Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-edgf | Structured version Visualization version GIF version |
Description: Define the edge function (indexed edges) of a graph. (Contributed by AV, 18-Jan-2020.) Use its index-independent form edgfid 27339 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
df-edgf | ⊢ .ef = Slot ;18 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cedgf 27337 | . 2 class .ef | |
2 | c1 10856 | . . . 4 class 1 | |
3 | c8 12017 | . . . 4 class 8 | |
4 | 2, 3 | cdc 12419 | . . 3 class ;18 |
5 | 4 | cslot 16863 | . 2 class Slot ;18 |
6 | 1, 5 | wceq 1541 | 1 wff .ef = Slot ;18 |
Colors of variables: wff setvar class |
This definition is referenced by: edgfid 27339 edgfndx 27340 edgfndxidOLD 27343 baseltedgfOLD 27345 |
Copyright terms: Public domain | W3C validator |