| Metamath
Proof Explorer Theorem List (p. 291 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | funiedgdmge2val 29001 | The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) |
| ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (iEdg‘𝐺) = (.ef‘𝐺)) | ||
| Theorem | funvtxdm2val 29002 | The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺)) | ||
| Theorem | funiedgdm2val 29003 | The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → (iEdg‘𝐺) = (.ef‘𝐺)) | ||
| Theorem | funvtxval0 29004 | The set of vertices of an extensible structure with a base set and (at least) another slot. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) |
| ⊢ 𝑆 ∈ V ⇒ ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝑆 ≠ (Base‘ndx) ∧ {(Base‘ndx), 𝑆} ⊆ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺)) | ||
| Theorem | basvtxval 29005 | The set of vertices of a graph represented as an extensible structure with the set of vertices as base set. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.) |
| ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐺)) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝐺) ⇒ ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | ||
| Theorem | edgfiedgval 29006 | The set of indexed edges of a graph represented as an extensible structure with the indexed edges in the slot for edge functions. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.) |
| ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐺)) & ⊢ (𝜑 → 𝐸 ∈ 𝑌) & ⊢ (𝜑 → 〈(.ef‘ndx), 𝐸〉 ∈ 𝐺) ⇒ ⊢ (𝜑 → (iEdg‘𝐺) = 𝐸) | ||
| Theorem | funvtxval 29007 | The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) |
| ⊢ ((Fun (𝐺 ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺)) | ||
| Theorem | funiedgval 29008 | The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) |
| ⊢ ((Fun (𝐺 ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) → (iEdg‘𝐺) = (.ef‘𝐺)) | ||
| Theorem | structvtxvallem 29009 | Lemma for structvtxval 29010 and structiedg0val 29011. (Contributed by AV, 23-Sep-2020.) (Revised by AV, 12-Nov-2021.) |
| ⊢ 𝑆 ∈ ℕ & ⊢ (Base‘ndx) < 𝑆 & ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 2 ≤ (♯‘dom 𝐺)) | ||
| Theorem | structvtxval 29010 | The set of vertices of an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.) |
| ⊢ 𝑆 ∈ ℕ & ⊢ (Base‘ndx) < 𝑆 & ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐺) = 𝑉) | ||
| Theorem | structiedg0val 29011 | The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.) |
| ⊢ 𝑆 ∈ ℕ & ⊢ (Base‘ndx) < 𝑆 & ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅) | ||
| Theorem | structgrssvtxlem 29012 | Lemma for structgrssvtx 29013 and structgrssiedg 29014. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.) |
| ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 𝐸 ∈ 𝑍) & ⊢ (𝜑 → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ 𝐺) ⇒ ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐺)) | ||
| Theorem | structgrssvtx 29013 | The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.) |
| ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 𝐸 ∈ 𝑍) & ⊢ (𝜑 → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ 𝐺) ⇒ ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | ||
| Theorem | structgrssiedg 29014 | The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.) |
| ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 𝐸 ∈ 𝑍) & ⊢ (𝜑 → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ 𝐺) ⇒ ⊢ (𝜑 → (iEdg‘𝐺) = 𝐸) | ||
| Theorem | struct2grstr 29015 | A graph represented as an extensible structure with vertices as base set and indexed edges is actually an extensible structure. (Contributed by AV, 23-Nov-2020.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), (.ef‘ndx)〉 | ||
| Theorem | struct2grvtx 29016 | The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 23-Sep-2020.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐺) = 𝑉) | ||
| Theorem | struct2griedg 29017 | The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐺) = 𝐸) | ||
| Theorem | graop 29018 | Any representation of a graph 𝐺 (especially as extensible structure 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉}) is convertible in a representation of the graph as ordered pair. (Contributed by AV, 7-Oct-2020.) |
| ⊢ 𝐻 = 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ⇒ ⊢ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) | ||
| Theorem | grastruct 29019 | Any representation of a graph 𝐺 (especially as ordered pair 𝐺 = 〈𝑉, 𝐸〉) is convertible in a representation of the graph as extensible structure. (Contributed by AV, 8-Oct-2020.) |
| ⊢ 𝐻 = {〈(Base‘ndx), (Vtx‘𝐺)〉, 〈(.ef‘ndx), (iEdg‘𝐺)〉} ⇒ ⊢ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) | ||
| Theorem | gropd 29020* | If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then the ordered pair 〈𝑉, 𝐸〉 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 11-Oct-2020.) |
| ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → [〈𝑉, 𝐸〉 / 𝑔]𝜓) | ||
| Theorem | grstructd 29021* | If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
| ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑋) & ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) & ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) & ⊢ (𝜑 → (Base‘𝑆) = 𝑉) & ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) ⇒ ⊢ (𝜑 → [𝑆 / 𝑔]𝜓) | ||
| Theorem | gropeld 29022* | If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then the ordered pair 〈𝑉, 𝐸〉 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 11-Oct-2020.) |
| ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → 〈𝑉, 𝐸〉 ∈ 𝐶) | ||
| Theorem | grstructeld 29023* | If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
| ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑋) & ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) & ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) & ⊢ (𝜑 → (Base‘𝑆) = 𝑉) & ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) ⇒ ⊢ (𝜑 → 𝑆 ∈ 𝐶) | ||
| Theorem | setsvtx 29024 | The vertices of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 18-Jan-2020.) (Revised by AV, 16-Nov-2021.) |
| ⊢ 𝐼 = (.ef‘ndx) & ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (Base‘𝐺)) | ||
| Theorem | setsiedg 29025 | The (indexed) edges of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| ⊢ 𝐼 = (.ef‘ndx) & ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝐸) | ||
| Theorem | snstrvtxval 29026 | The set of vertices of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See vtxvalsnop 29030 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 23-Sep-2020.) |
| ⊢ 𝑉 ∈ V & ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉} ⇒ ⊢ (𝑉 ≠ (Base‘ndx) → (Vtx‘𝐺) = 𝑉) | ||
| Theorem | snstriedgval 29027 | The set of indexed edges of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See iedgvalsnop 29031 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 24-Sep-2020.) |
| ⊢ 𝑉 ∈ V & ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉} ⇒ ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅) | ||
| Theorem | vtxval0 29028 | Degenerated case 1 for vertices: The set of vertices of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.) |
| ⊢ (Vtx‘∅) = ∅ | ||
| Theorem | iedgval0 29029 | Degenerated case 1 for edges: The set of indexed edges of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.) |
| ⊢ (iEdg‘∅) = ∅ | ||
| Theorem | vtxvalsnop 29030 | Degenerated case 2 for vertices: The set of vertices of a singleton containing an ordered pair with equal components is the singleton containing the component. (Contributed by AV, 24-Sep-2020.) (Proof shortened by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐺 = {〈𝐵, 𝐵〉} ⇒ ⊢ (Vtx‘𝐺) = {𝐵} | ||
| Theorem | iedgvalsnop 29031 | Degenerated case 2 for edges: The set of indexed edges of a singleton containing an ordered pair with equal components is the singleton containing the component. (Contributed by AV, 24-Sep-2020.) (Proof shortened by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐺 = {〈𝐵, 𝐵〉} ⇒ ⊢ (iEdg‘𝐺) = {𝐵} | ||
| Theorem | vtxval3sn 29032 | Degenerated case 3 for vertices: The set of vertices of a singleton containing a singleton containing a singleton is the innermost singleton. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (Vtx‘{{{𝐴}}}) = {𝐴} | ||
| Theorem | iedgval3sn 29033 | Degenerated case 3 for edges: The set of indexed edges of a singleton containing a singleton containing a singleton is the innermost singleton. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (iEdg‘{{{𝐴}}}) = {𝐴} | ||
| Theorem | vtxvalprc 29034 | Degenerated case 4 for vertices: The set of vertices of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.) |
| ⊢ (𝐶 ∉ V → (Vtx‘𝐶) = ∅) | ||
| Theorem | iedgvalprc 29035 | Degenerated case 4 for edges: The set of indexed edges of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.) |
| ⊢ (𝐶 ∉ V → (iEdg‘𝐶) = ∅) | ||
| Syntax | cedg 29036 | Extend class notation with the set of edges (of an undirected simple (hyper-/pseudo-)graph). |
| class Edg | ||
| Definition | df-edg 29037 | Define the class of edges of a graph, see also definition "E = E(G)" in section I.1 of [Bollobas] p. 1. This definition is very general: It defines edges of a class as the range of its edge function (which does not even need to be a function). Therefore, this definition could also be used for hypergraphs, pseudographs and multigraphs. In these cases, however, the (possibly more than one) edges connecting the same vertices could not be distinguished anymore. In some cases, this is no problem, so theorems with Edg are meaningful nevertheless (e.g., edguhgr 29118). Usually, however, this definition is used only for undirected simple (hyper-/pseudo-)graphs (with or without loops). (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) |
| ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | ||
| Theorem | edgval 29038 | The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
| ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | ||
| Theorem | iedgedg 29039 | An indexed edge is an edge. (Contributed by AV, 19-Dec-2021.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) | ||
| Theorem | edgopval 29040 | The edges of a graph represented as ordered pair. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Edg‘〈𝑉, 𝐸〉) = ran 𝐸) | ||
| Theorem | edgov 29041 | The edges of a graph represented as ordered pair, shown as operation value. Although a little less intuitive, this representation is often used because it is shorter than the representation as function value of a graph given as ordered pair, see edgopval 29040. The representation ran 𝐸 for the set of edges is even shorter, though. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 13-Oct-2020.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝑉Edg𝐸) = ran 𝐸) | ||
| Theorem | edgstruct 29042 | The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Edg‘𝐺) = ran 𝐸) | ||
| Theorem | edgiedgb 29043* | A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) | ||
| Theorem | edg0iedg0 29044 | There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020.) (Revised by AV, 8-Dec-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅)) | ||
For undirected graphs, we will have the following hierarchy/taxonomy: * Undirected Hypergraph: UHGraph * Undirected loop-free graphs: ULFGraph (not defined formally yet) * Undirected simple Hypergraph: USHGraph => USHGraph ⊆ UHGraph (ushgruhgr 29058) * Undirected Pseudograph: UPGraph => UPGraph ⊆ UHGraph (upgruhgr 29091) * Undirected loop-free hypergraph: ULFHGraph (not defined formally yet) => ULFHGraph ⊆ UHGraph and ULFHGraph ⊆ ULFGraph * Undirected loop-free simple hypergraph: ULFSHGraph (not defined formally yet) => ULFSHGraph ⊆ USHGraph and ULFSHGraph ⊆ ULFHGraph * Undirected simple Pseudograph: USPGraph => USPGraph ⊆ UPGraph (uspgrupgr 29167) and USPGraph ⊆ USHGraph (uspgrushgr 29166), see also uspgrupgrushgr 29168 * Undirected Muligraph: UMGraph => UMGraph ⊆ UPGraph (umgrupgr 29092) and UMGraph ⊆ ULFHGraph (umgrislfupgr 29112) * Undirected simple Graph: USGraph => USGraph ⊆ USPGraph (usgruspgr 29169) and USGraph ⊆ UMGraph (usgrumgr 29170) and USGraph ⊆ ULFSHGraph (usgrislfuspgr 29176) see also usgrumgruspgr 29171 | ||
| Syntax | cuhgr 29045 | Extend class notation with undirected hypergraphs. |
| class UHGraph | ||
| Syntax | cushgr 29046 | Extend class notation with undirected simple hypergraphs. |
| class USHGraph | ||
| Definition | df-uhgr 29047* | Define the class of all undirected hypergraphs. An undirected hypergraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into the power set of this set (the empty set excluded). (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 8-Oct-2020.) |
| ⊢ UHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})} | ||
| Definition | df-ushgr 29048* | Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by AV, 8-Oct-2020.) |
| ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} | ||
| Theorem | isuhgr 29049 | The predicate "is an undirected hypergraph." (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) | ||
| Theorem | isushgr 29050 | The predicate "is an undirected simple hypergraph." (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅}))) | ||
| Theorem | uhgrf 29051 | The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) | ||
| Theorem | ushgrf 29052 | The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ USHGraph → 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅})) | ||
| Theorem | uhgrss 29053 | An edge is a subset of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ⊆ 𝑉) | ||
| Theorem | uhgreq12g 29054 | If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐹 = (iEdg‘𝐻) ⇒ ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph)) | ||
| Theorem | uhgrfun 29055 | The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) | ||
| Theorem | uhgrn0 29056 | An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) | ||
| Theorem | lpvtx 29057 | The endpoints of a loop (which is an edge at index 𝐽) are two (identical) vertices 𝐴. (Contributed by AV, 1-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺)) | ||
| Theorem | ushgruhgr 29058 | An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
| ⊢ (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph) | ||
| Theorem | isuhgrop 29059 | The property of being an undirected hypergraph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) | ||
| Theorem | uhgr0e 29060 | The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → (iEdg‘𝐺) = ∅) ⇒ ⊢ (𝜑 → 𝐺 ∈ UHGraph) | ||
| Theorem | uhgr0vb 29061 | The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) | ||
| Theorem | uhgr0 29062 | The null graph represented by an empty set is a hypergraph. (Contributed by AV, 9-Oct-2020.) |
| ⊢ ∅ ∈ UHGraph | ||
| Theorem | uhgrun 29063 | The union 𝑈 of two (undirected) hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a hypergraph with the vertex set 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UHGraph) | ||
| Theorem | uhgrunop 29064 | The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) | ||
| Theorem | ushgrun 29065 | The union 𝑈 of two (undirected) simple hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a (not necessarily simple) hypergraph with the vertex set 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ USHGraph) & ⊢ (𝜑 → 𝐻 ∈ USHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UHGraph) | ||
| Theorem | ushgrunop 29066 | The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are simple hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ USHGraph) & ⊢ (𝜑 → 𝐻 ∈ USHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) | ||
| Theorem | uhgrstrrepe 29067 | Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a hypergraph. Instead of requiring (𝜑 → 𝐺 Struct 𝑋), it would be sufficient to require (𝜑 → Fun (𝐺 ∖ {∅})) and (𝜑 → 𝐺 ∈ V). (Contributed by AV, 18-Jan-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| ⊢ 𝑉 = (Base‘𝐺) & ⊢ 𝐼 = (.ef‘ndx) & ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) ⇒ ⊢ (𝜑 → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ UHGraph) | ||
| Theorem | incistruhgr 29068* | An incidence structure 〈𝑃, 𝐿, 𝐼〉 "where 𝑃 is a set whose elements are called points, 𝐿 is a distinct set whose elements are called lines and 𝐼 ⊆ (𝑃 × 𝐿) is the incidence relation" (see Wikipedia "Incidence structure" (24-Oct-2020), https://en.wikipedia.org/wiki/Incidence_structure) implies an undirected hypergraph, if the incidence relation is right-total (to exclude empty edges). The points become the vertices, and the edge function is derived from the incidence relation by mapping each line ("edge") to the set of vertices incident to the line/edge. With 𝑃 = (Base‘𝑆) and by defining two new slots for lines and incidence relations (analogous to LineG and Itv) and enhancing the definition of iEdg accordingly, it would even be possible to express that a corresponding incidence structure is an undirected hypergraph. By choosing the incident relation appropriately, other kinds of undirected graphs (pseudographs, multigraphs, simple graphs, etc.) could be defined. (Contributed by AV, 24-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph)) | ||
| Syntax | cupgr 29069 | Extend class notation with undirected pseudographs. |
| class UPGraph | ||
| Syntax | cumgr 29070 | Extend class notation with undirected multigraphs. |
| class UMGraph | ||
| Definition | df-upgr 29071* | Define the class of all undirected pseudographs. An (undirected) pseudograph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "In a pseudograph, not only are parallel edges permitted but an edge is also permitted to join a vertex to itself. Such an edge is called a loop." (in contrast to a multigraph, see df-umgr 29072). (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 24-Nov-2020.) |
| ⊢ UPGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}} | ||
| Definition | df-umgr 29072* | Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 14390 and isumgrs 29085). (Contributed by AV, 24-Nov-2020.) |
| ⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} | ||
| Theorem | isupgr 29073* | The property of being an undirected pseudograph. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) | ||
| Theorem | wrdupgr 29074* | The property of being an undirected pseudograph, expressing the edges as "words". (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → (𝐺 ∈ UPGraph ↔ 𝐸 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) | ||
| Theorem | upgrf 29075* | The edge function of an undirected pseudograph is a function into unordered pairs of vertices. Version of upgrfn 29076 without explicitly specified domain of the edge function. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | ||
| Theorem | upgrfn 29076* | The edge function of an undirected pseudograph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | ||
| Theorem | upgrss 29077 | An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 29-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ⊆ 𝑉) | ||
| Theorem | upgrn0 29078 | An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) | ||
| Theorem | upgrle 29079 | An edge of an undirected pseudograph has at most two ends. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (♯‘(𝐸‘𝐹)) ≤ 2) | ||
| Theorem | upgrfi 29080 | An edge is a finite subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ Fin) | ||
| Theorem | upgrex 29081* | An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦}) | ||
| Theorem | upgrbi 29082* | Show that an unordered pair is a valid edge in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 28-Feb-2021.) |
| ⊢ 𝑋 ∈ 𝑉 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ {𝑋, 𝑌} ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} | ||
| Theorem | upgrop 29083 | A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021.) |
| ⊢ (𝐺 ∈ UPGraph → 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ UPGraph) | ||
| Theorem | isumgr 29084* | The property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UMGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})) | ||
| Theorem | isumgrs 29085* | The simplified property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UMGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) | ||
| Theorem | wrdumgr 29086* | The property of being an undirected multigraph, expressing the edges as "words". (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → (𝐺 ∈ UMGraph ↔ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) | ||
| Theorem | umgrf 29087* | The edge function of an undirected multigraph is a function into unordered pairs of vertices. Version of umgrfn 29088 without explicitly specified domain of the edge function. (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | ||
| Theorem | umgrfn 29088* | The edge function of an undirected multigraph is a function into unordered pairs of vertices. (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | ||
| Theorem | umgredg2 29089 | An edge of a multigraph has exactly two ends. (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) | ||
| Theorem | umgrbi 29090* | Show that an unordered pair is a valid edge in a multigraph. (Contributed by AV, 9-Mar-2021.) |
| ⊢ 𝑋 ∈ 𝑉 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑋 ≠ 𝑌 ⇒ ⊢ {𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | ||
| Theorem | upgruhgr 29091 | An undirected pseudograph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 10-Oct-2020.) |
| ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | ||
| Theorem | umgrupgr 29092 | An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020.) |
| ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | ||
| Theorem | umgruhgr 29093 | An undirected multigraph is an undirected hypergraph. (Contributed by AV, 26-Nov-2020.) |
| ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | ||
| Theorem | upgrle2 29094 | An edge of an undirected pseudograph has at most two ends. (Contributed by AV, 6-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) ≤ 2) | ||
| Theorem | umgrnloopv 29095 | In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) | ||
| Theorem | umgredgprv 29096 | In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either 𝑀 or 𝑁 could be proper classes ((𝐸‘𝑋) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) | ||
| Theorem | umgrnloop 29097* | In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) | ||
| Theorem | umgrnloop0 29098* | A multigraph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅) | ||
| Theorem | umgr0e 29099 | The empty graph, with vertices but no edges, is a multigraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → (iEdg‘𝐺) = ∅) ⇒ ⊢ (𝜑 → 𝐺 ∈ UMGraph) | ||
| Theorem | upgr0e 29100 | The empty graph, with vertices but no edges, is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → (iEdg‘𝐺) = ∅) ⇒ ⊢ (𝜑 → 𝐺 ∈ UPGraph) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |