Detailed syntax breakdown of Definition df-eeng
Step | Hyp | Ref
| Expression |
1 | | ceeng 27345 |
. 2
class
EEG |
2 | | vn |
. . 3
setvar 𝑛 |
3 | | cn 11973 |
. . 3
class
ℕ |
4 | | cnx 16894 |
. . . . . . 7
class
ndx |
5 | | cbs 16912 |
. . . . . . 7
class
Base |
6 | 4, 5 | cfv 6433 |
. . . . . 6
class
(Base‘ndx) |
7 | 2 | cv 1538 |
. . . . . . 7
class 𝑛 |
8 | | cee 27256 |
. . . . . . 7
class
𝔼 |
9 | 7, 8 | cfv 6433 |
. . . . . 6
class
(𝔼‘𝑛) |
10 | 6, 9 | cop 4567 |
. . . . 5
class
〈(Base‘ndx), (𝔼‘𝑛)〉 |
11 | | cds 16971 |
. . . . . . 7
class
dist |
12 | 4, 11 | cfv 6433 |
. . . . . 6
class
(dist‘ndx) |
13 | | vx |
. . . . . . 7
setvar 𝑥 |
14 | | vy |
. . . . . . 7
setvar 𝑦 |
15 | | c1 10872 |
. . . . . . . . 9
class
1 |
16 | | cfz 13239 |
. . . . . . . . 9
class
... |
17 | 15, 7, 16 | co 7275 |
. . . . . . . 8
class
(1...𝑛) |
18 | | vi |
. . . . . . . . . . . 12
setvar 𝑖 |
19 | 18 | cv 1538 |
. . . . . . . . . . 11
class 𝑖 |
20 | 13 | cv 1538 |
. . . . . . . . . . 11
class 𝑥 |
21 | 19, 20 | cfv 6433 |
. . . . . . . . . 10
class (𝑥‘𝑖) |
22 | 14 | cv 1538 |
. . . . . . . . . . 11
class 𝑦 |
23 | 19, 22 | cfv 6433 |
. . . . . . . . . 10
class (𝑦‘𝑖) |
24 | | cmin 11205 |
. . . . . . . . . 10
class
− |
25 | 21, 23, 24 | co 7275 |
. . . . . . . . 9
class ((𝑥‘𝑖) − (𝑦‘𝑖)) |
26 | | c2 12028 |
. . . . . . . . 9
class
2 |
27 | | cexp 13782 |
. . . . . . . . 9
class
↑ |
28 | 25, 26, 27 | co 7275 |
. . . . . . . 8
class (((𝑥‘𝑖) − (𝑦‘𝑖))↑2) |
29 | 17, 28, 18 | csu 15397 |
. . . . . . 7
class
Σ𝑖 ∈
(1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2) |
30 | 13, 14, 9, 9, 29 | cmpo 7277 |
. . . . . 6
class (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2)) |
31 | 12, 30 | cop 4567 |
. . . . 5
class
〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉 |
32 | 10, 31 | cpr 4563 |
. . . 4
class
{〈(Base‘ndx), (𝔼‘𝑛)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} |
33 | | citv 26794 |
. . . . . . 7
class
Itv |
34 | 4, 33 | cfv 6433 |
. . . . . 6
class
(Itv‘ndx) |
35 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
36 | 35 | cv 1538 |
. . . . . . . . 9
class 𝑧 |
37 | 20, 22 | cop 4567 |
. . . . . . . . 9
class
〈𝑥, 𝑦〉 |
38 | | cbtwn 27257 |
. . . . . . . . 9
class
Btwn |
39 | 36, 37, 38 | wbr 5074 |
. . . . . . . 8
wff 𝑧 Btwn 〈𝑥, 𝑦〉 |
40 | 39, 35, 9 | crab 3068 |
. . . . . . 7
class {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉} |
41 | 13, 14, 9, 9, 40 | cmpo 7277 |
. . . . . 6
class (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉}) |
42 | 34, 41 | cop 4567 |
. . . . 5
class
〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉 |
43 | | clng 26795 |
. . . . . . 7
class
LineG |
44 | 4, 43 | cfv 6433 |
. . . . . 6
class
(LineG‘ndx) |
45 | 20 | csn 4561 |
. . . . . . . 8
class {𝑥} |
46 | 9, 45 | cdif 3884 |
. . . . . . 7
class
((𝔼‘𝑛)
∖ {𝑥}) |
47 | 36, 22 | cop 4567 |
. . . . . . . . . 10
class
〈𝑧, 𝑦〉 |
48 | 20, 47, 38 | wbr 5074 |
. . . . . . . . 9
wff 𝑥 Btwn 〈𝑧, 𝑦〉 |
49 | 20, 36 | cop 4567 |
. . . . . . . . . 10
class
〈𝑥, 𝑧〉 |
50 | 22, 49, 38 | wbr 5074 |
. . . . . . . . 9
wff 𝑦 Btwn 〈𝑥, 𝑧〉 |
51 | 39, 48, 50 | w3o 1085 |
. . . . . . . 8
wff (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉) |
52 | 51, 35, 9 | crab 3068 |
. . . . . . 7
class {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)} |
53 | 13, 14, 9, 46, 52 | cmpo 7277 |
. . . . . 6
class (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)}) |
54 | 44, 53 | cop 4567 |
. . . . 5
class
〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉 |
55 | 42, 54 | cpr 4563 |
. . . 4
class
{〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉} |
56 | 32, 55 | cun 3885 |
. . 3
class
({〈(Base‘ndx), (𝔼‘𝑛)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑛),
𝑦 ∈
(𝔼‘𝑛) ↦
{𝑧 ∈
(𝔼‘𝑛) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉}) |
57 | 2, 3, 56 | cmpt 5157 |
. 2
class (𝑛 ∈ ℕ ↦
({〈(Base‘ndx), (𝔼‘𝑛)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑛),
𝑦 ∈
(𝔼‘𝑛) ↦
{𝑧 ∈
(𝔼‘𝑛) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) |
58 | 1, 57 | wceq 1539 |
1
wff EEG =
(𝑛 ∈ ℕ ↦
({〈(Base‘ndx), (𝔼‘𝑛)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑛),
𝑦 ∈
(𝔼‘𝑛) ↦
{𝑧 ∈
(𝔼‘𝑛) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) |