Step | Hyp | Ref
| Expression |
1 | | ceeng 28668 |
. 2
class
EEG |
2 | | vn |
. . 3
setvar π |
3 | | cn 12219 |
. . 3
class
β |
4 | | cnx 17133 |
. . . . . . 7
class
ndx |
5 | | cbs 17151 |
. . . . . . 7
class
Base |
6 | 4, 5 | cfv 6543 |
. . . . . 6
class
(Baseβndx) |
7 | 2 | cv 1539 |
. . . . . . 7
class π |
8 | | cee 28579 |
. . . . . . 7
class
πΌ |
9 | 7, 8 | cfv 6543 |
. . . . . 6
class
(πΌβπ) |
10 | 6, 9 | cop 4634 |
. . . . 5
class
β¨(Baseβndx), (πΌβπ)β© |
11 | | cds 17213 |
. . . . . . 7
class
dist |
12 | 4, 11 | cfv 6543 |
. . . . . 6
class
(distβndx) |
13 | | vx |
. . . . . . 7
setvar π₯ |
14 | | vy |
. . . . . . 7
setvar π¦ |
15 | | c1 11117 |
. . . . . . . . 9
class
1 |
16 | | cfz 13491 |
. . . . . . . . 9
class
... |
17 | 15, 7, 16 | co 7412 |
. . . . . . . 8
class
(1...π) |
18 | | vi |
. . . . . . . . . . . 12
setvar π |
19 | 18 | cv 1539 |
. . . . . . . . . . 11
class π |
20 | 13 | cv 1539 |
. . . . . . . . . . 11
class π₯ |
21 | 19, 20 | cfv 6543 |
. . . . . . . . . 10
class (π₯βπ) |
22 | 14 | cv 1539 |
. . . . . . . . . . 11
class π¦ |
23 | 19, 22 | cfv 6543 |
. . . . . . . . . 10
class (π¦βπ) |
24 | | cmin 11451 |
. . . . . . . . . 10
class
β |
25 | 21, 23, 24 | co 7412 |
. . . . . . . . 9
class ((π₯βπ) β (π¦βπ)) |
26 | | c2 12274 |
. . . . . . . . 9
class
2 |
27 | | cexp 14034 |
. . . . . . . . 9
class
β |
28 | 25, 26, 27 | co 7412 |
. . . . . . . 8
class (((π₯βπ) β (π¦βπ))β2) |
29 | 17, 28, 18 | csu 15639 |
. . . . . . 7
class
Ξ£π β
(1...π)(((π₯βπ) β (π¦βπ))β2) |
30 | 13, 14, 9, 9, 29 | cmpo 7414 |
. . . . . 6
class (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ Ξ£π β (1...π)(((π₯βπ) β (π¦βπ))β2)) |
31 | 12, 30 | cop 4634 |
. . . . 5
class
β¨(distβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ Ξ£π β (1...π)(((π₯βπ) β (π¦βπ))β2))β© |
32 | 10, 31 | cpr 4630 |
. . . 4
class
{β¨(Baseβndx), (πΌβπ)β©, β¨(distβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ Ξ£π β (1...π)(((π₯βπ) β (π¦βπ))β2))β©} |
33 | | citv 28117 |
. . . . . . 7
class
Itv |
34 | 4, 33 | cfv 6543 |
. . . . . 6
class
(Itvβndx) |
35 | | vz |
. . . . . . . . . 10
setvar π§ |
36 | 35 | cv 1539 |
. . . . . . . . 9
class π§ |
37 | 20, 22 | cop 4634 |
. . . . . . . . 9
class
β¨π₯, π¦β© |
38 | | cbtwn 28580 |
. . . . . . . . 9
class
Btwn |
39 | 36, 37, 38 | wbr 5148 |
. . . . . . . 8
wff π§ Btwn β¨π₯, π¦β© |
40 | 39, 35, 9 | crab 3431 |
. . . . . . 7
class {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©} |
41 | 13, 14, 9, 9, 40 | cmpo 7414 |
. . . . . 6
class (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©}) |
42 | 34, 41 | cop 4634 |
. . . . 5
class
β¨(Itvβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©})β© |
43 | | clng 28118 |
. . . . . . 7
class
LineG |
44 | 4, 43 | cfv 6543 |
. . . . . 6
class
(LineGβndx) |
45 | 20 | csn 4628 |
. . . . . . . 8
class {π₯} |
46 | 9, 45 | cdif 3945 |
. . . . . . 7
class
((πΌβπ)
β {π₯}) |
47 | 36, 22 | cop 4634 |
. . . . . . . . . 10
class
β¨π§, π¦β© |
48 | 20, 47, 38 | wbr 5148 |
. . . . . . . . 9
wff π₯ Btwn β¨π§, π¦β© |
49 | 20, 36 | cop 4634 |
. . . . . . . . . 10
class
β¨π₯, π§β© |
50 | 22, 49, 38 | wbr 5148 |
. . . . . . . . 9
wff π¦ Btwn β¨π₯, π§β© |
51 | 39, 48, 50 | w3o 1085 |
. . . . . . . 8
wff (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©) |
52 | 51, 35, 9 | crab 3431 |
. . . . . . 7
class {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)} |
53 | 13, 14, 9, 46, 52 | cmpo 7414 |
. . . . . 6
class (π₯ β (πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)}) |
54 | 44, 53 | cop 4634 |
. . . . 5
class
β¨(LineGβndx), (π₯ β (πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)})β© |
55 | 42, 54 | cpr 4630 |
. . . 4
class
{β¨(Itvβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©})β©, β¨(LineGβndx),
(π₯ β
(πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)})β©} |
56 | 32, 55 | cun 3946 |
. . 3
class
({β¨(Baseβndx), (πΌβπ)β©, β¨(distβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ Ξ£π β (1...π)(((π₯βπ) β (π¦βπ))β2))β©} βͺ
{β¨(Itvβndx), (π₯
β (πΌβπ),
π¦ β
(πΌβπ) β¦
{π§ β
(πΌβπ) β£
π§ Btwn β¨π₯, π¦β©})β©, β¨(LineGβndx),
(π₯ β
(πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)})β©}) |
57 | 2, 3, 56 | cmpt 5231 |
. 2
class (π β β β¦
({β¨(Baseβndx), (πΌβπ)β©, β¨(distβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ Ξ£π β (1...π)(((π₯βπ) β (π¦βπ))β2))β©} βͺ
{β¨(Itvβndx), (π₯
β (πΌβπ),
π¦ β
(πΌβπ) β¦
{π§ β
(πΌβπ) β£
π§ Btwn β¨π₯, π¦β©})β©, β¨(LineGβndx),
(π₯ β
(πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)})β©})) |
58 | 1, 57 | wceq 1540 |
1
wff EEG =
(π β β β¦
({β¨(Baseβndx), (πΌβπ)β©, β¨(distβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ Ξ£π β (1...π)(((π₯βπ) β (π¦βπ))β2))β©} βͺ
{β¨(Itvβndx), (π₯
β (πΌβπ),
π¦ β
(πΌβπ) β¦
{π§ β
(πΌβπ) β£
π§ Btwn β¨π₯, π¦β©})β©, β¨(LineGβndx),
(π₯ β
(πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)})β©})) |