = (𝑁‘(𝑇 ∪ 𝑈))) | ||
Theorem | lsmssspx 20265 | Subspace sum (in its extended domain) is a subset of the span of the union of its arguments. (Contributed by NM, 6-Aug-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ (𝜑 → 𝑇 ⊆ 𝑉) & ⊢ (𝜑 → 𝑈 ⊆ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) | ||
Theorem | lsmpr 20266 | The span of a pair of vectors equals the sum of the spans of their singletons. (Contributed by NM, 13-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) | ||
Theorem | lsppreli 20267 | A vector expressed as a sum belongs to the span of its components. (Contributed by NM, 9-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ∈ (𝑁‘{𝑋, 𝑌})) | ||
Theorem | lsmelpr 20268 | Two ways to say that a vector belongs to the span of a pair of vectors. (Contributed by NM, 14-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})))) | ||
Theorem | lsppr0 20269 | The span of a vector paired with zero equals the span of the singleton of the vector. (Contributed by NM, 29-Aug-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 0 }) = (𝑁‘{𝑋})) | ||
Theorem | lsppr 20270* | Span of a pair of vectors. (Contributed by NM, 22-Aug-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))}) | ||
Theorem | lspprel 20271* | Member of the span of a pair of vectors. (Contributed by NM, 10-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)))) | ||
Theorem | lspprabs 20272 | Absorption of vector sum into span of pair. (Contributed by NM, 27-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌})) | ||
Theorem | lspvadd 20273 | The span of a vector sum is included in the span of its arguments. (Contributed by NM, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋, 𝑌})) | ||
Theorem | lspsntri 20274 | Triangle-type inequality for span of a singleton. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) | ||
Theorem | lspsntrim 20275 | Triangle-type inequality for span of a singleton of vector difference. (Contributed by NM, 25-Apr-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) | ||
Theorem | lbspropd 20276* | If two structures have the same components (properties), they have the same set of bases. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐵 ⊆ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ 𝐹 = (Scalar‘𝐾) & ⊢ 𝐺 = (Scalar‘𝐿) & ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝐿 ∈ 𝑌) ⇒ ⊢ (𝜑 → (LBasis‘𝐾) = (LBasis‘𝐿)) | ||
Theorem | pj1lmhm 20277 | The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑃 = (proj1‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝐿) & ⊢ (𝜑 → 𝑈 ∈ 𝐿) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊)) | ||
Theorem | pj1lmhm2 20278 | The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑃 = (proj1‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝐿) & ⊢ (𝜑 → 𝑈 ∈ 𝐿) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇))) | ||
Syntax | clvec 20279 | Extend class notation with class of all left vector spaces. |
class LVec | ||
Definition | df-lvec 20280 | Define the class of all left vector spaces. A left vector space over a division ring is an Abelian group (vectors) together with a division ring (scalars) and a left scalar product connecting them. Some authors call this a "left module over a division ring", reserving "vector space" for those where the division ring is commutative, i.e., is a field. (Contributed by NM, 11-Nov-2013.) |
⊢ LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing} | ||
Theorem | islvec 20281 | The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) | ||
Theorem | lvecdrng 20282 | The set of scalars of a left vector space is a division ring. (Contributed by NM, 17-Apr-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) | ||
Theorem | lveclmod 20283 | A left vector space is a left module. (Contributed by NM, 9-Dec-2013.) |
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | ||
Theorem | lsslvec 20284 | A vector subspace is a vector space. (Contributed by NM, 14-Mar-2015.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LVec) | ||
Theorem | lvecvs0or 20285 | If a scalar product is zero, one of its factors must be zero. (hvmul0or 29288 analog.) (Contributed by NM, 2-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑂 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) = 0 ↔ (𝐴 = 𝑂 ∨ 𝑋 = 0 ))) | ||
Theorem | lvecvsn0 20286 | A scalar product is nonzero iff both of its factors are nonzero. (Contributed by NM, 3-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑂 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) ≠ 0 ↔ (𝐴 ≠ 𝑂 ∧ 𝑋 ≠ 0 ))) | ||
Theorem | lssvs0or 20287 | If a scalar product belongs to a subspace, either the scalar component is zero or the vector component also belongs to the subspace. (Contributed by NM, 5-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) ∈ 𝑈 ↔ (𝐴 = 0 ∨ 𝑋 ∈ 𝑈))) | ||
Theorem | lvecvscan 20288 | Cancellation law for scalar multiplication. (hvmulcan 29335 analog.) (Contributed by NM, 2-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ≠ 0 ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐴 · 𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | lvecvscan2 20289 | Cancellation law for scalar multiplication. (hvmulcan2 29336 analog.) (Contributed by NM, 2-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) | ||
Theorem | lvecinv 20290 | Invert coefficient of scalar product. (Contributed by NM, 11-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ 𝐼 = (invr‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ (𝐾 ∖ { 0 })) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋))) | ||
Theorem | lspsnvs 20291 | A nonzero scalar product does not change the span of a singleton. (spansncol 29831 analog.) (Contributed by NM, 23-Apr-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) = (𝑁‘{𝑋})) | ||
Theorem | lspsneleq 20292 | Membership relation that implies equality of spans. (spansneleq 29833 analog.) (Contributed by NM, 4-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋})) | ||
Theorem | lspsncmp 20293 | Comparable spans of nonzero singletons are equal. (Contributed by NM, 27-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) | ||
Theorem | lspsnne1 20294 | Two ways to express that vectors have different spans. (Contributed by NM, 28-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌})) | ||
Theorem | lspsnne2 20295 | Two ways to express that vectors have different spans. (Contributed by NM, 20-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | ||
Theorem | lspsnnecom 20296 | Swap two vectors with different spans. (Contributed by NM, 20-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑋})) | ||
Theorem | lspabs2 20297 | Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | ||
Theorem | lspabs3 20298 | Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) & ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) | ||
Theorem | lspsneq 20299* | Equal spans of singletons must have proportional vectors. See lspsnss2 20182 for comparable span version. TODO: can proof be shortened? (Contributed by NM, 21-Mar-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌))) | ||
Theorem | lspsneu 20300* | Nonzero vectors with equal singleton spans have a unique proportionality constant. (Contributed by NM, 31-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑂 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃!𝑘 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑘 · 𝑌))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |