| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-edgf | Structured version Visualization version GIF version | ||
| Description: Define the edge function (indexed edges) of a graph. (Contributed by AV, 18-Jan-2020.) Use its index-independent form edgfid 29005 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-edgf | ⊢ .ef = Slot ;18 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cedgf 29003 | . 2 class .ef | |
| 2 | c1 11156 | . . . 4 class 1 | |
| 3 | c8 12327 | . . . 4 class 8 | |
| 4 | 2, 3 | cdc 12733 | . . 3 class ;18 |
| 5 | 4 | cslot 17218 | . 2 class Slot ;18 |
| 6 | 1, 5 | wceq 1540 | 1 wff .ef = Slot ;18 |
| Colors of variables: wff setvar class |
| This definition is referenced by: edgfid 29005 edgfndx 29006 edgfndxidOLD 29009 baseltedgfOLD 29011 |
| Copyright terms: Public domain | W3C validator |