![]() |
Metamath
Proof Explorer Theorem List (p. 203 of 485) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30805) |
![]() (30806-32328) |
![]() (32329-48426) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ringmgm 20201 | A ring is a magma. (Contributed by AV, 31-Jan-2020.) |
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mgm) | ||
Theorem | crngring 20202 | A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015.) |
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | ||
Theorem | crngringd 20203 | A commutative ring is a ring. (Contributed by SN, 16-May-2024.) |
⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → 𝑅 ∈ Ring) | ||
Theorem | crnggrpd 20204 | A commutative ring is a group. (Contributed by SN, 16-May-2024.) |
⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → 𝑅 ∈ Grp) | ||
Theorem | mgpf 20205 | Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.) |
⊢ (mulGrp ↾ Ring):Ring⟶Mnd | ||
Theorem | ringdilem 20206 | Properties of a unital ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))) | ||
Theorem | ringcl 20207 | Closure of the multiplication operation of a ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) | ||
Theorem | crngcom 20208 | A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑌 · 𝑋)) | ||
Theorem | iscrng2 20209* | A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥))) | ||
Theorem | ringass 20210 | Associative law for multiplication in a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) | ||
Theorem | ringideu 20211* | The unity element of a ring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)) | ||
Theorem | crngcomd 20212 | Multiplication is commutative in a commutative ring. (Contributed by SN, 8-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) = (𝑌 · 𝑋)) | ||
Theorem | crngbascntr 20213 | The base set of a commutative ring is its center. (Contributed by SN, 21-Mar-2025.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑍 = (Cntr‘(mulGrp‘𝐺)) ⇒ ⊢ (𝐺 ∈ CRing → 𝐵 = 𝑍) | ||
Theorem | ringassd 20214 | Associative law for multiplication in a ring. (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) | ||
Theorem | crng12d 20215 | Commutative/associative law that swaps the first two factors in a triple product. (Contributed by SN, 8-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑌 · 𝑍)) = (𝑌 · (𝑋 · 𝑍))) | ||
Theorem | ringcld 20216 | Closure of the multiplication operation of a ring. (Contributed by SN, 29-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) | ||
Theorem | ringdi 20217 | Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))) | ||
Theorem | ringdir 20218 | Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) | ||
Theorem | ringidcl 20219 | The unity element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) | ||
Theorem | ring0cl 20220 | The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) | ||
Theorem | ringidmlem 20221 | Lemma for ringlidm 20222 and ringridm 20223. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) | ||
Theorem | ringlidm 20222 | The unity element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) | ||
Theorem | ringridm 20223 | The unity element of a ring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 1 ) = 𝑋) | ||
Theorem | isringid 20224* | Properties showing that an element 𝐼 is the unity element of a ring. (Contributed by NM, 7-Aug-2013.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ((𝐼 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼)) | ||
Theorem | ringlidmd 20225 | The unity element of a ring is a left multiplicative identity. (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) | ||
Theorem | ringridmd 20226 | The unity element of a ring is a right multiplicative identity. (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 1 ) = 𝑋) | ||
Theorem | ringid 20227* | The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 ((𝑢 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑢) = 𝑋)) | ||
Theorem | ringo2times 20228 | A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021.) Variant of o2timesd 20167 for rings. (Revised by AV, 5-Feb-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → (𝐴 + 𝐴) = (( 1 + 1 ) · 𝐴)) | ||
Theorem | ringadd2 20229* | A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.) (Proof shortened by AV, 1-Feb-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ∃𝑥 ∈ 𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋)) | ||
Theorem | ringidss 20230 | A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 1 = (0g‘𝑀)) | ||
Theorem | ringacl 20231 | Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | ||
Theorem | ringcomlem 20232 | Lemma for ringcom 20233. This (formerly) part of the proof for ringcom 20233 is also applicable for semirings (without using the commutativity of the addition given per definition of a semiring), see srgcom4lem 20170. (Contributed by Gérard Lang, 4-Dec-2014.) Variant of rglcom4d 20168 for rings. (Revised by AV, 5-Feb-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) | ||
Theorem | ringcom 20233 | Commutativity of the additive group of a ring. (See also lmodcom 20808.) This proof requires the existence of a multiplicative identity, and the existence of additive inverses. Therefore, this proof is not applicable for semirings. (Contributed by Gérard Lang, 4-Dec-2014.) (Proof shortened by AV, 1-Feb-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
Theorem | ringabl 20234 | A ring is an Abelian group. (Contributed by NM, 26-Aug-2011.) |
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) | ||
Theorem | ringcmn 20235 | A ring is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | ||
Theorem | ringabld 20236 | A ring is an Abelian group. (Contributed by SN, 1-Jun-2024.) |
⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑅 ∈ Abel) | ||
Theorem | ringcmnd 20237 | A ring is a commutative monoid. (Contributed by SN, 1-Jun-2024.) |
⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑅 ∈ CMnd) | ||
Theorem | ringrng 20238 | A unital ring is a non-unital ring. (Contributed by AV, 6-Jan-2020.) |
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Rng) | ||
Theorem | ringssrng 20239 | The unital rings are non-unital rings. (Contributed by AV, 20-Mar-2020.) |
⊢ Ring ⊆ Rng | ||
Theorem | isringrng 20240* | The predicate "is a unital ring" as extension of the predicate "is a non-unital ring". (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))) | ||
Theorem | ringpropd 20241* | If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a ring iff the other one is. (Contributed by Mario Carneiro, 6-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) | ||
Theorem | crngpropd 20242* | If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing)) | ||
Theorem | ringprop 20243 | If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) |
⊢ (Base‘𝐾) = (Base‘𝐿) & ⊢ (+g‘𝐾) = (+g‘𝐿) & ⊢ (.r‘𝐾) = (.r‘𝐿) ⇒ ⊢ (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring) | ||
Theorem | isringd 20244* | Properties that determine a ring. (Contributed by NM, 2-Aug-2013.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) & ⊢ (𝜑 → 1 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) ⇒ ⊢ (𝜑 → 𝑅 ∈ Ring) | ||
Theorem | iscrngd 20245* | Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) & ⊢ (𝜑 → 1 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) ⇒ ⊢ (𝜑 → 𝑅 ∈ CRing) | ||
Theorem | ringlz 20246 | The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) (Proof shortened by AV, 30-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) | ||
Theorem | ringrz 20247 | The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (Proof shortened by AV, 30-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) | ||
Theorem | ringlzd 20248 | The zero of a unital ring is a left-absorbing element. (Contributed by SN, 7-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 0 · 𝑋) = 0 ) | ||
Theorem | ringrzd 20249 | The zero of a unital ring is a right-absorbing element. (Contributed by SN, 7-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 0 ) = 0 ) | ||
Theorem | ringsrg 20250 | Any ring is also a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | ||
Theorem | ring1eq0 20251 | If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element {0}. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 1 = 0 → 𝑋 = 𝑌)) | ||
Theorem | ring1ne0 20252 | If a ring has at least two elements, its one and zero are different. (Contributed by AV, 13-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 1 ≠ 0 ) | ||
Theorem | ringinvnz1ne0 20253* | In a unital ring, a left invertible element is different from zero iff 1 ≠ 0. (Contributed by FL, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) ⇒ ⊢ (𝜑 → (𝑋 ≠ 0 ↔ 1 ≠ 0 )) | ||
Theorem | ringinvnzdiv 20254* | In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) | ||
Theorem | ringnegl 20255 | Negation in a ring is the same as left multiplication by -1. (rngonegmn1l 37547 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) = (𝑁‘𝑋)) | ||
Theorem | ringnegr 20256 | Negation in a ring is the same as right multiplication by -1. (rngonegmn1r 37548 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) = (𝑁‘𝑋)) | ||
Theorem | ringmneg1 20257 | Negation of a product in a ring. (mulneg1 11687 analog.) Compared with rngmneg1 20124, the proof is shorter making use of the existence of a ring unity. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) | ||
Theorem | ringmneg2 20258 | Negation of a product in a ring. (mulneg2 11688 analog.) Compared with rngmneg2 20125, the proof is shorter making use of the existence of a ring unity. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) | ||
Theorem | ringm2neg 20259 | Double negation of a product in a ring. (mul2neg 11690 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.) (Proof shortened by AV, 30-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑋 · 𝑌)) | ||
Theorem | ringsubdi 20260 | Ring multiplication distributes over subtraction. (subdi 11684 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = ((𝑋 · 𝑌) − (𝑋 · 𝑍))) | ||
Theorem | ringsubdir 20261 | Ring multiplication distributes over subtraction. (subdir 11685 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋 · 𝑍) − (𝑌 · 𝑍))) | ||
Theorem | mulgass2 20262 | An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ × = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))) | ||
Theorem | ring1 20263 | The (smallest) structure representing a zero ring. (Contributed by AV, 28-Apr-2019.) |
⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} ⇒ ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∈ Ring) | ||
Theorem | ringn0 20264 | Rings exist. (Contributed by AV, 29-Apr-2019.) |
⊢ Ring ≠ ∅ | ||
Theorem | ringlghm 20265* | Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅)) | ||
Theorem | ringrghm 20266* | Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅)) | ||
Theorem | gsummulc1OLD 20267* | Obsolete version of gsummulc1 20269 as of 7-Mar-2025. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) | ||
Theorem | gsummulc2OLD 20268* | Obsolete version of gsummulc2 20270 as of 7-Mar-2025. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) | ||
Theorem | gsummulc1 20269* | A finite ring sum multiplied by a constant. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) Remove unused hypothesis. (Revised by SN, 7-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) | ||
Theorem | gsummulc2 20270* | A finite ring sum multiplied by a constant. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) Remove unused hypothesis. (Revised by SN, 7-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) | ||
Theorem | gsummgp0 20271* | If one factor in a finite group sum of the multiplicative group of a commutative ring is 0, the whole "sum" (i.e. product) is 0. (Contributed by AV, 3-Jan-2019.) |
⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) & ⊢ ((𝜑 ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵) & ⊢ (𝜑 → ∃𝑖 ∈ 𝑁 𝐵 = 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴)) = 0 ) | ||
Theorem | gsumdixp 20272* | Distribute a binary product of sums to a sum of binary products in a ring. (Contributed by Mario Carneiro, 8-Mar-2015.) (Revised by AV, 10-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑋 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑋) finSupp 0 ) & ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ 𝑌) finSupp 0 ) ⇒ ⊢ (𝜑 → ((𝑅 Σg (𝑥 ∈ 𝐼 ↦ 𝑋)) · (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑌))) = (𝑅 Σg (𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌)))) | ||
Theorem | prdsmulrcl 20273 | A structure product of rings has closed binary operation. (Contributed by Mario Carneiro, 11-Mar-2015.) (Proof shortened by AV, 30-Mar-2025.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) | ||
Theorem | prdsringd 20274 | A product of rings is a ring. (Contributed by Mario Carneiro, 11-Mar-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Ring) ⇒ ⊢ (𝜑 → 𝑌 ∈ Ring) | ||
Theorem | prdscrngd 20275 | A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶CRing) ⇒ ⊢ (𝜑 → 𝑌 ∈ CRing) | ||
Theorem | prds1 20276 | Value of the ring unity in a structure family product. (Contributed by Mario Carneiro, 11-Mar-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Ring) ⇒ ⊢ (𝜑 → (1r ∘ 𝑅) = (1r‘𝑌)) | ||
Theorem | pwsring 20277 | A structure power of a ring is a ring. (Contributed by Mario Carneiro, 11-Mar-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Ring) | ||
Theorem | pws1 20278 | Value of the ring unity in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 1 }) = (1r‘𝑌)) | ||
Theorem | pwscrng 20279 | A structure power of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 11-Mar-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ CRing) | ||
Theorem | pwsmgp 20280 | The multiplicative group of the power structure resembles the power of the multiplicative group. (Contributed by Mario Carneiro, 12-Mar-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑍 = (𝑀 ↑s 𝐼) & ⊢ 𝑁 = (mulGrp‘𝑌) & ⊢ 𝐵 = (Base‘𝑁) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ + = (+g‘𝑁) & ⊢ ✚ = (+g‘𝑍) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 = 𝐶 ∧ + = ✚ )) | ||
Theorem | pwspjmhmmgpd 20281* | The projection given by pwspjmhm 18795 is also a monoid homomorphism between the respective multiplicative groups. (Contributed by SN, 30-Jul-2024.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑀 = (mulGrp‘𝑌) & ⊢ 𝑇 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑀 MndHom 𝑇)) | ||
Theorem | pwsexpg 20282 | Value of a group exponentiation in a structure power. Compare pwsmulg 19087. (Contributed by SN, 30-Jul-2024.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑀 = (mulGrp‘𝑌) & ⊢ 𝑇 = (mulGrp‘𝑅) & ⊢ ∙ = (.g‘𝑀) & ⊢ · = (.g‘𝑇) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝑁 ∙ 𝑋)‘𝐴) = (𝑁 · (𝑋‘𝐴))) | ||
Theorem | imasring 20283* | The image structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (𝑈 ∈ Ring ∧ (𝐹‘ 1 ) = (1r‘𝑈))) | ||
Theorem | imasringf1 20284 | The image of a ring under an injection is a ring (imasmndf1 18741 analog). (Contributed by AV, 27-Feb-2025.) |
⊢ 𝑈 = (𝐹 “s 𝑅) & ⊢ 𝑉 = (Base‘𝑅) ⇒ ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Ring) → 𝑈 ∈ Ring) | ||
Theorem | xpsringd 20285 | A product of two rings is a ring (xpsmnd 18742 analog). (Contributed by AV, 28-Feb-2025.) |
⊢ 𝑌 = (𝑆 ×s 𝑅) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑌 ∈ Ring) | ||
Theorem | xpsring1d 20286 | The multiplicative identity element of a binary product of rings. (Contributed by AV, 16-Mar-2025.) |
⊢ 𝑌 = (𝑆 ×s 𝑅) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (1r‘𝑌) = 〈(1r‘𝑆), (1r‘𝑅)〉) | ||
Theorem | qusring2 20287* | The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] ∼ = (1r‘𝑈))) | ||
Theorem | crngbinom 20288* | The binomial theorem for commutative rings (special case of csrgbinom 20189): (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑𝑘) · (𝐵↑(𝑁 − 𝑘)). (Contributed by AV, 24-Aug-2019.) |
⊢ 𝑆 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ↑ = (.g‘𝐺) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) | ||
Syntax | coppr 20289 | The opposite ring operation. |
class oppr | ||
Definition | df-oppr 20290 | Define an opposite ring, which is the same as the original ring but with multiplication written the other way around. (Contributed by Mario Carneiro, 1-Dec-2014.) |
⊢ oppr = (𝑓 ∈ V ↦ (𝑓 sSet 〈(.r‘ndx), tpos (.r‘𝑓)〉)) | ||
Theorem | opprval 20291 | Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) | ||
Theorem | opprmulfval 20292 | Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ = (.r‘𝑂) ⇒ ⊢ ∙ = tpos · | ||
Theorem | opprmul 20293 | Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ = (.r‘𝑂) ⇒ ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) | ||
Theorem | crngoppr 20294 | In a commutative ring, the opposite ring is equivalent to the original ring (for theorems like unitpropd 20373). (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ = (.r‘𝑂) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑋 ∙ 𝑌)) | ||
Theorem | opprlem 20295 | Lemma for opprbas 20297 and oppradd 20299. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (.r‘ndx) ⇒ ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) | ||
Theorem | opprlemOLD 20296 | Obsolete version of opprlem 20295 as of 6-Nov-2024. Lemma for opprbas 20297 and oppradd 20299. (Contributed by Mario Carneiro, 1-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 < 3 ⇒ ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) | ||
Theorem | opprbas 20297 | Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝐵 = (Base‘𝑂) | ||
Theorem | opprbasOLD 20298 | Obsolete proof of opprbas 20297 as of 6-Nov-2024. Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝐵 = (Base‘𝑂) | ||
Theorem | oppradd 20299 | Addition operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ + = (+g‘𝑂) | ||
Theorem | oppraddOLD 20300 | Obsolete proof of opprbas 20297 as of 6-Nov-2024. Addition operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ + = (+g‘𝑂) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |