| Metamath
Proof Explorer Theorem List (p. 291 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | grastruct 29001 | Any representation of a graph 𝐺 (especially as ordered pair 𝐺 = 〈𝑉, 𝐸〉) is convertible in a representation of the graph as extensible structure. (Contributed by AV, 8-Oct-2020.) |
| ⊢ 𝐻 = {〈(Base‘ndx), (Vtx‘𝐺)〉, 〈(.ef‘ndx), (iEdg‘𝐺)〉} ⇒ ⊢ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) | ||
| Theorem | gropd 29002* | If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then the ordered pair 〈𝑉, 𝐸〉 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 11-Oct-2020.) |
| ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → [〈𝑉, 𝐸〉 / 𝑔]𝜓) | ||
| Theorem | grstructd 29003* | If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
| ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑋) & ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) & ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) & ⊢ (𝜑 → (Base‘𝑆) = 𝑉) & ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) ⇒ ⊢ (𝜑 → [𝑆 / 𝑔]𝜓) | ||
| Theorem | gropeld 29004* | If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then the ordered pair 〈𝑉, 𝐸〉 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 11-Oct-2020.) |
| ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → 〈𝑉, 𝐸〉 ∈ 𝐶) | ||
| Theorem | grstructeld 29005* | If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
| ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑋) & ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) & ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) & ⊢ (𝜑 → (Base‘𝑆) = 𝑉) & ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) ⇒ ⊢ (𝜑 → 𝑆 ∈ 𝐶) | ||
| Theorem | setsvtx 29006 | The vertices of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 18-Jan-2020.) (Revised by AV, 16-Nov-2021.) |
| ⊢ 𝐼 = (.ef‘ndx) & ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (Base‘𝐺)) | ||
| Theorem | setsiedg 29007 | The (indexed) edges of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| ⊢ 𝐼 = (.ef‘ndx) & ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝐸) | ||
| Theorem | snstrvtxval 29008 | The set of vertices of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See vtxvalsnop 29012 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 23-Sep-2020.) |
| ⊢ 𝑉 ∈ V & ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉} ⇒ ⊢ (𝑉 ≠ (Base‘ndx) → (Vtx‘𝐺) = 𝑉) | ||
| Theorem | snstriedgval 29009 | The set of indexed edges of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See iedgvalsnop 29013 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 24-Sep-2020.) |
| ⊢ 𝑉 ∈ V & ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉} ⇒ ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅) | ||
| Theorem | vtxval0 29010 | Degenerated case 1 for vertices: The set of vertices of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.) |
| ⊢ (Vtx‘∅) = ∅ | ||
| Theorem | iedgval0 29011 | Degenerated case 1 for edges: The set of indexed edges of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.) |
| ⊢ (iEdg‘∅) = ∅ | ||
| Theorem | vtxvalsnop 29012 | Degenerated case 2 for vertices: The set of vertices of a singleton containing an ordered pair with equal components is the singleton containing the component. (Contributed by AV, 24-Sep-2020.) (Proof shortened by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐺 = {〈𝐵, 𝐵〉} ⇒ ⊢ (Vtx‘𝐺) = {𝐵} | ||
| Theorem | iedgvalsnop 29013 | Degenerated case 2 for edges: The set of indexed edges of a singleton containing an ordered pair with equal components is the singleton containing the component. (Contributed by AV, 24-Sep-2020.) (Proof shortened by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐺 = {〈𝐵, 𝐵〉} ⇒ ⊢ (iEdg‘𝐺) = {𝐵} | ||
| Theorem | vtxval3sn 29014 | Degenerated case 3 for vertices: The set of vertices of a singleton containing a singleton containing a singleton is the innermost singleton. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (Vtx‘{{{𝐴}}}) = {𝐴} | ||
| Theorem | iedgval3sn 29015 | Degenerated case 3 for edges: The set of indexed edges of a singleton containing a singleton containing a singleton is the innermost singleton. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (iEdg‘{{{𝐴}}}) = {𝐴} | ||
| Theorem | vtxvalprc 29016 | Degenerated case 4 for vertices: The set of vertices of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.) |
| ⊢ (𝐶 ∉ V → (Vtx‘𝐶) = ∅) | ||
| Theorem | iedgvalprc 29017 | Degenerated case 4 for edges: The set of indexed edges of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.) |
| ⊢ (𝐶 ∉ V → (iEdg‘𝐶) = ∅) | ||
| Syntax | cedg 29018 | Extend class notation with the set of edges (of an undirected simple (hyper-/pseudo-)graph). |
| class Edg | ||
| Definition | df-edg 29019 | Define the class of edges of a graph, see also definition "E = E(G)" in section I.1 of [Bollobas] p. 1. This definition is very general: It defines edges of a class as the range of its edge function (which does not even need to be a function). Therefore, this definition could also be used for hypergraphs, pseudographs and multigraphs. In these cases, however, the (possibly more than one) edges connecting the same vertices could not be distinguished anymore. In some cases, this is no problem, so theorems with Edg are meaningful nevertheless (e.g., edguhgr 29100). Usually, however, this definition is used only for undirected simple (hyper-/pseudo-)graphs (with or without loops). (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) |
| ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | ||
| Theorem | edgval 29020 | The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
| ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | ||
| Theorem | iedgedg 29021 | An indexed edge is an edge. (Contributed by AV, 19-Dec-2021.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) | ||
| Theorem | edgopval 29022 | The edges of a graph represented as ordered pair. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Edg‘〈𝑉, 𝐸〉) = ran 𝐸) | ||
| Theorem | edgov 29023 | The edges of a graph represented as ordered pair, shown as operation value. Although a little less intuitive, this representation is often used because it is shorter than the representation as function value of a graph given as ordered pair, see edgopval 29022. The representation ran 𝐸 for the set of edges is even shorter, though. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 13-Oct-2020.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝑉Edg𝐸) = ran 𝐸) | ||
| Theorem | edgstruct 29024 | The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Edg‘𝐺) = ran 𝐸) | ||
| Theorem | edgiedgb 29025* | A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) | ||
| Theorem | edg0iedg0 29026 | There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020.) (Revised by AV, 8-Dec-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅)) | ||
For undirected graphs, we will have the following hierarchy/taxonomy: * Undirected Hypergraph: UHGraph * Undirected loop-free graphs: ULFGraph (not defined formally yet) * Undirected simple Hypergraph: USHGraph => USHGraph ⊆ UHGraph (ushgruhgr 29040) * Undirected Pseudograph: UPGraph => UPGraph ⊆ UHGraph (upgruhgr 29073) * Undirected loop-free hypergraph: ULFHGraph (not defined formally yet) => ULFHGraph ⊆ UHGraph and ULFHGraph ⊆ ULFGraph * Undirected loop-free simple hypergraph: ULFSHGraph (not defined formally yet) => ULFSHGraph ⊆ USHGraph and ULFSHGraph ⊆ ULFHGraph * Undirected simple Pseudograph: USPGraph => USPGraph ⊆ UPGraph (uspgrupgr 29149) and USPGraph ⊆ USHGraph (uspgrushgr 29148), see also uspgrupgrushgr 29150 * Undirected Muligraph: UMGraph => UMGraph ⊆ UPGraph (umgrupgr 29074) and UMGraph ⊆ ULFHGraph (umgrislfupgr 29094) * Undirected simple Graph: USGraph => USGraph ⊆ USPGraph (usgruspgr 29151) and USGraph ⊆ UMGraph (usgrumgr 29152) and USGraph ⊆ ULFSHGraph (usgrislfuspgr 29158) see also usgrumgruspgr 29153 | ||
| Syntax | cuhgr 29027 | Extend class notation with undirected hypergraphs. |
| class UHGraph | ||
| Syntax | cushgr 29028 | Extend class notation with undirected simple hypergraphs. |
| class USHGraph | ||
| Definition | df-uhgr 29029* | Define the class of all undirected hypergraphs. An undirected hypergraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into the power set of this set (the empty set excluded). (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 8-Oct-2020.) |
| ⊢ UHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})} | ||
| Definition | df-ushgr 29030* | Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by AV, 8-Oct-2020.) |
| ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} | ||
| Theorem | isuhgr 29031 | The predicate "is an undirected hypergraph." (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) | ||
| Theorem | isushgr 29032 | The predicate "is an undirected simple hypergraph." (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅}))) | ||
| Theorem | uhgrf 29033 | The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) | ||
| Theorem | ushgrf 29034 | The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ USHGraph → 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅})) | ||
| Theorem | uhgrss 29035 | An edge is a subset of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ⊆ 𝑉) | ||
| Theorem | uhgreq12g 29036 | If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐹 = (iEdg‘𝐻) ⇒ ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph)) | ||
| Theorem | uhgrfun 29037 | The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) | ||
| Theorem | uhgrn0 29038 | An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) | ||
| Theorem | lpvtx 29039 | The endpoints of a loop (which is an edge at index 𝐽) are two (identical) vertices 𝐴. (Contributed by AV, 1-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺)) | ||
| Theorem | ushgruhgr 29040 | An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
| ⊢ (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph) | ||
| Theorem | isuhgrop 29041 | The property of being an undirected hypergraph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) | ||
| Theorem | uhgr0e 29042 | The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → (iEdg‘𝐺) = ∅) ⇒ ⊢ (𝜑 → 𝐺 ∈ UHGraph) | ||
| Theorem | uhgr0vb 29043 | The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) | ||
| Theorem | uhgr0 29044 | The null graph represented by an empty set is a hypergraph. (Contributed by AV, 9-Oct-2020.) |
| ⊢ ∅ ∈ UHGraph | ||
| Theorem | uhgrun 29045 | The union 𝑈 of two (undirected) hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a hypergraph with the vertex set 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UHGraph) | ||
| Theorem | uhgrunop 29046 | The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) | ||
| Theorem | ushgrun 29047 | The union 𝑈 of two (undirected) simple hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a (not necessarily simple) hypergraph with the vertex set 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ USHGraph) & ⊢ (𝜑 → 𝐻 ∈ USHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UHGraph) | ||
| Theorem | ushgrunop 29048 | The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are simple hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ USHGraph) & ⊢ (𝜑 → 𝐻 ∈ USHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) | ||
| Theorem | uhgrstrrepe 29049 | Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a hypergraph. Instead of requiring (𝜑 → 𝐺 Struct 𝑋), it would be sufficient to require (𝜑 → Fun (𝐺 ∖ {∅})) and (𝜑 → 𝐺 ∈ V). (Contributed by AV, 18-Jan-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| ⊢ 𝑉 = (Base‘𝐺) & ⊢ 𝐼 = (.ef‘ndx) & ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) ⇒ ⊢ (𝜑 → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ UHGraph) | ||
| Theorem | incistruhgr 29050* | An incidence structure 〈𝑃, 𝐿, 𝐼〉 "where 𝑃 is a set whose elements are called points, 𝐿 is a distinct set whose elements are called lines and 𝐼 ⊆ (𝑃 × 𝐿) is the incidence relation" (see Wikipedia "Incidence structure" (24-Oct-2020), https://en.wikipedia.org/wiki/Incidence_structure) implies an undirected hypergraph, if the incidence relation is right-total (to exclude empty edges). The points become the vertices, and the edge function is derived from the incidence relation by mapping each line ("edge") to the set of vertices incident to the line/edge. With 𝑃 = (Base‘𝑆) and by defining two new slots for lines and incidence relations (analogous to LineG and Itv) and enhancing the definition of iEdg accordingly, it would even be possible to express that a corresponding incidence structure is an undirected hypergraph. By choosing the incident relation appropriately, other kinds of undirected graphs (pseudographs, multigraphs, simple graphs, etc.) could be defined. (Contributed by AV, 24-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph)) | ||
| Syntax | cupgr 29051 | Extend class notation with undirected pseudographs. |
| class UPGraph | ||
| Syntax | cumgr 29052 | Extend class notation with undirected multigraphs. |
| class UMGraph | ||
| Definition | df-upgr 29053* | Define the class of all undirected pseudographs. An (undirected) pseudograph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "In a pseudograph, not only are parallel edges permitted but an edge is also permitted to join a vertex to itself. Such an edge is called a loop." (in contrast to a multigraph, see df-umgr 29054). (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 24-Nov-2020.) |
| ⊢ UPGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}} | ||
| Definition | df-umgr 29054* | Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 14372 and isumgrs 29067). (Contributed by AV, 24-Nov-2020.) |
| ⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} | ||
| Theorem | isupgr 29055* | The property of being an undirected pseudograph. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) | ||
| Theorem | wrdupgr 29056* | The property of being an undirected pseudograph, expressing the edges as "words". (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → (𝐺 ∈ UPGraph ↔ 𝐸 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) | ||
| Theorem | upgrf 29057* | The edge function of an undirected pseudograph is a function into unordered pairs of vertices. Version of upgrfn 29058 without explicitly specified domain of the edge function. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | ||
| Theorem | upgrfn 29058* | The edge function of an undirected pseudograph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | ||
| Theorem | upgrss 29059 | An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 29-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ⊆ 𝑉) | ||
| Theorem | upgrn0 29060 | An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) | ||
| Theorem | upgrle 29061 | An edge of an undirected pseudograph has at most two ends. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (♯‘(𝐸‘𝐹)) ≤ 2) | ||
| Theorem | upgrfi 29062 | An edge is a finite subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ Fin) | ||
| Theorem | upgrex 29063* | An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦}) | ||
| Theorem | upgrbi 29064* | Show that an unordered pair is a valid edge in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 28-Feb-2021.) |
| ⊢ 𝑋 ∈ 𝑉 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ {𝑋, 𝑌} ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} | ||
| Theorem | upgrop 29065 | A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021.) |
| ⊢ (𝐺 ∈ UPGraph → 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ UPGraph) | ||
| Theorem | isumgr 29066* | The property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UMGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})) | ||
| Theorem | isumgrs 29067* | The simplified property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UMGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) | ||
| Theorem | wrdumgr 29068* | The property of being an undirected multigraph, expressing the edges as "words". (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → (𝐺 ∈ UMGraph ↔ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) | ||
| Theorem | umgrf 29069* | The edge function of an undirected multigraph is a function into unordered pairs of vertices. Version of umgrfn 29070 without explicitly specified domain of the edge function. (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | ||
| Theorem | umgrfn 29070* | The edge function of an undirected multigraph is a function into unordered pairs of vertices. (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | ||
| Theorem | umgredg2 29071 | An edge of a multigraph has exactly two ends. (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) | ||
| Theorem | umgrbi 29072* | Show that an unordered pair is a valid edge in a multigraph. (Contributed by AV, 9-Mar-2021.) |
| ⊢ 𝑋 ∈ 𝑉 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑋 ≠ 𝑌 ⇒ ⊢ {𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | ||
| Theorem | upgruhgr 29073 | An undirected pseudograph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 10-Oct-2020.) |
| ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | ||
| Theorem | umgrupgr 29074 | An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020.) |
| ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | ||
| Theorem | umgruhgr 29075 | An undirected multigraph is an undirected hypergraph. (Contributed by AV, 26-Nov-2020.) |
| ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | ||
| Theorem | upgrle2 29076 | An edge of an undirected pseudograph has at most two ends. (Contributed by AV, 6-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) ≤ 2) | ||
| Theorem | umgrnloopv 29077 | In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) | ||
| Theorem | umgredgprv 29078 | In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either 𝑀 or 𝑁 could be proper classes ((𝐸‘𝑋) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) | ||
| Theorem | umgrnloop 29079* | In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) | ||
| Theorem | umgrnloop0 29080* | A multigraph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅) | ||
| Theorem | umgr0e 29081 | The empty graph, with vertices but no edges, is a multigraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → (iEdg‘𝐺) = ∅) ⇒ ⊢ (𝜑 → 𝐺 ∈ UMGraph) | ||
| Theorem | upgr0e 29082 | The empty graph, with vertices but no edges, is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → (iEdg‘𝐺) = ∅) ⇒ ⊢ (𝜑 → 𝐺 ∈ UPGraph) | ||
| Theorem | upgr1elem 29083* | Lemma for upgr1e 29084 and uspgr1e 29215. (Contributed by AV, 16-Oct-2020.) |
| ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝑆 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | ||
| Theorem | upgr1e 29084 | A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1e 29215. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) ⇒ ⊢ (𝜑 → 𝐺 ∈ UPGraph) | ||
| Theorem | upgr0eop 29085 | The empty graph, with vertices but no edges, is a pseudograph. The empty graph is actually a simple graph, see usgr0eop 29217, and therefore also a multigraph (𝐺 ∈ UMGraph). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.) |
| ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ UPGraph) | ||
| Theorem | upgr1eop 29086 | A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1eop 29218. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ UPGraph) | ||
| Theorem | upgr0eopALT 29087 | Alternate proof of upgr0eop 29085, using the general theorem gropeld 29004 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr0eop 29085). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ UPGraph) | ||
| Theorem | upgr1eopALT 29088 | Alternate proof of upgr1eop 29086, using the general theorem gropeld 29004 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr1eop 29086). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ UPGraph) | ||
| Theorem | upgrun 29089 | The union 𝑈 of two pseudographs 𝐺 and 𝐻 with the same vertex set 𝑉 is a pseudograph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ UPGraph) & ⊢ (𝜑 → 𝐻 ∈ UPGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UPGraph) | ||
| Theorem | upgrunop 29090 | The union of two pseudographs (with the same vertex set): If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are pseudographs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ UPGraph) & ⊢ (𝜑 → 𝐻 ∈ UPGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UPGraph) | ||
| Theorem | umgrun 29091 | The union 𝑈 of two multigraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a multigraph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐺 ∈ UMGraph) & ⊢ (𝜑 → 𝐻 ∈ UMGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UMGraph) | ||
| Theorem | umgrunop 29092 | The union of two multigraphs (with the same vertex set): If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are multigraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a multigraph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐺 ∈ UMGraph) & ⊢ (𝜑 → 𝐻 ∈ UMGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UMGraph) | ||
For a hypergraph, the property to be "loop-free" is expressed by 𝐼:dom 𝐼⟶𝐸 with 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} and 𝐼 = (iEdg‘𝐺). 𝐸 is the set of edges which connect at least two vertices. | ||
| Theorem | umgrislfupgrlem 29093 | Lemma for umgrislfupgr 29094 and usgrislfuspgr 29158. (Contributed by AV, 27-Jan-2021.) |
| ⊢ ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} | ||
| Theorem | umgrislfupgr 29094* | A multigraph is a loop-free pseudograph. (Contributed by AV, 27-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})) | ||
| Theorem | lfgredgge2 29095* | An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 & ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ⇒ ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑋 ∈ 𝐴) → 2 ≤ (♯‘(𝐼‘𝑋))) | ||
| Theorem | lfgrnloop 29096* | A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 & ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ⇒ ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) | ||
| Theorem | uhgredgiedgb 29097* | In a hypergraph, a set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) | ||
| Theorem | uhgriedg0edg0 29098 | A hypergraph has no edges iff its edge function is empty. (Contributed by AV, 21-Oct-2020.) (Proof shortened by AV, 8-Dec-2021.) |
| ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) | ||
| Theorem | uhgredgn0 29099 | An edge of a hypergraph is a nonempty subset of vertices. (Contributed by AV, 28-Nov-2020.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) | ||
| Theorem | edguhgr 29100 | An edge of a hypergraph is a subset of vertices. (Contributed by AV, 26-Oct-2020.) (Proof shortened by AV, 28-Nov-2020.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ 𝒫 (Vtx‘𝐺)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |