Detailed syntax breakdown of Definition df-eeng
| Step | Hyp | Ref
| Expression |
| 1 | | ceeng 28992 |
. 2
class
EEG |
| 2 | | vn |
. . 3
setvar 𝑛 |
| 3 | | cn 12266 |
. . 3
class
ℕ |
| 4 | | cnx 17230 |
. . . . . . 7
class
ndx |
| 5 | | cbs 17247 |
. . . . . . 7
class
Base |
| 6 | 4, 5 | cfv 6561 |
. . . . . 6
class
(Base‘ndx) |
| 7 | 2 | cv 1539 |
. . . . . . 7
class 𝑛 |
| 8 | | cee 28903 |
. . . . . . 7
class
𝔼 |
| 9 | 7, 8 | cfv 6561 |
. . . . . 6
class
(𝔼‘𝑛) |
| 10 | 6, 9 | cop 4632 |
. . . . 5
class
〈(Base‘ndx), (𝔼‘𝑛)〉 |
| 11 | | cds 17306 |
. . . . . . 7
class
dist |
| 12 | 4, 11 | cfv 6561 |
. . . . . 6
class
(dist‘ndx) |
| 13 | | vx |
. . . . . . 7
setvar 𝑥 |
| 14 | | vy |
. . . . . . 7
setvar 𝑦 |
| 15 | | c1 11156 |
. . . . . . . . 9
class
1 |
| 16 | | cfz 13547 |
. . . . . . . . 9
class
... |
| 17 | 15, 7, 16 | co 7431 |
. . . . . . . 8
class
(1...𝑛) |
| 18 | | vi |
. . . . . . . . . . . 12
setvar 𝑖 |
| 19 | 18 | cv 1539 |
. . . . . . . . . . 11
class 𝑖 |
| 20 | 13 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 21 | 19, 20 | cfv 6561 |
. . . . . . . . . 10
class (𝑥‘𝑖) |
| 22 | 14 | cv 1539 |
. . . . . . . . . . 11
class 𝑦 |
| 23 | 19, 22 | cfv 6561 |
. . . . . . . . . 10
class (𝑦‘𝑖) |
| 24 | | cmin 11492 |
. . . . . . . . . 10
class
− |
| 25 | 21, 23, 24 | co 7431 |
. . . . . . . . 9
class ((𝑥‘𝑖) − (𝑦‘𝑖)) |
| 26 | | c2 12321 |
. . . . . . . . 9
class
2 |
| 27 | | cexp 14102 |
. . . . . . . . 9
class
↑ |
| 28 | 25, 26, 27 | co 7431 |
. . . . . . . 8
class (((𝑥‘𝑖) − (𝑦‘𝑖))↑2) |
| 29 | 17, 28, 18 | csu 15722 |
. . . . . . 7
class
Σ𝑖 ∈
(1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2) |
| 30 | 13, 14, 9, 9, 29 | cmpo 7433 |
. . . . . 6
class (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2)) |
| 31 | 12, 30 | cop 4632 |
. . . . 5
class
〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉 |
| 32 | 10, 31 | cpr 4628 |
. . . 4
class
{〈(Base‘ndx), (𝔼‘𝑛)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} |
| 33 | | citv 28441 |
. . . . . . 7
class
Itv |
| 34 | 4, 33 | cfv 6561 |
. . . . . 6
class
(Itv‘ndx) |
| 35 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
| 36 | 35 | cv 1539 |
. . . . . . . . 9
class 𝑧 |
| 37 | 20, 22 | cop 4632 |
. . . . . . . . 9
class
〈𝑥, 𝑦〉 |
| 38 | | cbtwn 28904 |
. . . . . . . . 9
class
Btwn |
| 39 | 36, 37, 38 | wbr 5143 |
. . . . . . . 8
wff 𝑧 Btwn 〈𝑥, 𝑦〉 |
| 40 | 39, 35, 9 | crab 3436 |
. . . . . . 7
class {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉} |
| 41 | 13, 14, 9, 9, 40 | cmpo 7433 |
. . . . . 6
class (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉}) |
| 42 | 34, 41 | cop 4632 |
. . . . 5
class
〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉 |
| 43 | | clng 28442 |
. . . . . . 7
class
LineG |
| 44 | 4, 43 | cfv 6561 |
. . . . . 6
class
(LineG‘ndx) |
| 45 | 20 | csn 4626 |
. . . . . . . 8
class {𝑥} |
| 46 | 9, 45 | cdif 3948 |
. . . . . . 7
class
((𝔼‘𝑛)
∖ {𝑥}) |
| 47 | 36, 22 | cop 4632 |
. . . . . . . . . 10
class
〈𝑧, 𝑦〉 |
| 48 | 20, 47, 38 | wbr 5143 |
. . . . . . . . 9
wff 𝑥 Btwn 〈𝑧, 𝑦〉 |
| 49 | 20, 36 | cop 4632 |
. . . . . . . . . 10
class
〈𝑥, 𝑧〉 |
| 50 | 22, 49, 38 | wbr 5143 |
. . . . . . . . 9
wff 𝑦 Btwn 〈𝑥, 𝑧〉 |
| 51 | 39, 48, 50 | w3o 1086 |
. . . . . . . 8
wff (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉) |
| 52 | 51, 35, 9 | crab 3436 |
. . . . . . 7
class {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)} |
| 53 | 13, 14, 9, 46, 52 | cmpo 7433 |
. . . . . 6
class (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)}) |
| 54 | 44, 53 | cop 4632 |
. . . . 5
class
〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉 |
| 55 | 42, 54 | cpr 4628 |
. . . 4
class
{〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉} |
| 56 | 32, 55 | cun 3949 |
. . 3
class
({〈(Base‘ndx), (𝔼‘𝑛)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑛),
𝑦 ∈
(𝔼‘𝑛) ↦
{𝑧 ∈
(𝔼‘𝑛) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉}) |
| 57 | 2, 3, 56 | cmpt 5225 |
. 2
class (𝑛 ∈ ℕ ↦
({〈(Base‘ndx), (𝔼‘𝑛)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑛),
𝑦 ∈
(𝔼‘𝑛) ↦
{𝑧 ∈
(𝔼‘𝑛) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) |
| 58 | 1, 57 | wceq 1540 |
1
wff EEG =
(𝑛 ∈ ℕ ↦
({〈(Base‘ndx), (𝔼‘𝑛)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑛),
𝑦 ∈
(𝔼‘𝑛) ↦
{𝑧 ∈
(𝔼‘𝑛) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) |