MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-eeng Structured version   Visualization version   GIF version

Definition df-eeng 28669
Description: Define the geometry structure for 𝔼↑𝑁. (Contributed by Thierry Arnoux, 24-Aug-2017.)
Assertion
Ref Expression
df-eeng EEG = (𝑛 ∈ β„• ↦ ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘›)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ Σ𝑖 ∈ (1...𝑛)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ ((π”Όβ€˜π‘›) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
Distinct variable group:   𝑖,𝑛,π‘₯,𝑦,𝑧

Detailed syntax breakdown of Definition df-eeng
StepHypRef Expression
1 ceeng 28668 . 2 class EEG
2 vn . . 3 setvar 𝑛
3 cn 12219 . . 3 class β„•
4 cnx 17133 . . . . . . 7 class ndx
5 cbs 17151 . . . . . . 7 class Base
64, 5cfv 6543 . . . . . 6 class (Baseβ€˜ndx)
72cv 1539 . . . . . . 7 class 𝑛
8 cee 28579 . . . . . . 7 class 𝔼
97, 8cfv 6543 . . . . . 6 class (π”Όβ€˜π‘›)
106, 9cop 4634 . . . . 5 class ⟨(Baseβ€˜ndx), (π”Όβ€˜π‘›)⟩
11 cds 17213 . . . . . . 7 class dist
124, 11cfv 6543 . . . . . 6 class (distβ€˜ndx)
13 vx . . . . . . 7 setvar π‘₯
14 vy . . . . . . 7 setvar 𝑦
15 c1 11117 . . . . . . . . 9 class 1
16 cfz 13491 . . . . . . . . 9 class ...
1715, 7, 16co 7412 . . . . . . . 8 class (1...𝑛)
18 vi . . . . . . . . . . . 12 setvar 𝑖
1918cv 1539 . . . . . . . . . . 11 class 𝑖
2013cv 1539 . . . . . . . . . . 11 class π‘₯
2119, 20cfv 6543 . . . . . . . . . 10 class (π‘₯β€˜π‘–)
2214cv 1539 . . . . . . . . . . 11 class 𝑦
2319, 22cfv 6543 . . . . . . . . . 10 class (π‘¦β€˜π‘–)
24 cmin 11451 . . . . . . . . . 10 class βˆ’
2521, 23, 24co 7412 . . . . . . . . 9 class ((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))
26 c2 12274 . . . . . . . . 9 class 2
27 cexp 14034 . . . . . . . . 9 class ↑
2825, 26, 27co 7412 . . . . . . . 8 class (((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2)
2917, 28, 18csu 15639 . . . . . . 7 class Σ𝑖 ∈ (1...𝑛)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2)
3013, 14, 9, 9, 29cmpo 7414 . . . . . 6 class (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ Σ𝑖 ∈ (1...𝑛)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))
3112, 30cop 4634 . . . . 5 class ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ Σ𝑖 ∈ (1...𝑛)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩
3210, 31cpr 4630 . . . 4 class {⟨(Baseβ€˜ndx), (π”Όβ€˜π‘›)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ Σ𝑖 ∈ (1...𝑛)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩}
33 citv 28117 . . . . . . 7 class Itv
344, 33cfv 6543 . . . . . 6 class (Itvβ€˜ndx)
35 vz . . . . . . . . . 10 setvar 𝑧
3635cv 1539 . . . . . . . . 9 class 𝑧
3720, 22cop 4634 . . . . . . . . 9 class ⟨π‘₯, π‘¦βŸ©
38 cbtwn 28580 . . . . . . . . 9 class Btwn
3936, 37, 38wbr 5148 . . . . . . . 8 wff 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©
4039, 35, 9crab 3431 . . . . . . 7 class {𝑧 ∈ (π”Όβ€˜π‘›) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©}
4113, 14, 9, 9, 40cmpo 7414 . . . . . 6 class (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})
4234, 41cop 4634 . . . . 5 class ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩
43 clng 28118 . . . . . . 7 class LineG
444, 43cfv 6543 . . . . . 6 class (LineGβ€˜ndx)
4520csn 4628 . . . . . . . 8 class {π‘₯}
469, 45cdif 3945 . . . . . . 7 class ((π”Όβ€˜π‘›) βˆ– {π‘₯})
4736, 22cop 4634 . . . . . . . . . 10 class βŸ¨π‘§, π‘¦βŸ©
4820, 47, 38wbr 5148 . . . . . . . . 9 wff π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ©
4920, 36cop 4634 . . . . . . . . . 10 class ⟨π‘₯, π‘§βŸ©
5022, 49, 38wbr 5148 . . . . . . . . 9 wff 𝑦 Btwn ⟨π‘₯, π‘§βŸ©
5139, 48, 50w3o 1085 . . . . . . . 8 wff (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)
5251, 35, 9crab 3431 . . . . . . 7 class {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)}
5313, 14, 9, 46, 52cmpo 7414 . . . . . 6 class (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ ((π”Όβ€˜π‘›) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})
5444, 53cop 4634 . . . . 5 class ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ ((π”Όβ€˜π‘›) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩
5542, 54cpr 4630 . . . 4 class {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ ((π”Όβ€˜π‘›) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}
5632, 55cun 3946 . . 3 class ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘›)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ Σ𝑖 ∈ (1...𝑛)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ ((π”Όβ€˜π‘›) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩})
572, 3, 56cmpt 5231 . 2 class (𝑛 ∈ β„• ↦ ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘›)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ Σ𝑖 ∈ (1...𝑛)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ ((π”Όβ€˜π‘›) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
581, 57wceq 1540 1 wff EEG = (𝑛 ∈ β„• ↦ ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘›)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ Σ𝑖 ∈ (1...𝑛)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ ((π”Όβ€˜π‘›) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  eengv  28670
  Copyright terms: Public domain W3C validator