| Metamath
Proof Explorer Theorem List (p. 203 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | iscrngd 20201* | Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) & ⊢ (𝜑 → 1 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) ⇒ ⊢ (𝜑 → 𝑅 ∈ CRing) | ||
| Theorem | ringlz 20202 | The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) (Proof shortened by AV, 30-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) | ||
| Theorem | ringrz 20203 | The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (Proof shortened by AV, 30-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) | ||
| Theorem | ringlzd 20204 | The zero of a unital ring is a left-absorbing element. (Contributed by SN, 7-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 0 · 𝑋) = 0 ) | ||
| Theorem | ringrzd 20205 | The zero of a unital ring is a right-absorbing element. (Contributed by SN, 7-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 0 ) = 0 ) | ||
| Theorem | ringsrg 20206 | Any ring is also a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | ||
| Theorem | ring1eq0 20207 | If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element {0}. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 1 = 0 → 𝑋 = 𝑌)) | ||
| Theorem | ring1ne0 20208 | If a ring has at least two elements, its one and zero are different. (Contributed by AV, 13-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 1 ≠ 0 ) | ||
| Theorem | ringinvnz1ne0 20209* | In a unital ring, a left invertible element is different from zero iff 1 ≠ 0. (Contributed by FL, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) ⇒ ⊢ (𝜑 → (𝑋 ≠ 0 ↔ 1 ≠ 0 )) | ||
| Theorem | ringinvnzdiv 20210* | In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) | ||
| Theorem | ringnegl 20211 | Negation in a ring is the same as left multiplication by -1. (rngonegmn1l 37935 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) = (𝑁‘𝑋)) | ||
| Theorem | ringnegr 20212 | Negation in a ring is the same as right multiplication by -1. (rngonegmn1r 37936 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) = (𝑁‘𝑋)) | ||
| Theorem | ringmneg1 20213 | Negation of a product in a ring. (mulneg1 11614 analog.) Compared with rngmneg1 20076, the proof is shorter making use of the existence of a ring unity. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) | ||
| Theorem | ringmneg2 20214 | Negation of a product in a ring. (mulneg2 11615 analog.) Compared with rngmneg2 20077, the proof is shorter making use of the existence of a ring unity. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) | ||
| Theorem | ringm2neg 20215 | Double negation of a product in a ring. (mul2neg 11617 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.) (Proof shortened by AV, 30-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑋 · 𝑌)) | ||
| Theorem | ringsubdi 20216 | Ring multiplication distributes over subtraction. (subdi 11611 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = ((𝑋 · 𝑌) − (𝑋 · 𝑍))) | ||
| Theorem | ringsubdir 20217 | Ring multiplication distributes over subtraction. (subdir 11612 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋 · 𝑍) − (𝑌 · 𝑍))) | ||
| Theorem | mulgass2 20218 | An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ × = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))) | ||
| Theorem | ring1 20219 | The (smallest) structure representing a zero ring. (Contributed by AV, 28-Apr-2019.) |
| ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} ⇒ ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∈ Ring) | ||
| Theorem | ringn0 20220 | Rings exist. (Contributed by AV, 29-Apr-2019.) |
| ⊢ Ring ≠ ∅ | ||
| Theorem | ringlghm 20221* | Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅)) | ||
| Theorem | ringrghm 20222* | Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅)) | ||
| Theorem | gsummulc1OLD 20223* | Obsolete version of gsummulc1 20225 as of 7-Mar-2025. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) | ||
| Theorem | gsummulc2OLD 20224* | Obsolete version of gsummulc2 20226 as of 7-Mar-2025. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) | ||
| Theorem | gsummulc1 20225* | A finite ring sum multiplied by a constant. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) Remove unused hypothesis. (Revised by SN, 7-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) | ||
| Theorem | gsummulc2 20226* | A finite ring sum multiplied by a constant. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) Remove unused hypothesis. (Revised by SN, 7-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) | ||
| Theorem | gsummgp0 20227* | If one factor in a finite group sum of the multiplicative group of a commutative ring is 0, the whole "sum" (i.e. product) is 0. (Contributed by AV, 3-Jan-2019.) |
| ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) & ⊢ ((𝜑 ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵) & ⊢ (𝜑 → ∃𝑖 ∈ 𝑁 𝐵 = 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴)) = 0 ) | ||
| Theorem | gsumdixp 20228* | Distribute a binary product of sums to a sum of binary products in a ring. (Contributed by Mario Carneiro, 8-Mar-2015.) (Revised by AV, 10-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑋 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑋) finSupp 0 ) & ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ 𝑌) finSupp 0 ) ⇒ ⊢ (𝜑 → ((𝑅 Σg (𝑥 ∈ 𝐼 ↦ 𝑋)) · (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑌))) = (𝑅 Σg (𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌)))) | ||
| Theorem | prdsmulrcl 20229 | A structure product of rings has closed binary operation. (Contributed by Mario Carneiro, 11-Mar-2015.) (Proof shortened by AV, 30-Mar-2025.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) | ||
| Theorem | prdsringd 20230 | A product of rings is a ring. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Ring) ⇒ ⊢ (𝜑 → 𝑌 ∈ Ring) | ||
| Theorem | prdscrngd 20231 | A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶CRing) ⇒ ⊢ (𝜑 → 𝑌 ∈ CRing) | ||
| Theorem | prds1 20232 | Value of the ring unity in a structure family product. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Ring) ⇒ ⊢ (𝜑 → (1r ∘ 𝑅) = (1r‘𝑌)) | ||
| Theorem | pwsring 20233 | A structure power of a ring is a ring. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Ring) | ||
| Theorem | pws1 20234 | Value of the ring unity in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 1 }) = (1r‘𝑌)) | ||
| Theorem | pwscrng 20235 | A structure power of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ CRing) | ||
| Theorem | pwsmgp 20236 | The multiplicative group of the power structure resembles the power of the multiplicative group. (Contributed by Mario Carneiro, 12-Mar-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑍 = (𝑀 ↑s 𝐼) & ⊢ 𝑁 = (mulGrp‘𝑌) & ⊢ 𝐵 = (Base‘𝑁) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ + = (+g‘𝑁) & ⊢ ✚ = (+g‘𝑍) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 = 𝐶 ∧ + = ✚ )) | ||
| Theorem | pwspjmhmmgpd 20237* | The projection given by pwspjmhm 18757 is also a monoid homomorphism between the respective multiplicative groups. (Contributed by SN, 30-Jul-2024.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑀 = (mulGrp‘𝑌) & ⊢ 𝑇 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑀 MndHom 𝑇)) | ||
| Theorem | pwsexpg 20238 | Value of a group exponentiation in a structure power. Compare pwsmulg 19051. (Contributed by SN, 30-Jul-2024.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑀 = (mulGrp‘𝑌) & ⊢ 𝑇 = (mulGrp‘𝑅) & ⊢ ∙ = (.g‘𝑀) & ⊢ · = (.g‘𝑇) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝑁 ∙ 𝑋)‘𝐴) = (𝑁 · (𝑋‘𝐴))) | ||
| Theorem | imasring 20239* | The image structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (𝑈 ∈ Ring ∧ (𝐹‘ 1 ) = (1r‘𝑈))) | ||
| Theorem | imasringf1 20240 | The image of a ring under an injection is a ring (imasmndf1 18703 analog). (Contributed by AV, 27-Feb-2025.) |
| ⊢ 𝑈 = (𝐹 “s 𝑅) & ⊢ 𝑉 = (Base‘𝑅) ⇒ ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Ring) → 𝑈 ∈ Ring) | ||
| Theorem | xpsringd 20241 | A product of two rings is a ring (xpsmnd 18704 analog). (Contributed by AV, 28-Feb-2025.) |
| ⊢ 𝑌 = (𝑆 ×s 𝑅) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑌 ∈ Ring) | ||
| Theorem | xpsring1d 20242 | The multiplicative identity element of a binary product of rings. (Contributed by AV, 16-Mar-2025.) |
| ⊢ 𝑌 = (𝑆 ×s 𝑅) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (1r‘𝑌) = 〈(1r‘𝑆), (1r‘𝑅)〉) | ||
| Theorem | qusring2 20243* | The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] ∼ = (1r‘𝑈))) | ||
| Theorem | crngbinom 20244* | The binomial theorem for commutative rings (special case of csrgbinom 20141): (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑𝑘) · (𝐵↑(𝑁 − 𝑘)). (Contributed by AV, 24-Aug-2019.) |
| ⊢ 𝑆 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ↑ = (.g‘𝐺) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) | ||
| Syntax | coppr 20245 | The opposite ring operation. |
| class oppr | ||
| Definition | df-oppr 20246 | Define an opposite ring, which is the same as the original ring but with multiplication written the other way around. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ oppr = (𝑓 ∈ V ↦ (𝑓 sSet 〈(.r‘ndx), tpos (.r‘𝑓)〉)) | ||
| Theorem | opprval 20247 | Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) | ||
| Theorem | opprmulfval 20248 | Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ = (.r‘𝑂) ⇒ ⊢ ∙ = tpos · | ||
| Theorem | opprmul 20249 | Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ = (.r‘𝑂) ⇒ ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) | ||
| Theorem | crngoppr 20250 | In a commutative ring, the opposite ring is equivalent to the original ring (for theorems like unitpropd 20326). (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ = (.r‘𝑂) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑋 ∙ 𝑌)) | ||
| Theorem | opprlem 20251 | Lemma for opprbas 20252 and oppradd 20253. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (.r‘ndx) ⇒ ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) | ||
| Theorem | opprbas 20252 | Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝐵 = (Base‘𝑂) | ||
| Theorem | oppradd 20253 | Addition operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ + = (+g‘𝑂) | ||
| Theorem | opprrng 20254 | An opposite non-unital ring is a non-unital ring. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → 𝑂 ∈ Rng) | ||
| Theorem | opprrngb 20255 | A class is a non-unital ring if and only if its opposite is a non-unital ring. Bidirectional form of opprrng 20254. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng) | ||
| Theorem | opprring 20256 | An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) (Proof shortened by AV, 30-Mar-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) | ||
| Theorem | opprringb 20257 | Bidirectional form of opprring 20256. (Contributed by Mario Carneiro, 6-Dec-2014.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring) | ||
| Theorem | oppr0 20258 | Additive identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ 0 = (0g‘𝑂) | ||
| Theorem | oppr1 20259 | Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ 1 = (1r‘𝑂) | ||
| Theorem | opprneg 20260 | The negative function in an opposite ring. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ 𝑁 = (invg‘𝑂) | ||
| Theorem | opprsubg 20261 | Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (SubGrp‘𝑅) = (SubGrp‘𝑂) | ||
| Theorem | mulgass3 20262 | An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ × = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌))) | ||
| Syntax | cdsr 20263 | Ring divisibility relation. |
| class ∥r | ||
| Syntax | cui 20264 | Units in a ring. |
| class Unit | ||
| Syntax | cir 20265 | Ring irreducibles. |
| class Irred | ||
| Definition | df-dvdsr 20266* | Define the (right) divisibility relation in a ring. Access to the left divisibility relation is available through (∥r‘(oppr‘𝑅)). (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ ∥r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) | ||
| Definition | df-unit 20267 | Define the set of units in a ring, that is, all elements with a left and right multiplicative inverse. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ Unit = (𝑤 ∈ V ↦ (◡((∥r‘𝑤) ∩ (∥r‘(oppr‘𝑤))) “ {(1r‘𝑤)})) | ||
| Definition | df-irred 20268* | Define the set of irreducible elements in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ Irred = (𝑤 ∈ V ↦ ⦋((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧}) | ||
| Theorem | reldvdsr 20269 | The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ Rel ∥ | ||
| Theorem | dvdsrval 20270* | Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)} | ||
| Theorem | dvdsr 20271* | Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) | ||
| Theorem | dvdsr2 20272* | Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐵 → (𝑋 ∥ 𝑌 ↔ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) | ||
| Theorem | dvdsrmul 20273 | A left-multiple of 𝑋 is divisible by 𝑋. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∥ (𝑌 · 𝑋)) | ||
| Theorem | dvdsrcl 20274 | Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ (𝑋 ∥ 𝑌 → 𝑋 ∈ 𝐵) | ||
| Theorem | dvdsrcl2 20275 | Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∥ 𝑌) → 𝑌 ∈ 𝐵) | ||
| Theorem | dvdsrid 20276 | An element in a (unital) ring divides itself. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 𝑋) | ||
| Theorem | dvdsrtr 20277 | Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) → 𝑌 ∥ 𝑋) | ||
| Theorem | dvdsrmul1 20278 | The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∥ 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍)) | ||
| Theorem | dvdsrneg 20279 | An element divides its negative. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ (𝑁‘𝑋)) | ||
| Theorem | dvdsr01 20280 | In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning, see df-rlreg 20603.) (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 0 ) | ||
| Theorem | dvdsr02 20281 | Only zero is divisible by zero. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 ∥ 𝑋 ↔ 𝑋 = 0 )) | ||
| Theorem | isunit 20282 | Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝑆 = (oppr‘𝑅) & ⊢ 𝐸 = (∥r‘𝑆) ⇒ ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋𝐸 1 )) | ||
| Theorem | 1unit 20283 | The multiplicative identity is a unit. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 1 ∈ 𝑈) | ||
| Theorem | unitcl 20284 | A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) | ||
| Theorem | unitss 20285 | The set of units is contained in the base set. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ 𝑈 ⊆ 𝐵 | ||
| Theorem | opprunit 20286 | Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑆 = (oppr‘𝑅) ⇒ ⊢ 𝑈 = (Unit‘𝑆) | ||
| Theorem | crngunit 20287 | Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) | ||
| Theorem | dvdsunit 20288 | A divisor of a unit is a unit. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋 ∧ 𝑋 ∈ 𝑈) → 𝑌 ∈ 𝑈) | ||
| Theorem | unitmulcl 20289 | The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈) | ||
| Theorem | unitmulclb 20290 | Reversal of unitmulcl 20289 in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) | ||
| Theorem | unitgrpbas 20291 | The base set of the group of units. (Contributed by Mario Carneiro, 25-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ 𝑈 = (Base‘𝐺) | ||
| Theorem | unitgrp 20292 | The group of units is a group under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) | ||
| Theorem | unitabl 20293 | The group of units of a commutative ring is abelian. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝑅 ∈ CRing → 𝐺 ∈ Abel) | ||
| Theorem | unitgrpid 20294 | The identity of the group of units of a ring is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 1 = (0g‘𝐺)) | ||
| Theorem | unitsubm 20295 | The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀)) | ||
| Syntax | cinvr 20296 | Extend class notation with multiplicative inverse. |
| class invr | ||
| Definition | df-invr 20297 | Define multiplicative inverse. (Contributed by NM, 21-Sep-2011.) |
| ⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | ||
| Theorem | invrfval 20298 | Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ 𝐼 = (invg‘𝐺) | ||
| Theorem | unitinvcl 20299 | The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝑈) | ||
| Theorem | unitinvinv 20300 | The inverse of the inverse of a unit is the same element. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘(𝐼‘𝑋)) = 𝑋) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |